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A REMARK ON A CENTRAL LIMIT THEOREM FOR

NON-SYMMETRIC RANDOM WALKS ON CRYSTAL

LATTICES

Ryuya Namba

Abstract. Recently, Ishiwata, Kawabi and Kotani [4] proved two kinds
of central limit theorems for non-symmetric random walks on crystal
lattices from the view point of discrete geometric analysis developed
by Kotani and Sunada. In the present paper, we establish yet another
kind of the central limit theorem for them. Our argument is based on a
measure-change technique due to Alexopoulos [1].

1. Introduction and results

Let X = (V,E) be a locally finite, connected and oriented graph. Here
V is the set of all vertices and E the set of all oriented edges. For an
edge e ∈ E, we denote by o(e), t(e) and e the origin, the terminus and
the inverse edge of e, respectively. We denote by Ex the collection of all
edges whose origin is x ∈ V . A path c in X with length n is a sequence
c = (e1, . . . , en) of edges ei with t(ei) = o(ei+1) (i = 1, . . . , n−1). We denote
by Ωx,n(X) (x ∈ V, n ∈ N ∪ {∞}) the set of all paths of length n for which
origin o(c) = x. We also denote by o(c), t(c) the origin and the terminus of
the path c. For simplicity, we write Ωx(X) := Ωx,∞(X).

Let p : E −→ (0, 1] be a transition probability, that is, a positive function
on E satisfying

(1.1)
∑
e∈Ex

p(e) = 1 (x ∈ V ).

This induces the probability measure Px on Ωx(X) and the random walk as-
sociated with the transition probability p is the time homogeneous Markov
chain (Ωx(X),Px, {wn}∞n=0) with values in X defined by wn(c) := o(en+1)(
c = (e1, e2, . . . ) ∈ Ωx(X)

)
. The graph X is endowed with the graph dis-

tance. For a topological space T , we denote by C∞(T ) the space of all
functions f : T −→ R vanishing at infinity with the uniform topology ∥f∥T∞.

The (p-)transition operator L acting on C∞(X) is defined by

Lf(x) :=
∑
e∈Ex

p(e)f
(
t(e)

)
(x ∈ V ).
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The n-step transition probability p(n, x, y) (n ∈ N, x, y ∈ V ) is given by
p(n, x, y) := Lnδy(x), where δy(·) stands for the Dirac delta function with
pole at y. If there is a positive function m : V −→ (0,∞) up to constant
multiple such that

p(e)m
(
o(e)

)
= p(e)m

(
t(e)

)
(e ∈ E),

the random walk is called (m-)symmetric or reversible. Otherwise, it is
called (m-)non-symmetric.

As one of the most fundamental examples of infinite graphs, a crystal lat-
tice has been studied by many authors from both geometric and probabilistic
viewpoints. Roughly speaking, an infinite graph X is called a (Γ-)crystal
lattice if X is an infinite-fold covering graph of a finite graph whose covering
transformation group Γ is abelian. Typical examples we have in mind are
the square lattice, the triangular lattice and the hexagonal lattice, and so
on. For basic results, see [5, 6, 7, 8] and literatures therein.

In the theory of random walks on infinite graphs, to investigate the long
time asymptotics, for instance, the central limit theorem (CLT) is a princi-
pal topic for both geometers and probabilists. Recently, Ishiwata, Kawabi
and Kotani [4] proved two kinds of functional CLTs for non-symmetric ran-
dom walks on crystal lattices using the theory of discrete geometric analysis
developed by Kotani and Sunada. For more details on discrete geometric
analysis, see Section 2. We also refer to [9, 7].

Before stating our results, we start with a brief review of the setting and
results in [4]. Let us consider a (Γ-)crystal lattice X = (V,E), where the
covering transformation group Γ, acting on X freely, is a torsion free, finitely
generated abelian group. Here we may assume that Γ is isomorphic to Zd,
without loss of generality. We denote by X0 = (V0, E0) its (finite) quotient
graph Γ\X. Let p : E −→ (0, 1] be a Γ-invariant transition probability.
Namely, it satisfies (1.1) and p(σe) = p(e) for every σ ∈ Γ, e ∈ E. Through
the covering map π : X −→ X0, the transition probability p also induces a
Markov chain with values in X0. Since the transition probability p on X is
positive, the random walk on X is irreducible, that is, for every x, y ∈ V ,
there exists n = n(x, y) ∈ N such that p(n, x, y) > 0. And so is the random
walk on X0. Then, thanks to the Perron–Frobenius theorem, we find a
unique invariant probability measure on V0 with

(1.2)
∑
x∈V0

m(x) = 1 and m(x) =
∑

e∈(E0)x

p(e)m
(
t(e)

)
(x ∈ V0).

It is also called a stationary distribution (see e.g., Durrett [2]). We also write
m : V −→ (0, 1] for the Γ-invariant lift of m to X.

Let H1(X0,R) and H1(X0,R) be the first homology group and the first co-
homology group ofX0, respectively. We take a linear map ρR from H1(X0,R)
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onto Γ ⊗ R through the covering map π : X −→ X0. We define the homo-
logical direction of the random walk on X0 by

γp :=
∑
e∈E0

p(e)m
(
o(e)

)
e ∈ H1(X0,R),

and we call ρR(γp)(∈ Γ⊗ R) the asymptotic direction. We remark that the
random walk is m-symmetric if and only if γp = 0. Moreover, γp = 0 implies
ρR(γp) = 0. However, the converse does not hold in general. We write g0 for
the (p-)Albanese metric on Γ⊗R. (See Section 2, for its precise definition.)
We call that a periodic realization Φ0 : X −→ Γ⊗R is (p-)modified harmonic
if

(1.3)
∑
e∈Ex

p(e)
(
Φ0

(
t(e)

)
− Φ0

(
o(e)

))
= ρR(γp) (x ∈ V ).

This notion was first proposed in [7] to seek the most canonical periodic
realization of a topological crystal in the geometric context.

Now we are in a position to review two kinds of CLTs formulated in [4].
We first set a reference point x∗ ∈ V with Φ0(x∗) = 0 and put ξn(c) :=
Φ0

(
wn(c)

) (
n = 0, 1, 2, . . . , c ∈ Ωx∗(X)

)
. Let C0

(
[0,∞), (Γ ⊗ R, g0)

)
be

the set of all continuous paths from [0,∞) to (Γ ⊗ R, g0) starting from the
origin. We equip it with the usual compact uniform topology. We define a
measurable map X(n) : Ωx∗(X) −→

(
C0

(
[0,∞), (Γ⊗ R, g0)

)
, µ
)
by

X
(n)
t (c) :=

1√
n

{
ξ[nt](c)+(nt−[nt])

(
ξ[nt]+1(c)−ξ[nt](c)

)
−ntρR(γp)

}
(t ≥ 0),

where µ is the Wiener measure on the path space C0

(
[0,∞), (Γ ⊗ R, g0)

)
.

We write P(n) (n = 1, 2, . . . ) for the probability measure on C0

(
[0,∞), (Γ⊗

R, g0)
)
induced by X(n). Then the CLT of the first kind is stated as follows:

Theorem 1.1. ([4, Theorem 2.2]) The sequence {P(n)}∞n=1 of probability
measures converges weakly to the Wiener measure µ as n → ∞. In other
words, the sequence {X(n)}∞n=1 converges to a (Γ ⊗ R, g0)-valued standard
Brownian motion (Bt)t≥0 starting from the origin in law.

Next we introduce a family {pε}0≤ε≤1 of transition probabilities on X by
pε(e) := p0(e) + εq(e) (e ∈ E), where

p0(e) :=
1

2

(
p(e) +

m
(
t(e)

)
m
(
o(e)

)p(e)),
q(e) :=

1

2

(
p(e)−

m
(
t(e)

)
m
(
o(e)

)p(e)) (e ∈ E).
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This is nothing but the interpolation of the original transition probability
p = p1 and the m-symmetric transition probability p0. We should note that,
in this setting, the relation ρR(γpε) = ερR(γp) plays a crucial role to obtain

the CLT of the second kind. We write g
(ε)
0 for the (pε-)Albanese metric on

Γ⊗R. Moreover, let Φ
(ε)
0 : X −→ (Γ⊗R, g(0)0 ) be the pε-modified harmonic

realization of X.
Now set a reference point x∗ ∈ V satisfying Φ

(ε)
0 (x∗) = 0 for all 0 ≤ ε ≤ 1

and put ξ
(ε)
n (c) := Φ

(ε)
0

(
wn(c)

) (
n = 0, 1, 2, . . . , c ∈ Ωx∗(X)

)
. We define a

measurable map Y(ε,n) : Ωx∗(X) −→ C0

(
[0,∞), (Γ⊗ R, g(0)0 )

)
by

Y
(ε,n)
t (c) :=

1√
n

{
ξ
(ε)
[nt](c) + (nt− [nt])

(
ξ
(ε)
[nt]+1(c)− ξ

(ε)
[nt](c)

)}
(t ≥ 0).

Let ν be the probability measure on C0

(
[0,∞), (Γ ⊗ R, g(0)0 )

)
induced by

the stochastic process
(
Bt + ρR(γp)t

)
t≥0

, where (Bt)t≥0 is a (Γ ⊗ R, g(0)0 )-

valued standard Brownian motion with B0 = 0. Moreover let Q(ε,n) be the

probability measure on C0

(
[0,∞), (Γ ⊗ R, g(0)0 )

)
induced by Y(ε,n). Then

the CLT of the second kind is the following.

Theorem 1.2. ([4, Theorem 2.4]) The sequence {Q(n−1/2,n)}∞n=1 of proba-
bility measures converges weakly to the probability measure ν as n → ∞. In

other words, the sequence {Y(n−1/2,n)}∞n=1 converges to a (Γ⊗R, g(0)0 )-valued
standard Brownian motion with drift ρR(γp) starting from the origin in law.

The main purpose of the present paper is to establish yet another CLT for
non-symmetric random walks on crystal lattices. Our approach is inspired
by a measure-change techinique due to Alexopoulos [1] in which several limit
theorems for random walks on discrete groups of polynomial volume growth
are obtained.

Now consider the (m-)non-symmetric transition probability p : E −→
(0, 1]. In particular, we assume that ρR(γp) ̸= 0. Let Φ0 : X −→ (Γ⊗R, g0)
be a (p-)modified harmonic realization of X. We define a function F =
Fx(λ) : V0 ×Hom(Γ,R) −→ (0,∞) by

(1.4) Fx(λ) :=
∑

e∈(E0)x

p(e) exp
(
Hom(Γ,R)

⟨
λ,Φ0

(
t(ẽ)

)
− Φ0

(
o(ẽ)

)⟩
Γ⊗R

)
for x ∈ V0, λ ∈ Hom(Γ,R), where ẽ stands for a lift of e ∈ E0 to X. Then we
can verify that, for every x ∈ V0, the function Fx(·) : Hom(Γ,R) −→ (0,∞)
has a unique minimizer λ∗ = λ∗(x) ∈ Hom(Γ,R). (See Lemma 3.1.) We
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define a positive function p : E0 −→ (0, 1] by

(1.5) p(e) :=
p(e) exp

(
Hom(Γ,R)

⟨
λ∗
(
o(e)

)
,Φ0

(
t(ẽ)

)
− Φ0

(
o(ẽ)

)⟩
Γ⊗R

)
Fo(e)

(
λ∗(o(e))

)
for e ∈ E0. Then it is straightforward to check that the function p also

gives a transition probability on X0. Noting the random walk {w(p)
n }∞n=0

associated with p is also irreducible, the Perron–Frobenius theorem yields a
unique normalized invariant measure m : V0 −→ (0, 1] in the sense of (1.2).
We write p : E −→ (0, 1] and m : V −→ (0, 1] for the Γ-invariant lifts of

p : E0 −→ (0, 1] and m : V0 −→ (0, 1], respectively. We write g
(p)
0 for the

(p-)Albanese metric associated with the transition probability p.
Let L(p) be the transition operator, acting on C∞(X), associated with the

transition probability p. Namely,

L(p)f(x) =
∑
e∈Ex

p(e)f
(
t(e)

)
(x ∈ V ).

Recalling that the function F = Fx(λ) has the (unique) minimizer λ∗ =
λ∗(x) for every x ∈ V0, it follows that

(1.6) L(p)Φ0(x)−Φ0(x) =
∑
e∈Ex

p(e)
(
Φ0

(
t(e)

)
−Φ0

(
o(e)

))
= 0 (x ∈ V ).

This equation means that the p-modified harmonic realization Φ0 : X −→
Γ ⊗ R is a p-harmonic realization. In particular, we obtain ρR(γp) = 0.
Here we should emphasize that the transition probability p : E0 −→ (0, 1]
coincides with the original one p : E0 −→ (0, 1] provided that ρR(γp) = 0.

We fix a reference point x∗ ∈ V such that Φ0(x∗) = 0 and put

ξ(p)n (c) := Φ0

(
w(p)
n (c)

) (
n = 0, 1, 2, . . . , c ∈ Ωx∗(X)

)
.

We define a measurable map X(n) : Ωx∗(X) −→
(
C0

(
[0,∞), (Γ⊗R, g(p)0 )

)
, µ
)

by

(1.7) X
(n)
t (c) :=

1√
n

{
ξ
(p)
[nt](c)+(nt− [nt])

(
ξ
(p)
[nt]+1(c)− ξ

(p)
[nt](c)

)}
(t ≥ 0),

where µ = µ(p) is the Wiener measure on C0

(
[0,∞), (Γ⊗R, g(p)0 )

)
. We write

P(n) (n = 1, 2, . . . ) for the probability measure on C0

(
[0,∞), (Γ ⊗ R, g(p)0 )

)
induced by X(n). Then our main theorem is stated as follows:

Theorem 1.3. The sequence {P(n)}∞n=1 of probability measures converges

weakly to the Wiener measure µ as n → ∞. Namely, the sequence {X(n)}∞n=1

converges to a (Γ⊗R, g(p)0 )-valued standard Brownian motion (B
(p)
t )t≥0 start-

ing from the origin in law.
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Finally, we give a relationship between the n-step transition probabilities
p(n, x, y) and p(n, x, y) as follows:

Theorem 1.4. There exist some positive constants C1 and C2 such that

C1p(n, x, y) exp
(
nMp

)
≤ p(n, x, y) ≤ C2p(n, x, y) exp

(
nMp

)
for all n ∈ N and x, y ∈ V , where

Mp :=
∑
x∈V0

m(x)
(
Hom(Γ,R)

⟨
λ∗(x), ρR(γp)

⟩
Γ⊗R − logFx

(
λ∗(x)

))
.

For the precise long time asymptotic behavior of p(n, x, y), we refer to [4,
Theorem 2.5] and Trojan [10].

The rest of the present paper is organized as follows: In Section 2, we
provide a brief review on the theory of discrete geometric analysis. In Sec-
tion 3, we state our measure-change technique in details and give proofs of
Theorems 1.3 and 1.4. We also discuss a relationship between our measure-
change technique and a discrete analogue of Girsanov’s theorem due to Fujita
[3]. Finally, in Section 4, we give some concrete examples of non-symmetric
random walks on crystal lattices.

2. A quick review on discrete geometric analysis

In this section, we give basic materials of the theory of discrete geometric
analysis on graphs quickly. For more details, we refer to Kotani–Sunada [7]
and Sunada [9].

We consider a random walk on a finite graph X0 = (V0, E0) associated
with a transition probability p : E0 −→ (0, 1]. Thanks to the Perron–
Frobenius theorem, there is a unique (normalized) invariant measure m :
V0 −→ (0, 1] in the sense of (1.2). The random walk is called (m-)symmetric
if p(e)m

(
o(e)

)
= p(e)m

(
t(e)

)
(e ∈ E0).

First we define the 0-chain group and the 1-chain group of X0 by

C0(X0,R) :=
{ ∑

x∈V0

axx
∣∣∣ ax ∈ R

}
,

C1(X0,R) :=
{ ∑

e∈E0

aee
∣∣∣ ae ∈ R, e = −e

}
,

respectively. Let ∂ : C1(X0,R) −→ C0(X0,R) be the boundary map, given
by the homomorphism satisfying ∂(e) := t(e) − o(e) (e ∈ E0). The first
homology group H1(X0,R) of X0 is defined by Ker (∂)

(
⊂ C1(X0,R)

)
.

On the other hand, we define the 0-cochain group and the 1-cochain group
of X0 by

C0(X0,R) := {f : V0 −→ R},
C1(X0,R) := {ω : E0 −→ R |ω(e) = −ω(e)},
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respectively. The difference operator d : C0(X0,R) −→ C1(X0,R) is defined
by the homomorphism with df(e) := f

(
t(e)

)
− f

(
o(e)

)
(e ∈ E0). We also

define H1(X0,R) := C1(X0,R)/Im (d), called the first cohomology group of
X0.

Next we define the transition operator L : C0(X0,R) −→ C0(X0,R) by

Lf(x) := (I − δpd)f(x) =
∑

e∈(E0)x

p(e)f
(
t(e)

) (
x ∈ V0, f ∈ C1(X0,R)

)
,

where the operator δp : C
1(X0,R) −→ C0(X0,R) is defined by

δpω(x) := −
∑

e∈(E0)x

p(e)ω(e)
(
x ∈ V0, ω ∈ C1(X0,R)

)
.

We introduce the quantity γp, called the homological direction of the given
random walk on X0, by

γp :=
∑
e∈E0

m̃(e)e ∈ C1(X0,R),

where m̃(e) := p(e)m
(
o(e)

)
(e ∈ E0). It is easy to show that ∂(γp) = 0,

that is, γp ∈ H1(X0,R). It should be noted that the transition probability
p gives an m-symmetric random walk on X0 if and only if γp = 0. A 1-form
ω ∈ C1(X0,R) is said to be modified harmonic if

δpω(x) + C1(X0,R)⟨γp, ω⟩C1(X0,R) = 0 (x ∈ V0).

We denote by H1(X0) the space of modified harmonic 1-forms on X0, and
equip it with the inner product

⟨⟨ω, η⟩⟩p :=
∑
e∈E0

m̃(e)ω(e)η(e)− ⟨γp, ω⟩⟨γp, η⟩
(
ω, η ∈ H1(X0)

)
.

Due to the discrete analogue of Hodge–Kodaira theorem (cf. [7, Lemma
5.2]), we may identify

(
H1(X0), ⟨⟨·, ·⟩⟩p

)
with H1(X0,R).

Now let X = (V,E) be a Γ-crystal lattice. Namely, X is a covering graph
of a finite graph X0 with an abelian covering transformation group Γ. We
write p : E −→ (0, 1] and m : V −→ (0, 1] for the Γ-invariant lifts of p :
E0 −→ (0, 1] and m : V0 −→ (0, 1], respectively. Through the covering map
π : X −→ X0, we take the surjective linear map ρR : H1(X0,R) −→ Γ⊗R(∼=
Rd). We consider the transpose tρR : Hom(Γ,R) −→ H1(X0,R), which is a
injective linear map. Here Hom(Γ,R) denotes the space of homomorphisms
from Γ into R. We induce a flat metric g0 on the Euclidean space Γ ⊗ R
through the following diagram:
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(Γ⊗ R, g0) oooo ρR

OO

dual
��

H1(X0,R)OO

dual
��

Hom(Γ,R) �
�

tρR

// H1(X0,R) ∼=
(
H1(X0), ⟨⟨·, ·⟩⟩p

)
.

This metric g0 is called the Albanese metric on Γ⊗ R.
From now on, we realize the crystal lattice X into the continuous model

(Γ⊗ R, g0) in the following manner. A periodic realization of X into Γ⊗ R
is defined by a piecewise linear map Φ : X −→ Γ⊗ R with Φ(σx) = Φ(x) +
σ⊗1 (σ ∈ Γ, x ∈ V ). We introduce a special periodic realization Φ0 : X −→
Γ⊗ R by

(2.1) Hom(Γ,R)
⟨
ω,Φ0(x)

⟩
Γ⊗R =

∫ x

x∗

ω̃
(
x ∈ V, λ ∈ Hom(Γ,R)

)
,

where x∗ is a fixed reference point satisfying Φ0(x∗) = 0 and ω̃ is the lift of
ω to X. Here ∫ x

x∗

ω̃ =

∫
c
ω̃ :=

n∑
i=1

ω̃(e)

for a path c = (e1, . . . , en) with o(e1) = x∗ and t(en) = x. It should be noted
that this line integral does not depend on the choice of a path c. The periodic
realization Φ0 given by above enjoys the so-called modified harmonicity in
the sense that

LΦ0(x)− Φ0(x) = ρR(γp) (x ∈ V ).

We note that this equation is also written as (1.3). Further, such a realization
is uniquely determined up to translation. We call the quantity ρR(γp) the
asymptotic direction of the given random walk. We should emphasize that
γp = 0 implies ρR(γp) = 0. However, the converse does not always hold,
that is, there is a case γp ̸= 0 and ρR(γp) = 0. (See Subsection 4.2, for an
example.) If we equip Γ ⊗ R with the Albanese metric, then the modified
harmonic realization Φ0 : X −→ (Γ⊗R, g0) is said to be a modified standard
realization.

3. Proofs of the main results

3.1. A measure–change technique. In what follows, we write λ[x]Γ⊗R :=

Hom(Γ,R)⟨λ,x⟩Γ⊗R (λ ∈ Hom(Γ,R), x ∈ Γ⊗ R) and

dΦ0(e) := Φ0

(
t(e)

)
− Φ0

(
o(e)

)
(e ∈ E),

for brevity. Take an orthonormal basis

{ω1, . . . , ωd} ⊂ Hom(Γ,R)
(
⊂ (H1(X0), ⟨⟨·, ·⟩⟩p)

)
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and denote by {v1, . . . ,vd} its dual basis in Γ ⊗ R. Namely, ωi[vj ]Γ⊗R =
δij (1 ≤ i, j ≤ d). Then, {v1, . . . ,vd} is an orthonormal basis in Γ⊗ R with
respect to the Albanese metric g0. We may identify λ = λ1ω1+ · · ·+λdωd ∈
Hom(Γ,R) with (λ1, . . . , λd) ∈ Rd. Furthermore, we write xi := ωi[x]Γ⊗R,
Φ0(x)i := ωi[Φ0(x)]Γ⊗R and ∂i := ∂/∂λi (i = 1, . . . , d, x ∈ V ). We denote
by O(·) the Landau symbol.

At the beginning, consider the function F = Fx(λ) : V0×Hom(Γ,R) −→ R
defined by (1.4). We easily see that F = Fx(λ) is a positive function on
V0 × Hom(Γ,R) with Fx(0) = 1 (x ∈ V0). In our setting, the following
lemma plays a siginificant role so as to obtain Theorem 1.3.

Lemma 3.1. For every x ∈ V0, the function Fx(·) : Hom(Γ,R) −→ (0,∞)
has a unique minimizer λ∗ = λ∗(x).

Proof. Fix a fixed x ∈ V0, we have

∂iFx(λ) = ∂i

( ∑
e∈(E0)x

p(e) exp
(
λ
[
dΦ0(ẽ)

]
Γ⊗R

))

= ∂i

( ∑
e∈(E0)x

p(e) exp
( d∑

i=1

λi · ωi

[
dΦ0(ẽ)

]
Γ⊗R

))

=
∑

e∈(E0)x

p(e) exp
(
λ
[
dΦ0(ẽ)

]
Γ⊗R

)
dΦ0(ẽ)i(
i = 1, . . . , d, λ ∈ Hom(Γ,R)

)
.

In other words,(
∂1Fx(λ), . . . , ∂dFx(λ)

)
=

∑
e∈(E0)x

p(e) exp
(
λ
[
dΦ0(ẽ)

]
Γ⊗R

)
dΦ0(ẽ) (∈ Γ⊗ R)(3.1)

for λ ∈ Hom(Γ,R). Repeating the above calculation, we have

∂i∂jFx(λ) =
∑

e∈(E0)x

p(e) exp
(
λ
[
dΦ0(ẽ)

]
Γ⊗R

)
dΦ0(ẽ)idΦ0(ẽ)j

for λ ∈ Hom(Γ,R) and 1 ≤ i, j ≤ d. Then, we know that
(
∂i∂jFx(·)

)
1≤i,j≤d

,

the Hessian matrix of the function Fx(·), is positive definite. Indeed, con-
sider the quadratic form corresponding to the Hessian matrix. Since∑

1≤i,j≤d

∑
e∈(E0)x

p(e) exp
(
λ
[
dΦ0(ẽ)

]
Γ⊗R

)
dΦ0(ẽ)idΦ0(ẽ)jξiξj
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=
∑

e∈(E0)x

p(e) exp
(
λ
[
dΦ0(ẽ)

]
Γ⊗R

){ d∑
i=1

dΦ0(ẽ)iξi

}2
≥ 0(3.2)

for ξ = (ξ1, . . . , ξd) ∈ Rd and the transition probability p is positive, we
easily see that the Hessian matrix is non-negative definite. By multiplying
both sides of (3.2) by m(x) and taking the sum which runs over all vertices
of X0, it readily follows that

∑
e∈E0

m̃(e) exp
(
λ
[
dΦ0(ẽ)

]
Γ⊗R

){ d∑
i=1

dΦ0(ẽ)iξi

}2
≥ 0

for ξ = (ξ1, . . . , ξd) ∈ Rd. Next suppose that the left-hand side of (3.2) is
zero. Then we have

d∑
i=1

dΦ0(ẽ)iξi = 0

for all e ∈ E0. This equation implies ⟨Φ0(x), ξ⟩Rd = ⟨Φ0(y), ξ⟩Rd for all
x, y ∈ V , where ⟨·, ·⟩Rd stands for the standard inner product on Rd. Let
σ1, . . . , σd be generators of Γ ∼= Zd. It follows from the periodicity of Φ0

that ⟨σi, ξ⟩Rd = 0 (1 ≤ i ≤ d). Hence we conclude ξ = 0. Namely, we have
proved the positive definiteness of the Hessian matrix.

This implies that the function Fx(·) : Hom(Γ,R) −→ (0,∞) is strictly
convex for every x ∈ V0. Moreover, it is easily observed that

lim
|λ|Rd→∞

Fx(λ) = ∞ (x ∈ X0),

due to its definition. Consequently, we know that there exists a unique
minimizer λ∗ = λ∗(x) ∈ Hom(Γ,R) of Fx(λ) for each x ∈ V0, thereby
completing the proof. □

Now consider the positive function p : E0 −→ (0, 1] given by (1.5). By
definition, we easily see that the function p also gives a positive transition
probability on X0. Thus the transition probability p : E0 −→ (0, 1] yields an

irreducible random walk (Ωx∗(X), P̂x∗ , {w
(p)
n }∞n=0) with values in X. Apply-

ing the Perron-Frobenius theorem again, we find a unique positive function
m : V0 −→ (0, 1] satisfying (1.2). Put m̃(e) := p(e)m(o(e)) (e ∈ E0). We
also denote by p : E −→ (0, 1] and m : V −→ (0, 1] the Γ-invariant lifts
of p : E0 −→ (0, 1] and m : V0 −→ (0, 1], respectively. As in the previous

section, we construct the (p-)Albanese metric g
(p)
0 on Γ⊗R associated with

the transition probability p. We take an orthonormal basis {ω(p)
1 , . . . , ω

(p)
d }

in Hom(Γ,R)
(
⊂ (H1(X0), ⟨⟨·, ·⟩⟩p)

)
.
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We introduce the transition operator L(p) : C∞(X) −→ C∞(X) associated
with the transition probability p by

L(p)f(x) :=
∑
e∈Ex

p(e)f(t(e)) (x ∈ V ).

Recalling (3.1) and the definition of λ∗ = λ∗(x), we see that(
∂1Fx

(
λ∗(x)

)
, . . . , ∂dFx

(
λ∗(x)

))
=

∑
e∈(E0)x

p(e) exp
(
λ∗(x)

[
dΦ0(ẽ)

]
Γ⊗R

)
dΦ0(ẽ) = 0

holds for every x ∈ V0. This immediately leads to

(3.3) L(p)Φ0(x)− Φ0(x) =
∑
e∈Ex

p(e)dΦ0(e) = 0 (x ∈ V ).

From this equation, one concludes that the given p-modified standard real-
ization Φ0 : X −→ (Γ⊗R, g0) in the sense of (1.3) is the harmonic realization
associated with the changed transition probability p.

Remark. Equation (3.3) implies ρR(γp) = 0. We also emphasize that the
transition probability p : E0 −→ (0, 1] coincides with the original one p :
E0 −→ (0, 1] provided that ρR(γp) = 0.

Remark. In our setting, it is essential to assume that the given transition
probability p is positive. Because, if it were not for the positivity of p, the
assertion of Lemma 3.1 would not hold in general. (There is a case where the
function Fx(·) has no minimizers.) On the other hand, to obtain Theorems
1.1 and 1.2, it is sufficient to impose that the given transition probability p
is non-negative with p(e) + p(e) > 0 (e ∈ E).

3.2. Proofs of Theorems 1.3 and 1.4. This subsection is devoted to
proofs of Theorems 1.3 and 1.4. Following the argument as in [4, Theorem
2.2] for the random walk associated with the changed transition probability
p, we can carry out the proof of Theorem 1.3. Though a minor change of
the proof is required, the argument is a little bit easier due to ρR(γp) = 0.

As the first step, we prove the following lemma.

Lemma 3.2. For any f ∈ C∞
0 (Γ ⊗ R), as N → ∞, ε ↘ 0 and N2ε ↘ 0,

we have ∥∥∥ 1

Nε2
(I − LN

(p))Pεf − Pε

(∆(p)

2
f
)∥∥∥X

∞
−→ 0.

Here Pε : C∞(Γ ⊗ R) −→ C∞(X) (0 ≤ ε ≤ 1) is a scaling operator defined
by

Pεf(x) := f
(
εΦ0(x)

)
(x ∈ X)
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and ∆(p) stands for the positive Laplacian −
∑d

i=1(∂
2/∂x2i ) on Γ⊗ R asso-

ciated with the p-Albanese metric g
(p)
0 .

Proof. We define the function AN (Φ0)ij : V −→ R (i, j = 1, . . . , d, N ∈ N)
by

AN (Φ0)ij(x)

:=
∑

c∈Ωx,N (X)

p(c)
(
Φ0

(
t(c)
)
− Φ0(x)

)
i

(
Φ0

(
t(c)
)
− Φ0(x)

)
j

(x ∈ V ),

where p(c) := p(e1) · · · p(eN ) for c = (e1, . . . , eN ) ∈ Ωx,N (X). Applying
Taylor’s expansion formula, we have

(I − LN
(p))Pεf(x) = −ε

d∑
i=1

∂f

∂xi

(
εΦ0(x)

) ∑
c∈Ωx,N (X)

p(c)
(
Φ0

(
t(c)
)
− Φ0(x)

)
i

− ε2

2

∑
1≤i,j≤d

∂2f

∂xi∂xj

(
εΦ0(x)

)
AN (Φ0)ij(x) +O

(
(Nε)3

)
.(3.4)

We see that the first term of the right-hand side of (3.4) equals 0 due to the
p-harmonicity of Φ0. Next we define the function A(Φ0)ij : V0 −→ R (i, j =
1, . . . , d) by

A(Φ0)ij(x) :=
∑

e∈(E0)x

p(e)dΦ0(ẽ)idΦ0(ẽ)j (x ∈ V ).

We note that A(Φ0)ij
(
π(x)

)
= A1(Φ0)ij(x) (x ∈ V, i, j = 1, . . . , d) because

AN (Φ0)ij is Γ-invariant. Then, using the p-harmonicity again,

AN (Φ0)ij(x) =
N−1∑
k=0

Lk
(p)

(
A(Φ0)ij

)(
π(x)

)
(x ∈ V ).

Applying the ergodic theorem for L(p) (cf. [4, Theorem 3.2]), we have

1

N

N−1∑
k=0

Lk
(p)

(
A(Φ0)ij

)(
π(x)

)
=
∑
x∈V0

m(x)A(Φ0)ij(x) +O
( 1

N

)
.

Then, (2.1) and p-harmonicity of Φ0 imply∑
x∈V0

m(x)A(Φ0)ij(x) =
∑
e∈E0

m̃(e)ω
(p)
i (e)ω

(p)
j (e) = ⟨⟨ω(p)

i , ω
(p)
j ⟩⟩p = δij

for 1 ≤ i, j ≤ d. Putting it all together, we obtain

1

Nε2
(I − LN

(p))Pεf = Pε

(∆(p)

2
f
)
+O(N2ε) +O

( 1

N

)
.
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Finally, letting N → ∞, ε ↘ 0 and N2ε ↘ 0, we complete the proof. □
Lemma 3.2 immediately leads to the following lemma. (See [4, Theorem

2.1 and Lemma 4.2] for details.)

Lemma 3.3. (1) For any f ∈ C∞(Γ⊗ R), and 0 ≤ s ≤ t, we have

lim
n→∞

∥∥∥L[nt]−[ns]
(p) Pn−1/2f − Pn−1/2e−(t−s)∆(p)/2f

∥∥∥X
∞

= 0.

(2) We fix 0 ≤ t1 < · · · < tℓ < ∞ (ℓ ∈ N). Then,

(X
(n)
t1

, . . . ,X
(n)
tℓ

)
(d)−→ (B

(p)
t1

, . . . , B
(p)
tℓ

) (n → ∞),

where (B
(p)
t )t≥0 is a (Γ ⊗ R, g(p)0 )-valued standard Brownian motion with

B
(p)
0 = 0.

Having obtained Lemma 3.3, it is sufficient to show the tightness of
{P(n)}∞n=1 for completing the proof of Theorem 1.3.

Lemma 3.4. The sequence {P(n)}∞n=1 is tight in C0

(
[0,∞), (Γ⊗ R, g(p)0 )

)
.

Proof. Throughout the proof, C denotes a positive constant that may
change at every occurrence. We put ∥dΦ0∥∞ := maxe∈E0 ∥dΦ0(ẽ)∥g(p)0

.

By virtue of the celebrated Kolmogorov’s criterion, it is sufficient to show
that there exists some positive constant C independent of n such that

(3.5) EP̂x∗
[∥∥X(n)

t − X(n)
s

∥∥4
g
(p)
0

]
≤ C(t− s)2 (0 ≤ s ≤ t, n ∈ N).

We split the proof into two cases: (I) : t− s < n−1, (II) : t− s ≥ n−1.
First we consider the case (I). In both cases ns ≥ [nt] and ns < [nt], we

have∥∥X(n)
t − X(n)

s

∥∥
g
(p)
0

≤ n1/2(t− s)
{∥∥ξ(p)[nt]+1 − ξ

(p)
[nt]∥g(p)0

+
∥∥ξ(p)[nt] − ξ

(p)
[nt]−1∥g(p)0

}
≤ 2∥dΦ0∥∞n1/2(t− s).

Noting n2(t− s)2 < 1, we obatin the desired estimate (3.5) for case (I).
Next we consider the case (II). Let F be the fundamental domain in X

containing x∗ ∈ V and define Mℓ
i = Mℓ

i(Φ0) : V −→ R (i = 1, . . . , d, ℓ =
1, 2, 3, 4) by

Mℓ
i(x) :=

∑
e∈Ex

p(e)dΦ0(e)
ℓ
i (x ∈ V ).

We note that Mℓ
i is Γ-invariant and ∥Mℓ

i∥X∞ ≤ ∥dΦ0∥ℓ∞ (i = 1, . . . , d). More-
over, we obtain M1

i ≡ 0 (i = 1, . . . , d) due to the p-harmonicity of Φ0.
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Here we give a bound on EP̂x∗
[∥∥X (n)

M
n

− X (n)
N
n

∥∥4
g
(p)
0

]
(n ∈ N, M ≥ N ∈ N).

First of all, we have

EP̂x∗
[∥∥X (n)

M
n

−X (n)
N
n

∥∥4
g
(p)
0

]
≤ Cn−2 max

i=1,...,d
max
x∈F

{ ∑
c∈Ωx,M−N (X)

p(c)
(
Φ0

(
t(c)
)
− Φ0(x)

)4
i

}
.(3.6)

Now fix i = 1, . . . , d and x ∈ F . For k = 1, . . . ,M −N , we have∑
c∈Ωx,k(X)

p(c)
(
Φ0

(
t(c)
)
− Φ0(x)

)4
i

=
∑

c′∈Ωx,k−1(X)

p(c′)
∑

e∈Et(c′)

p(e)

×
{(

Φ0

(
t(e)

)
− Φ0

(
o(e)

))
i
+
(
Φ0

(
o(e)

)
− Φ0(x)

)
i

}
=

∑
c′∈Ωx,k−1(X)

p(c′)M4
i

(
t(c′)

)
+ 4

∑
c′∈Ωx,k−1(X)

p(c′)
(
Φ0

(
t(c′)

)
− Φ0(x)

)
i
M3

i

(
t(c′)

)
+ 6

∑
c′∈Ωx,k−1(X)

p(c′)
(
Φ0

(
t(c′)

)
− Φ0(x)

)2
i
M2

i

(
t(c′)

)
+

∑
c′∈Ωx,k−1(X)

p(c′)
(
Φ0

(
t(c′)

)
− Φ0(x)

)4
i

≤
∑

c′∈Ωx,k−1(X)

p(c′)
(
Φ0

(
t(c′)

)
− Φ0(x)

)4
i
+ ∥M4

i ∥X∞

+ 4∥dΦ0∥∞∥M3
i ∥X∞ + 6∥M2

i ∥X∞
∑

c∈Ωx,k−1(X)

p(c)
(
Φ0

(
t(c)
)
− Φ0(x)

)2
i
.(3.7)

Moreover, the p-harmonicity implies∑
c∈Ωx,k−1(X)

p(c)
(
Φ0

(
t(c)
)
− Φ0(x)

)2
i

=
∑

c′∈Ωx,k−2(X)

p(c′)
{(

Φ0

(
t(c′)

)
− Φ0(x)

)2
i
+M2

i

(
t(c′)

)}
≤ (k − 1)∥dΦ0∥2∞.(3.8)
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It follows from (3.7) and (3.8) that

∑
c∈Ωx,k(X)

p(c)
(
Φ0

(
t(c)
)
− Φ0(x)

)4
i

≤
∑

c∈Ωx,k−1(X)

p(c)
(
Φ0

(
t(c)
)
− Φ0(x)

)4
i

+ 5∥dΦ0∥4∞ + 6∥dΦ0∥4∞(k − 1)

≤ Ck2.(3.9)

Putting k = M −N , M = [nt] + i, N = [ns] + j (i, j = 0, 1) and combining
(3.6) with (3.9), we obtain

EP̂x∗
[∥∥X(n)

t − X(n)
s

∥∥4
g
(p)
0

]
≤ EP̂x∗

[
max
i,j=0,1

∥∥X (n)
[nt]+i

n

−X (n)
[ns]+j

n

∥∥4
g
(p)
0

]
≤ Cn−2

(
[nt]− [ns] + 1

)2
≤ C

(
t− s+

2

n

)2
≤ C

{
(t− s) + 2(t− s)

}2
≤ C(t− s)2,

where we used [nt]− [ns] ≤ n(t− s)+1 and n−1 ≤ t− s. Therefore, we have
shown the the desired estimate (3.5) for case (II). □

Next we prove Theorem 1.4.

Proof of Theorem 1.4. For n ∈ N and x, y ∈ V , we have

p(n,x, y) =
∑

(e1,...,en)∈Ωx,n(X)
o(e1)=x, t(en)=y

p(e1) · · · p(en)

=
∑

(e1,...,en)∈Ωx,n(X)
o(e1)=x, t(en)=y

p(e1) · · · p(en) · exp
( n∑

i=1

λ∗
(
o(ei)

)
[dΦ0(ẽi)]Γ⊗R

)

× Fo(e1)

(
λ∗(o(e1))

)−1 · · ·Fo(en)

(
λ∗(o(en))

)−1

=
∑

(e1,...,en)∈Ωx,n(X)
o(e1)=x, t(en)=y

p(e1) · · · p(en)

× exp
( n∑

i=1

λ∗
(
o(ei)

)
[dΦ0(ẽi)]Γ⊗R −

n∑
i=1

logFo(ei)

(
λ∗(o(ei))

))
.
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Using the ergodic theorem for 1-chains (cf. [7]):

(3.10)
1

n

n∑
i=1

f(ei) =
∑
e∈E0

m̃(e)f(e) +O
( 1
n

)
(f : E0 −→ R),

we obtain

1

n

n∑
i=1

(
λ∗
(
o(ei)

)
[dΦ0(ẽi)]Γ⊗R − logFo(ei)

(
λ∗(o(ei))

))
=
∑
e∈E0

m̃(e)
(
λ∗
(
o(e)

)
[dΦ0(ẽ)]Γ⊗R − logFo(e)

(
λ∗(o(e))

))
+O

( 1
n

)
=
∑
x∈V0

m(x)
(
λ∗(x)

[ ∑
e∈(E0)x

dΦ0(ẽ)
]
Γ⊗R

− logFx

(
λ∗(x)

))
+O

( 1
n

)
=
∑
x∈V0

m(x)
(
λ∗(x)

[
ρR(γp)

]
Γ⊗R − logFx

(
λ∗(x)

))
+O

( 1
n

)
for x, y ∈ V . Here we used the p-modified harmonicity of Φ0 for the final
line. Finally, we obtain

p(n, x, y) = p(n, x, y) exp
(
n
∑
x∈V0

m(x)

×
(
λ∗(x)

[
ρR(γp)

]
Γ⊗R − logFx

(
λ∗(x)

))
+O(1)

)
for x, y ∈ V . This completes the proof. □

Remark. Let us consider a special case where the Γ-crystal lattice X is given
by a covering graph of an ℓ-bouquet graph (ℓ ∈ N) consisting of one vertex
x ∈ V0 and ℓ-loops. Without using the ergodic theorem (3.10) in the proof
of Theorem 1.4, we also obtain

p(n, x, y) =
∑

(e1,...,en)∈Ωx,n(X)
o(e1)=x, t(en)=y

p(e1) · · · p(en)

× exp
( n∑

i=1

λ∗(x)[dΦ0(ẽi)]Γ⊗R

)
· Fx

(
λ∗(x)

)−n

= p(n, x, y) exp
(
λ∗(x)

[
Φ0(y)− Φ0(x)

]
Γ⊗R

)
· Fx

(
λ∗(x)

)−n
(3.11)

for every n ∈ N, x, y ∈ V .
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3.3. A relationship to a discrete analogue of Girsanov’s theorem.
In this subsection, we discuss a relationship between our formula (3.11) and
a discrete analogue of Girsanov’s theorem due to Fujita [3].

Let X = (V,E) be a crystal lattice covered with a one-bouquet graph
X0 = (V0, E0); V0 = {x} and E0 = {e, e}, by the group action Γ = ⟨σ⟩ ∼= Z1.
We consider a random walk on X0 with the transition probability

p(e) = p and p(e) = 1− p (0 < p < 1).

We introduce a bijective linear map ρR : H1(X0,R) −→ Γ ⊗ R(∼= R1) by
ρR([e]) = σ. Then we have γp = (2p − 1)[e] and ρR(γp) = (2p − 1)σ. Let
{u} ⊂ Hom(Γ,R) =

(
H1(X0,R), ⟨⟨·, ·⟩⟩p

)
be a dual basis of {σ ⊗ 1 = σ} ⊂

Γ⊗R. We easily see that ⟨⟨u, u⟩⟩p = 4p(1− p). Hence the orthogonalization
{v} ⊂ Hom(Γ,R) of {u} is given by

v =
1√

4p(1− p)
u.

To the end, we identify λv ∈ Hom(Γ,R) with λ ∈ R. We denote by {v} ⊂
Γ⊗R the dual basis of {v}. Then we observe that the realization Φ0 : X −→
(Γ⊗ R; {v}) defined by

dΦ0(ẽ) := σ =
1√

4p(1− p)
v

is the modified standard realization of X.
We now consider the function F = Fx(λ) defined by (1.4), that is,

Fx(λ) = p exp
( λ√

4p(1− p)

)
+ (1− p) exp

(
− λ√

4p(1− p)

)
(λ ∈ R).

Then we know that the minimizer λ∗ = λ∗(x) and Fx(λ∗) are given by

λ∗ =
√
p(1− p) log

p− 1

p
, Fx(λ∗) =

√
4p(1− p).

We fix x ∈ V satisfying Φ0(x) = 0. For y ∈ V , we write Φ0(y) = k(y)v.
Then the formula (3.11) implies

p(n, x, y) = p(n, x, y) ·
(p− 1

p

)−k(y)/2
·
(√

4p(1− p)
)−n

(n ∈ N, y ∈ V ).

In [3, page 115], the above formula is called a discrete analogue of Girsanov’s
theorem for a non-symmetric random walk {Zn}∞n=0 on Z1 given by the sum
of independent random variables {ξi}∞i=1 with P(ξi = 1) = p and P(ξi =
−1) = 1 − p (i = 1, 2, . . . ). Hence we may regard the formula (3.11) as a
generalization of the above discrete Girsanov’s theorem to the case of non-
symmetric random walks on the ℓ-bouquet graph.
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4. Examples

In [4, Section 7], several examples of the modified standard realization
of crystal lattices associated with the non-symmetric random walks are dis-
cussed. In this final section, we give two concrete examples of non-symmetric
random walks on crystal lattices and calculate the changed transition prob-
ability p for each example.

4.1. The hexagonal lattice. In this subsection, we consider the hexago-
nal lattice, as a typical example of crystal lattices. Let X = (V,E) be a
hexagonal lattice, V = Z2 = {x = (x1, x2) |x1, x2 ∈ Z} and

E =
{
(x,y) ∈ V 2

∣∣x− y = ±(1, 0), x− y = (0, (−1)x1+x2)
}
.

(See Figure 1). We introduce a non-symmetric random walk on X in the
following way. If x = (x1, x2) ∈ V is a vertex so that x1 + x2 is even, set

p
(
x,x+ (1, 0)

)
=

1

2
, p

(
x,x− (0, 1)

)
=

1

3
, p

(
x,x− (1, 0)

)
=

1

6
.

If x1 + x2 is odd, set

p
(
x,x− (1, 0)

)
=

1

6
, p

(
x,x+ (0, 1)

)
=

1

3
, p

(
x,x+ (1, 0)

)
=

1

2
.

We see that X is invariant under the action Γ = ⟨σ1, σ2⟩(∼= Z2) generated
by

σ1(x) = x+ (1, 1), σ2(x) = x+ (−1, 1) (x ∈ V ).

X = (V,E)

ẽ2

ẽ1ẽ3 x̃1

x̃2

σ1σ2

π

Γ = ⟨σ1,σ2⟩

e1e2e3

x2

x1

X0 = (V0, E0)

1

Figure 1. Hexagonal lattice and its quotient.

The quotient graph X0 = Γ\X is a finite graph X0 = (V0, E0) consisting
of two vertices {x1,x2} with three multiple edges E0 = (E0)x1 ∪ (E0)x2 =
{e1, e2, e3} ∪ {e1, e2, e3}.
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We put [c1] := [e1 ∗ e2] and [c2] := [e3 ∗ e2]. Then, the first homology
group H1(X0,R) is spanned by {[c1], [c2]}. Solving (1.2), we have m(x1) =
m(x2) = 1/2. We define the surjective linear map ρR : H1(X0,R) −→ Γ ⊗
R(∼= R2) by ρR([c1]) := σ1, ρR([c2]) := σ2. Thus, the homological direction
γp and the asymptotic direction ρR(γp) are given by

γp =
1

6
[c1]−

1

6
[c2], ρR(γp) =

1

6
σ1 −

1

6
σ2( ̸= 0),

respectively. We will determine the modified standard realization Φ0 :
X −→ (Γ ⊗ R, g0). We set x̃1 = (0, 0), x̃2 = (0, 1) in V . Without loss
of generality, we may put Φ0(x̃1) = 0 ∈ Γ⊗ R. By (1.3), we have

Φ0(x̃1) = 0, Φ0(x̃2) = −1

3
σ1 −

1

3
σ2.

Now let {v1, v2} be an orthonormal basis in Hom(Γ,R)
(
⊂ (H1(X0), ⟨⟨·, ·⟩⟩p)

)
and {v1,v2} its dual basis in (Γ⊗ R, g0). Then, we have

σ1 =
6
√
7

7
v1 −

9
√
70

70
v2, σ2 =

3
√
70

10
v2

with the Albanese metric

⟨σ1, σ1⟩g0 =
63

10
, ⟨σ1, σ2⟩g0 =

27

10
, ⟨σ2, σ2⟩g0 =

63

10
,

by following the computations in [4, Subsection 7.3]. Hence, we find that the
modified standard realization Φ0 : X −→ (Γ⊗R, g0) is given by Φ0(x̃1) = 0
and

Φ0(x̃2) = −2
√
7

7
v1 −

√
70

7
v2.

Now we are in a position to consider the function F introduced in (1.4).
We identify λ ∈ Hom(Γ,R) with (λ1, λ2) ∈ R2. Then, we have

Fx1(λ)

=
1

2
exp

(4√7

7
λ1 −

19
√
70

70
λ2

)
+

1

3
exp

(
− 2

√
7

7
λ1 −

√
70

7
λ2

)
+

1

6
exp

(
− 2

√
7

7
λ1 +

11
√
70

70
λ2

)
,

Fx2(λ)

=
1

6
exp

(
− 4

√
7

7
λ1 +

19
√
70

70
λ2

)
+

1

3
exp

(2√7

7
λ1 +

√
70

7
λ2

)
+

1

2
exp

(2√7

7
λ1 −

11
√
70

70
λ2

)
.

(4.1)
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Differentiating both sides of (4.1) with respect to λ1 and λ2, we have

∂1Fx1(λ) =
2
√
7

7
exp

(4√7

7
λ1 −

19
√
70

70
λ2

)
− 2

√
7

21
exp

(
− 2

√
7

7
λ1 −

√
70

7
λ2

)
−

√
7

21
exp

(
− 2

√
7

7
λ1 +

11
√
70

70
λ2

)
,

∂2Fx1(λ) = −19
√
70

140
exp

(4√7

7
λ1 −

19
√
70

70
λ2

)
−

√
70

21
exp

(
− 2

√
7

7
λ1 −

√
70

7
λ2

)
+

11
√
70

420
exp

(
− 2

√
7

7
λ1 +

11
√
70

70
λ2

)
,

∂1Fx2(λ) = −2
√
7

21
exp

(
− 4

√
7

7
λ1 +

19
√
70

70
λ2

)
+

2
√
7

21
exp

(2√7

7
λ1 +

√
70

7
λ2

)
+

√
7

7
exp

(2√7

7
λ1 −

11
√
70

70
λ2

)
,

∂2Fx2(λ) =
19
√
70

420
exp

(
− 4

√
7

7
λ1 +

19
√
70

70
λ2

)
+

√
70

21
exp

(2√7

7
λ1 +

√
70

7
λ2

)
− 11

√
70

140
exp

(2√7

7
λ1 −

11
√
70

70
λ2

)
.

To find the minimizers of functions Fx1(·) and Fx2(·), it is sufficient to solve
the following two algebraic equations:{

∂1Fx1(λ1, λ2) = 0

∂2Fx1(λ1, λ2) = 0
,

{
∂1Fx2(λ1, λ2) = 0

∂2Fx2(λ1, λ2) = 0
.

Solving these equations, the minimizers λ∗(x1), λ∗(x2) of Fx1(·), Fx2(·) are
given by

λ∗(x1) =
(√7

14
log 26 +

√
7

6
log

14

3
,

√
70

21
log 26

)
,

λ∗(x2) =
(√7

14
log

3

26
−

√
7

6
log 14,

√
70

21
log

3

26

)
,

(4.2)
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respectively. Then, it follows from (4.1) and (4.2) that

Fx1

(
λ∗(x1)

)
= 7 · 26−13/21 ·

(14
3

)−1/3
,

Fx2

(
λ∗(x2)

)
=

21

26
· 14−1/3 ·

( 3

26

)−8/21
.

Finally, we determine the changed transition probability p by

p(e1) =
1

3
, p(e2) =

1

21
, p(e3) =

13

21
,

p(e1) =
1

3
, p(e2) =

1

21
, p(e3) =

13

21
.

Then, the invariant measure m : {x1,x2} −→ (0, 1] is also given by m(x1) =
m(x2) = 1/2. Hence we know that the random walk associated with the
changed transition probability p is m-symmetric, that is,

p(e)m
(
o(e)

)
= p(e)m

(
t(e)

)
(e ∈ E0).

It automatically implies γp = 0 and also ρR(γp) = 0.

4.2. The dice lattice. In this subsection, we discuss a non-symmetric ran-
dom walk on an infinite graph called the dice lattice or the dice graph. The
dice graph X = (V,E) is one of abelian covering graphs which has a free ac-
tion by the lattice group Γ ∼= Z2 generated by σ1, σ2, and the corresponding
quotient graph X0 = (V0, E0) := Γ\X is a finite graph consisting of three
vertices V0 = {x,y, z}. (See Figure 2 or the description in [9].) In view of
the shape of the quotient graph X0, we may regard the dice lattice X as
something like a “hybrid ” of a triangular lattice and a hexagonal lattice.

From now on, we consider a non-symmetric random walk on X by giving
the transition probability on the quotient X0 in the following way. We set

p(e1) =
1

4
, p(e2) =

1

6
, p(e3) =

1

12
, p(e4) =

1

4
, p(e5) =

1

6
, p(e6) =

1

12
,

p(e1) =
1

6
, p(e2) =

1

3
, p(e3) =

1

2
, p(e4) =

1

6
, p(e5) =

1

3
, p(e6) =

1

2
.

Solving (1.2), we have m(x) = 1/2, m(y) = m(z) = 1/4.
Next we define four 1-cycles [c1], [c2], [c3], [c4] on X0 by

[c1] := [e1 ∗ e2], [c2] := [e3 ∗ e2], [c3] := [e4 ∗ e5], [c4] := [e6 ∗ e5].

Then {[c1], [c2], [c3], [c4]} spans the first homology group H1(X0,R). We
define the linear map ρR from H1(X0,R) onto Γ⊗ R ∼= R2 by

ρR([c1]) = σ1 − σ2, ρR([c2]) = −σ2, ρR([c3]) = σ2, ρR([c4]) = σ2 − σ1.
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Then, the homological direction γp and the asymptotic direction ρR(γp) of
the random walk on X0 are calculated as

γp =
1

12

(
[c1]− [c2] + [c3]− [c4]

)
,

ρR(γp) =
1

12

{
(σ1 − σ2)− (−σ2) + σ2 − (σ2 − σ1)

}
=

1

6
σ1( ̸= 0),

respectively.

ẽ1

ẽ2

ẽ3

ẽ4

ẽ6

ẽ5

σ1

σ2

z

y

e1e2e3

e4e5e6

x

X = (V,E)

X0 = (V0, E0)

π

Γ = ⟨σ1,σ2⟩

1

Figure 2. Dice lattice and its quotient.

Now we determine the modified standard realization Φ0 : X −→ Γ ⊗ R.
Here we may put Φ0

(
o(ẽi)

)
= 0 (i = 1, 2, 3, 4, 5, 6), without loss of generality.

Noting (1.3) and the group action Γ, we have

Φ0

(
t(ẽ1)

)
=

2

3
σ1 −

1

3
σ2, Φ0

(
t(ẽ2)

)
= −1

3
σ1 +

2

3
σ2,

Φ0

(
t(ẽ3)

)
= −1

3
σ1 −

1

3
σ2, Φ0

(
t(ẽ4)

)
=

1

3
σ1 +

1

3
σ2,(4.3)

Φ0

(
t(ẽ5)

)
=

1

3
σ1 −

2

3
σ2, Φ0

(
t(ẽ6)

)
= −2

3
σ1 +

1

3
σ2.
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Let {ω1, ω2, ω3, ω4} ⊂ H1(X0,R) be the dual basis of {[c1], [c2], [c3], [c4]},
that is, ωi([cj ]) = δij (1 ≤ i, j ≤ 4). Recalling that each ωi is a modified
harmonic 1-form, we have

ω1(e1) =
3

4
, ω1(e2) = ω1(e3) = −1

4
, ω1(e4) = ω1(e5) = ω1(e6) = − 1

12
,

ω2(e1) = ω2(e2) = − 5

12
, ω2(e3) =

7

12
, ω2(e4) = ω2(e5) = ω2(e6) =

1

12
,

ω3(e1) = ω3(e2) = ω3(e3) = − 1

12
, ω3(e4) =

3

4
, ω3(e5) = ω3(e6) = −1

4
,

ω4(e1) = ω4(e2) = ω4(e3) =
1

12
, ω4(e4) = ω4(e5) = − 5

12
, ω4(e6) =

7

12
.

Then, the direct computation gives us

⟨⟨ω1, ω1⟩⟩ =
1

9
, ⟨⟨ω1, ω2⟩⟩ = − 1

18
,

⟨⟨ω1, ω3⟩⟩ = − 1

72
, ⟨⟨ω1, ω4⟩⟩ =

1

72
,

⟨⟨ω2, ω2⟩⟩ =
1

9
, ⟨⟨ω2, ω3⟩⟩ =

1

72
,

⟨⟨ω2, ω4⟩⟩ = − 1

72
, ⟨⟨ω3, ω3⟩⟩ =

1

9
,

⟨⟨ω3, ω4⟩⟩ = − 1

18
, ⟨⟨ω4, ω4⟩⟩ =

1

9
.

We introduce the basis {u1, u2} in Hom(Γ,R) by the dual of {σ1⊗1, σ2⊗1} ⊂
Γ⊗ R. Since the dice graph X is a non-maximal abelian covering graph of
X0 with Γ ∼= ⟨σ1, σ2⟩, we need to find a Z-basis of the lattice

L =
{
ω ∈ H1(X0,R)

∣∣ω([c]) = 0 for every cycle c̃ on X
}
.

It is easy to find that

u1 =
tρR(u1) = ω1 − ω4, u2 =

tρR(u2) = −ω1 − ω2 + ω3 + ω4

form a Z-basis of the lattice L. Carrying out the direct computation again,
we have

(4.4) ⟨⟨u1, u1⟩⟩ =
7

36
, ⟨⟨u1, u2⟩⟩ = −1

9
, ⟨⟨u2, u2⟩⟩ =

2

9
.

Let {v1, v2} be the Gram–Schmidt orthogonalization of the basis {u1, u2} ⊂
Hom(Γ,R). By (4.4), we have

v1 =
6
√
7

7
u1, v2 =

6
√
70

35
u1 +

3
√
70

10
u2.
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We denote by {v1,v2} the dual basis of {v1, v2} in Γ⊗ R. Then we obtain

(4.5) σ1 =
6
√
7

7
v1, σ2 =

6
√
70

35
v1 +

3
√
70

10
v2

Combining (4.5) with (4.3), we finally determine the modified standard re-
alization Φ0 : X −→ (Γ⊗ R, g0) ∼= (R2; {v1,v2}) of X by

Φ0

(
t(ẽ1)

)
=

20
√
7− 2

√
70

35
v1 −

√
70

10
v2,

Φ0

(
t(ẽ2)

)
=

−10
√
7 + 4

√
70

35
v1 +

√
70

5
v2,

Φ0

(
t(ẽ3)

)
=

−10
√
7− 2

√
70

35
v1 −

√
70

10
v2,

Φ0

(
t(ẽ4)

)
=

10
√
7 + 2

√
70

35
v1 +

√
70

10
v2,

Φ0

(
t(ẽ5)

)
=

10
√
7− 4

√
70

35
v1 −

√
70

5
v2,

Φ0

(
t(ẽ6)

)
=

−20
√
7 + 2

√
70

35
v1 +

√
70

10
v2.

(See Figure 3 below.)
Now we are in a position to consider the function F : V0×Hom(Γ,R) −→

(0,∞) defined by (1.4). In what follows, we identify λ = λ1v1 + λ2v2 ∈
Hom(Γ,R) with (λ1, λ2) ∈ R2. In addition, it follows from Φ0

(
o(ẽi)

)
=

0 (i = 1, 2, 3, 4, 5, 6) that

dΦ0(ẽ1) =
20
√
7− 2

√
70

35
v1 −

√
70

10
v2,

dΦ0(ẽ2) =
−10

√
7 + 4

√
70

35
v1 +

√
70

5
v2,

dΦ0(ẽ3) =
−10

√
7− 2

√
70

35
v1 −

√
70

10
v2,

dΦ0(ẽ4) =
10
√
7 + 2

√
70

35
v1 +

√
70

10
v2,(4.6)

dΦ0(ẽ5) =
10
√
7− 4

√
70

35
v1 −

√
70

5
v2,

dΦ0(ẽ6) =
−20

√
7 + 2

√
70

35
v1 +

√
70

10
v2
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Then, by (4.6), we have

Fx(λ1, λ2) =
1

4
exp

(20√7− 2
√
70

35
λ1 −

√
70

10
λ2

)
+

1

6
exp

(−10
√
7 + 4

√
70

35
λ1 +

√
70

5
λ2

)
+

1

12
exp

(−10
√
7− 2

√
70

35
λ1 −

√
70

10
λ2

)
+

1

4
exp

(10√7 + 2
√
70

35
λ1 +

√
70

10
λ2

)
+

1

6
exp

(10√7− 4
√
70

35
λ1 −

√
70

5
λ2

)
+

1

12
exp

(−20
√
7 + 2

√
70

35
λ1 +

√
70

10
λ2

)
,

Fy(λ1, λ2) =
1

6
exp

(−20
√
7 + 2

√
70

35
λ1 +

√
70

10
λ2

)
+

1

3
exp

(10√7− 4
√
70

35
λ1 −

√
70

5
λ2

)
+

1

2
exp

(10√7 + 2
√
70

35
λ1 +

√
70

10
λ2

)
,

Fz(λ1, λ2) =
1

6
exp

(−10
√
7− 2

√
70

35
λ1 −

√
70

10
λ2

)
+

1

3
exp

(−10
√
7 + 4

√
70

35
λ1 +

√
70

5
λ2

)
+

1

2
exp

(20√7− 2
√
70

35
λ1 −

√
70

10
λ2

)
.

By solving the following equations:{
∂1Fx(λ1, λ2) = 0

∂2Fx(λ1, λ2) = 0
,

{
∂1Fy(λ1, λ2) = 0

∂2Fy(λ1, λ2) = 0
,

{
∂1Fz(λ1, λ2) = 0

∂2Fz(λ1, λ2) = 0
,

we find that the minimizers λ∗(x), λ∗(y) and λ∗(z) of functions Fx(·), Fy(·)
and Fz(·) are given by

λ∗(x) =
(
−

√
7

6
log 3,

4
√
7−

√
70

42
log 3

)
,

λ∗(y) =
(
−

√
7

6
log 3,

√
70

21
log 2 +

2
√
7−

√
70

21
log 3

)
,

λ∗(z) =
(
−

√
7

6
log 3,−

√
70

21
log 2 +

2
√
7

21
log 3

)
,
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respectively, and

Fx

(
λ∗(x)

)
=

√
3 + 1

3
, Fy

(
λ∗(y)

)
= Fz

(
λ∗(z)

)
= 3 · 6−2/3.

v2

v1σ1

σ2

Φ0
(
t(ẽ1)

)

Φ0
(
t(ẽ2)

)

Φ0
(
t(ẽ3)

)

Φ0
(
t(ẽ4)

)

Φ0
(
t(ẽ5)

)

Φ0
(
t(ẽ6)

)

ρR(γp)

1

Figure 3. Modified standard realization of the dice lattice.

Finally, we determine the changed transition probability p by

p(e1) =
3−

√
3

8
, p(e2) =

√
3− 1

4
, p(e3) =

3−
√
3

8
,

p(e4) =
3−

√
3

8
, p(e5) =

√
3− 1

4
, p(e6) =

3−
√
3

8
,

p(e1) = p(e2) = p(e3) = p(e4) = p(e5) = p(e6) =
1

3
.

Then, the invariant measure m is given by m(x) = 1/2 and m(y) = m(z) =
1/4. Moreover, the homological direction γp and the asymptotic direction
ρR(γp) of the random walk associated with p are given by

γp =
5− 3

√
3

48

(
[c1] + [c2] + [c3] + [c4]

)
(̸= 0), ρR(γp) = 0,
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respectively. Then it follows from Theorem 1.4 that there exist some positive
constants C1 and C2 such that

C1p(n, x, y)
(

6
√
12(

√
3− 1)

)n ≤ p(n, x, y) ≤ C2p(n, x, y)
(

6
√
12(

√
3− 1)

)n
for all n ∈ N and x, y ∈ V .
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