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AN ALTERNATIVE PROOF OF SOME RESULTS ON THE

FRAMED BORDISM CLASSES OF LOW RANK SIMPLE

LIE GROUPS

Haruo Minami

Abstract. We present a unified proof of some known results on the
framed bordism classes of low rank simple Lie groups.

1. Introduction

Let G be a simple Lie group of dimension d and let L be its left invariant
framing. Then the pair (G,L) determines the element [G,L] in the the
stable homotopy group πS

d of spheres. Concerning the identification of these
elements and well-known generators of the corresponding homotopy groups,
we have the following results, which have been obtained in [2, 4, 5, 6, 7, 8,
9, 14, 16] and perhaps others.

(i) [SU(2),L] = ν ∈ πS
3 , (ii) [SO(3),L] = 2ν,

(iii) [SU(3),L] = ν̄ ∈ πS
8 , (iv) [Sp(2),L] = β1 ∈ πS

10(3),

(v) [SO(5),L] = 2β1, (vi) [G2,L] = κ ∈ πS
14,

(vii) [SU(4),L] = ηκ ∈ πS
15, (viii) [Sp(3),L] = ηκ̄+ σ3 ∈ πS

21.

These are all the nonzero [G,L] with the same types of G as appearing
there [12]. In this note we give a unified proof of these equalities using the
formula of [13] based on the computations of the unstable homotopy groups
πn+k(S

n) of [15] and [10].
Let S be a circle subgroup of G and let ξ be the complex line bundle

over G/S associated with the canonical principal S-bundle G → G/S. Let

β ∈ K̃(S2) denote the Bott element. Then [13] tells us that [G,L] ∈ πS
d is

given as the Kronecker product of the image of −βξ ∈ K̃−1(S1(G/S+))

by J-homomorphism J̃ : K̃−1(S1(G/S+)) → π0
S(S

1(G/S+)) and the
framed bordism fundamental class [G/S] ∈ πS

d−1(G/S); that is, [G,L] =
−⟨J̃(βξ), [G/S]⟩. Assume that in G there is a subgroup U containing
S such that U ∼= SU(2) whose restriction to S induces an isomorphism
S ∼= U(1) ⊂ SU(2). Then by [11] we know that G/S is framed null-

cobordant and also by definition it follows that ⟨J̃(β), [G/S]⟩ can be written

as the composite of J̃(β) and the suspension of [G/S], so we find that
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⟨J̃(β), [G/S]⟩ = 0. This allows us to replace J̃(βξ) by J̃(β(ξ − 1)) in
the above where 1 denotes the trivial complex line bundle over G/S. We
therefore have

[G,L] = −⟨J̃(β(ξ − 1)), [G/S]⟩. (1)

The group G considered here, either itself or its universal covering, has a
maximal closed subgroup of the form S1 ×H, except for G = SU(3) how-
ever which contains S(U(1) × U(2)) instead. If we write 2(n − 1) for the
dimension of these homogeneous spaces of G, then we find that the classi-
fying map G/S → BS1 of ξ factors through the complex projective space
Pn−1(C); hence β(ξ − 1) can be thought of as representing the composite
S1(G/S) → S1(Pn−1(C)) ⊂ U(n) of its suspension and the canonical in-
clusion of S1(Pn−1(C)) into U(n). By applying the Hopf construction this
gives rise to a map

j(β(ξ − 1)) : S2n ∧ S1(G/S) → S2n (2)

where in fact we can set up this n as follows:

n = 2, 3, 4, 6, 4 and 6

in cases (i), (iii), (iv), (vi), (vii) and (viii), respectively. Suspending ap-

propriately we have [Ekj(β(ξ − 1))] = J̃(β(ξ − 1)) where [f ] denotes the
homotopy class of a map f and Ek is regarded as satisfying [Ekf ] = Ek[f ].
Combining this equality with (1) we have

[Ekj(β(ξ − 1)) ◦ Φk] = −[G,L] (3)

where Φk denotes the map S2n+k+d → S2n+k∧S1(G/S) representing [G/S].
Let Q denote the map induced by projection of S1(G/S) onto the top cell

Sd. Clearly it then follows that E2n+kQ ◦ Φk is homotopic to the identity
map of S2n+k+d, which is used freely below. We also keep the notation as
above; however we write AG instead of A when we need to specify that we
are dealing with the case of G.

2. Lemmas

Lemma 1. Let C be a subgroup of S ⊂ G of order 2 and suppose that there
is a complex representation ρ : G → U(2k) such that ρ(z) = k(z + z̄) for
z ∈ S. Then, if we put Ḡ = G/C then we have k[Ḡ,L] = 2k[G,L].

Proof. Let ξ̄ be the complex line bundle over Ḡ/S̄ associated with the canon-
ical principal S̄-bundle Ḡ → Ḡ/S̄ where S̄ = S/C. Then identifying G/S
via the canonical homeomorphism with Ḡ/S̄ we have ξ⊗2 ∼= ξ̄. On the other
hand, by virtue of the hypothesis we have k(ξ⊗2⊕1) ∼= 2kξ. Taken together,
these two isomorphisms show that k([ξ̄]− 1) = 2k([ξ]− 1) where this [γ] in
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particular denotes the isomorphism class of a line bundle γ. By applying
this to (1) we obtain k[Ḡ,L] = 2k[G,L]. □

Let K be a subgroup of G such that K ⊃ U ⊃ S and G/K is homeomor-
phic to a sphere Sℓ with base point e+ = eK, e being the unit element of
G. Let G/K = Sℓ and consider the fibration

K/S → G/S
p→ Sℓ.

Here we let Sℓ be decomposed into hemispheres Dℓ
± respectively equipped

with centers e±; we use implicitly the fact that p is isomorphic to the bundle
obtained by gluing two product bundles over Dℓ

± by a suitable clutching
function φ.

Suppose given a map f : S2n+ℓ = S2n ∧ Sℓ → S2n. Then in view of the

transversality theorem we consider this f as a map from S2n ∧ Sℓ+ to S2n

satisfying the conditions: It collapses S2n = S2n ∧ {e+}+ to the base point
∗ ∈ S2n; and it maps S2n = S2n ∧ {x}+ identically onto S2n for all x ∈ Dℓ

−.
We denote this map by the same letter f , but then 1−f is taken as a map of
S2n ∧Sℓ to S2n with e− ∈ Dℓ

− as its base point where 1 denotes the natural

projection S2n ∧Sℓ+ → S2n which maps u∧ x to u for u ∈ S2n, x ∈ Sℓ. We
write ζ = 1− f . We define a map µ : S2n ∧ S1(G/S) → S2n by putting

µ(u ∧ (z ∧ gS)) = j(β(ξ − 1))(f(u ∧ p(gS)) ∧ (z ∧ gS)) (4)

if u ∧ (z ∧ gS) ̸∈ S2n ∧ S1(K/S); otherwise µ(u ∧ (z ∧ gS)) = ∗ where
S1 ∧G/S = S1(G/S).

Let R denote the restriction of j(β(ξ − 1)) to S2n ∧ S1(K/S); it can be

explicitly written as R = E2(n−nK)j(β(ξK − 1)). Then we have

Lemma 2. If R is written as the composition of E2nQK with a map r :
S2n ∧ Sd−ℓ → S2n, that is, R ≃ r ◦ E2nQK , then there exists a map h :
S2n ∧ Sℓ ∧ Sd−ℓ → S2n such that

Q∗([h]) = [j(β(ξ − 1))]− [µ].

Proof. Consider the homotopy sum j(β(ξ−1))+(−µ). It becomes homotopic
to the constant map on S2n ∧ (Dℓ

−)
+ ∧ S1(K/S+) at the base point. Since

the homotopy between them is compatible with φ, its restriction to S2n ∧
(Dℓ

+)
+ ∧ S1(K/S+) defines a map of S2n ∧ Sℓ ∧ S1(K/S+) to S2n where Sℓ

is regarded as Dℓ
+/∂D

ℓ
+. This can be deformed continuously into the map

H from S2n∧Sℓ∧S1(K/S) to S2n; it can be explicitly given by the formula
H(u ∧ x ∧ y) = R(ζ(u ∧ x) ∧ y), hence from the assumption we see that the
desired map h can be defined by replacing R by r, which clearly satisfies the
equation above. □
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We consider how to explicitly specify h above. Regard h as a map from

S2n ∧ Sℓ+ ∧ Sd−ℓ to S2n satisfying the conditions: h(u ∧ e− ∧ y) = ∗ and
h(u∧e+∧y0) = u for some y0 ∈ Sd−ℓ. Then we can view the restriction of it
to S2n∧Sd−ℓ = S2n∧{e+}+∧Sd−ℓ as r and ζ as a map given by ζ(u∧x) =
h(u∧x∧y0); so from the argument above we may consider that h(u∧x∧y) =
r(ζ(u ∧ x) ∧ y). This tells us that if [r] and [ζ] represent generators of their
respective corresponding groups, then [h] can be a generator of π2n(S2n∧Sd),
written α = [h]; and that in a similar way its converse holds. Below, suppose
that α is a generator, then we have by Lemma 2

ord(α) = ord([r]), ord(α) | ord([ζ]) (5)

where ord(x) denotes the order of an element x. In the next section we use
Lemma 2 combined with (5), together with (6) below, in order to prove the
assertions here.

The assumption above about R implies further that for large k the com-
position Ekµ ◦ Φk : S2n+k+d → S2n+k ∧ S1(G/S) → S2n+k can be continu-
ously deformed into the composite γ ◦ F : S2n+k+d → S2n+k+d−ℓ → S2n+k

where γ = Ekr and F = Ek+(d−ℓ)f . Hence by applying (3) we obtain from
Lemma 2

[G,L] = −Ekα+ [γ][F ]. (6)

3. Proof

In this section we prove the assertions (i) - (viii) using the previous sec-
tions.

(i) Let S = U(1) ⊂ SU(2) and consider the fibration S → SU(2)
p→

S2 = SU(2)/S. Since ξ − 1 can be identified with −β through the natural

homeomorphism SU(2)/S ≈ S2, by [2] we have e′RJ̃(β(ξ − 1)) = −1/24 so
by (1), we get [SU(2),L] = ν ∈ πS

3 = Z24. This means that j(β(ξ − 1)) :
S4 ∧S3 → S4 in (2) gives the generator −1 of the first summand of π4(S4 ∧
S3) = Z⊕Z12, so we have [E1j(β(ξ− 1))] = −ν in π5(S5 ∧S3) = πS

3 = Z24.
The proof of the following five cases (iii), (iv), (vi) - (viii) proceeds in three

steps. The observation just presented above gives the first step to start this
process. In doing this we rely essentially on the corresponding results on
πn+k(S

n) in [15] and [10]; but we use freely them without references.

(ii) Consider the fibrations S = Spin(2) → Spin(3) → S2 = Spin(3)/S.
The spin representation ∆ of Spin(3) satisfies ∆(z) = z+ z̄, z ∈ S, so apply-
ing Lemma 1 from the result of (i) we have [SO(3),L] = 2[Spin(3),L] = 2ν.

(iii) Consider the fibration SU(2)/S → SU(3)/S
p→ S5 = SU(3)/SU(2)

where S = U(1) ⊂ SU(2) and the map j(β(ξ−1)) : S6∧S1(SU(3)/S) → S6
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given in (2). Then R = E2j(β(ξSU(2) − 1)), so when viewed SU(2)/S = S2,

we have r = R and by virtue of (i) it follows that [r] = −ν in π6(S6 ∧S3) =
Z24. We recall the decompositions

π6(S6 ∧ S8) = Z24 · a⊕ Z2 · b, π10(S10 ∧ S8) = πS
8 = Z2 · ν̄ ⊕ Z2 · ϵ

where a, b are chosen to satisfy E4a = ν̄, E4b = ϵ respectively. Then since
ord(a) = ord([r]) we can take α = a and also, since π6(S6 ∧ S5) = Z,
the choice of ζ is unique up to sign; hence properly assigning to ζ a map
representing its generator we have by Lemma 2

(E6Q)∗(a) = [j(β(ξ − 1))]− [µ]

because of (5). Besides we have π7(S7 ∧ S5) = 0. This implies that E1f is
null homotopic, whence E4[µ] = 0. Hence the relation E4a = ν̄ mentioned
above yields

E4[j(β(ξ − 1))] = (E10Q)∗(ν̄). (7)

Therefore applying (6) we obtain [SU(3),L] = ν̄.

(iv) The argument for this case is basically analogous to the case (iii).

Consider the fibration Sp(1)/S → Sp(2)/S
p−→ S7 = Sp(2)/Sp(1) where

S = U(1) ⊂ SU(2) = Sp(1). Let j(β(ξ − 1)) : S8 ∧ S1(Sp(2)/S) → S8 be
due to (2); similarly as in the above case we have R = E4j(β(ξSp(2) − 1)),

so we may view r = R and hence [r] = −ν in π8(S8 ∧ S3) = Z24, so that
ord([r]) = 24. Recalling the decompositions

π8(S8 ∧ S10) = Z24 · a⊕ Z24 · b⊕ Z2, π9(S9 ∧ S10) = Z24 · c⊕ Z2

where a, b and c are chosen to satisfy E1a = E1b = c, the argument as in (iii)
suggests that in this case we can take α = a+ b. In fact, then the relations
between a, b and c stated above tells us to select as ζ a map representing a
generator, particularly, of the second summand of π8(S8∧S7) = Z⊕Z120 for
the reason that E1 maps each generator of the first and second summands of
this group to once and twice a generator of π9(S9∧S7) = Z240, respectively.
Similarly as in (iii) we can view that with these choices (5) holds and so by
Lemma 2 we have

(E8Q)∗(a+ b) = [j(β(ξ − 1))]− [µ].

Besides operating E1 we obtain

E1[j(β(ξ − 1))]− E1[µ] = (E9Q)∗(2c). (8)

This also implies that the operation of E1 on j(β(ξ− 1)) works in the same
way as on f and hence this choice is only one unique choice up to sign.
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Now since E3c represents a generator of π12(S12 ∧S10) = πS
10 = Z6, putting

E3c = β1 we have from (8)

E4[j(β(ξ − 1))]− E4[µ] = (E12Q)∗(2β1). (9)

Since E1[f ] is twice an element, we see that the 2-component of [γ][F ]
is 0; hence from the fact that β1 can not be represented as a product of
two elements follows that [γ][F ] = 0. This is because if β1 can be written
as at least a product of elements of πS

3 and πS
7 , then c must be done so,

which means that the same thing occurs for both of a and b. But if so, then
the difference between their property of the two generators of π8(S8 ∧ S7)
noticed above leads to a contradiction. Hence applying (6) to (9) we obtain
[Sp(2),L] = β1.

(v) The proof of this case is quite analogous to that of case (ii). Since
Sp(2) ∼= Spin(5) [1], we take S = Spin(2) ⊂ Spin(5) and consider the
fibrations S → Spin(5) → Spin(5)/S. Let ∆ be the spin representation of
Spin(5). Then it holds that ∆(z) = 2z+2z̄ for z ∈ S. Hence using Lemma 1
we have 4[SO(5),L] = 2[Spin(5),L]. But according to [12] the 2-component
of [SO(5),L] is zero, so it follows that [SO(5),L] = 2β1.

(vi) The remaining three cases are proceeded in a similar way to the
above two cases (iii) and (iv). The first two and the last cases are reduced
to the these two cases using the equalities (7) and (9), respectively.

For the present case consider the inclusion SU(3) ⊂ G2 with G2/SU(3) =

S6 ([17], [1]), which induces the fibration SU(3)/S → G2/S
p→ S6 where

S = U(1) ⊂ SU(2) ⊂ SU(3). Let j(β(ξ − 1)) : S14 ∧ S14 → S14 denote the
two-fold suspension of the map given in (2). Then R = E8j(β(ξSU(3) − 1)).

This together with (7) shows that we can write R ≃ r ◦ E14QSU(3) where

r : S14 ∧S8 → S14 denotes a map representing ν̄, i.e., ord([r]) = 2. Hence if
we choose as α the generator b given in the decompositions

π14(S14 ∧ S14) = Z8 · a⊕ Z2 · b, π16(S16 ∧ S14) = πS
14 = Z2 · σ2 ⊕ Z2 · κ

where a, b are chosen to satisfy E2a = σ2, E2b = κ, respectively, then we
find that r above coincides up to homotopy with that derived from this α
for the same reason as before. Moreover, since π14(S14∧S6) = Z2 the choice
of ζ is unique; in fact, it is taken to be its generator. These choices allow us
to apply Lemma 2 together with (5) and thereby we get

[j(β(ξ − 1))]− [µ] = (E14Q)∗(b),

hence it follows that E2[H(ϱ− 1)]−E2[µ] = (E16Q)∗(κ) due to the relation
E2b = κ.
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Now since [γ] ∈ πS
8 = (Z2)

2, [γ]ν is at least twice an element of (πS
11)(2) =

Z8, which implies that [γ][F ] = 0 due to ν2 = [F ]. Therefore by applying
(6) we obtain [G2,L] = κ.

(vii) The proof for this case is exactly the same as that in the case (vi).

We use the fibration SU(3)/S → SU(4)/S
p→ S7 = SU(4)/SU(3) where

S = U(1) ⊂ SU(2) ⊂ SU(3). Let j(β(ξ − 1)) : S12 ∧ S1(SU(4)/S) → S12

denote the four-fold suspension of the map given in (2), then as seen below µ
can be defined using a map representing the generator σ of π12(S12 ∧S7) =
πS
7 = Z240. Besides as in the previous case to α we can assign b in the

decompositions

π12(S12 ∧ S15) = Z240 ⊕ Z2 · b. π17(S17 ∧ S15) = πS
15 = Z480 ⊕ Z2 · ηκ

where b satisfies E5b = ηκ. Then owing to the same reasoning as in (vi) we
have

[j(β(ξ − 1))]− [µ] = (E12Q)∗(b).

We check that the relations σϵ = σν̄ = 0 hold: Since σ is the E4-image of
a generator of the free summand of π8(S8 ∧ S7) = Z ⊕ Z120 it follows that
ησ2 = 0, so we have σϵ = σν̄ using the relation ησ = ϵ + ν̄. Hence taken
into consideration ϵ = ⟨ν2, 2, η⟩ and σν2 = 0 ∈ πS

13 = Z3, we get σϵ = 0,
so σν̄ = 0. This implies that applying (6) to the above equality we obtain
[SU(4),L] = ηκ.

(viii) Consider the fibration Sp(2)/S → Sp(3)/S
p−→ S11 = Sp(3)/Sp(2)

where S = U(1) ⊂ SU(2) = Sp(1) ⊂ Sp(2). Let j(β(ξ − 1)) : S12 ∧
S1(Sp(3)/S) → S12 be the map given in (2). Then R = E4j(β(ξSp(2) − 1)).

Hence from (9) it follows that R ≃ r ◦ E12QSp(2) where r denotes a map

of S12 ∧ S10 into S12 such that [r] = 2E3c, in the notation of (8), E3c
being a generator of π12(S12 ∧ S10) = Z6. If we take α = a1 + a2 in the
decompositions

π12(S12 ∧ S21) = Z6 ⊕ (Z2)
2 ⊕ Z2 · a1 ⊕ Z2 · a2,

π23(S23 ∧ S21) = πS
21 = Z2 · σ3 ⊕ Z2 · ηκ̄

where a1, a2 are chosen to satisfy E11a1 = σ3, E11a2 = ηκ̄ respectively, then
r above coincides (up to homotopy) with that derived from α. Recall the
decompositions

π12(S12 ∧ S11) = Z · c1 ⊕ Z504 · c2, π13(S13 ∧ S11) = Z504 · c

where c1 and c2 are chosen to satisfy E1c1 = E1c2 = c. Then owing to the
choice of α we find that a map representing c1 + c2 must be chosen to be ζ
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and so invoking (5) from Lemma 2 we have

(E12Q)∗(α) = [j(β(ξ − 1))]− [µ].

Further, since 2πS
21 = 0, from the fact that both E1c1 and E1c2 equal c it

follows that ⟨Ek[µ], [Φk]⟩ = 0 for large k. Hence applying the equality above
to (6) we get [Sp(3),L] = σ3+ηκ̄. This completes the proof of the assertions
here.
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