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Abbreviations: 
AC, adenylate cyclase 

ALK, activin receptor-like kinase 

ActRII, activin type-II receptor  

BMP, bone morphogenetic protein 

BMPRII, BMP type-II receptor 

FSH, follicle-stimulating hormone 

FSHR, FSH receptor 

GDF, growth and differentiation factor 

GIP, glucose-dependent insulinotropic  

polypeptide 

GLP-1, glucagon-like peptide-1  

IGF-I, insulin-like growth factor-I 

3βHSD, 3β-hydroxysteroid dehydrogenase 

LH, luteinizing hormone 

PCOS, polycystic ovary syndrome 

P450arom, P450 aromatase 

P450scc, P450 steroid side-chain cleavage enzyme 

StAR, steroidogenic acute regulatory protein 

TGF, transforming growth factor



Nishiyama, Otsuka et al. 
SBMB-D-17-00373-R1 

 

 - 2 - 

Abstract  

 

The effects of incretins on ovarian steroidogenesis have not been 

clarified.  In this study, we investigated the effects of incretins, including GIP 

and GLP-1, on ovarian steroidogenesis using rat primary granulosa cells.  

Treatment with incretins significantly suppressed progesterone synthesis in the 

presence of FSH, and the effect of GIP was more potent than that of GLP-1.  In 

contrast, incretins had no significant effect on estrogen synthesis by rat 

granulosa cells.  In accordance with the effects of incretins on steroidogenesis, 

GIP and GLP-1 suppressed the expression of progesterogenic factors and 

enzymes, including StAR, P450scc, 3βHSD, but not P450arom, and cellular 

cAMP synthesis induced by FSH.  In addition, incretins moderately increased 

FSHR mRNA expression in granulosa cells.  Of note, treatment with GIP, but 

not treatment with GLP-1, augmented Smad1/5/8 phosphorylation and 

transcription of the BMP target gene Id-1 induced by BMP-6 stimulation, 

suggesting that GIP upregulates BMP receptor signaling that can inhibit 
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FSH-induced progesterone synthesis in rat granulosa cells.  On the other hand, 

BMP-6 treatment suppressed the expression of GIP receptor but not that of 

GLP-1 receptor.  Expression of the BMP type-I receptor ALK-3 was 

upregulated by treatment with GIP and GLP-1 and that of ALK-6 was also 

increased by GIP, while inhibitory Smad6 expression was impaired by GIP and 

GLP-1 in rat granulosa cells.  Collectively, the results indicate that incretins, 

particularly GIP, impair FSH-induced progesterone production, at least in part, 

by upregulating BMP signaling in rat granulosa cells.  The modulatory effects of 

incretins on endogenous BMP activity may be applicable to treatment of 

dysregulated steroidogenesis such as polycystic ovary syndrome. 
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Introduction 

 

Incretins, including glucose-dependent insulinotropic polypeptide (also 

called gastric inhibitory polypeptide; GIP) and glucagon-like peptide (GLP)-1, are 

peptide hormones secreted from the intestine.  Incretins stimulate insulin 

secretion following oral glucose intake in a glucose-dependent manner [1-3].  

The postprandial release of GIP and GLP-1 from the proximal and distal small 

intestine, respectively, accounts for more than 50% of the postprandial insulin 

response as incretin effects [1].   

Since insulin resistance is considered to play an important role in the 

pathogenesis of polycystic ovary syndrome (PCOS) [4], attention has been paid 

to the altered pattern of incretin secretion and the insulinotropic activity of 

incretins in diabetic, obese [2, 5-7], and PCOS patients [8].  As for the 

reproductive impact of incretins, an in vitro study using the hypothalamic cell line 

GT1-7 demonstrated that GLP-1 enables stimulation of gonadotropin release, at 

least in part by activating gonadotropin-releasing hormone neurons, suggesting 
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a physiological role of GLP-1 as a new metabolic signal to the reproductive 

system [9].  An in vivo study also showed a reproductive effect of GLP-1 based 

on the knockout female phenotype of the GLP-1 receptor (GLP-1R) [10].  

Female mice with a defect of GLP-1R showed a consistent delay in onset of the 

first ovarian cycle and reduction in the number of developing follicle, but they 

eventually became fertile and did not exhibit a critical impairment of reproductive 

capacity [10].  However, the pathophysiological role of incretins in ovarian 

steroidogenesis and the significance of the alteration in incretin levels in PCOS 

patients have yet to be elucidated. 

The physiological process of ovarian folliculogenesis occurs as a 

consequence of functional interactions between gonadotropins and various 

autocrine/paracrine factors in the ovary.  It has been shown that the bone 

morphogenetic protein (BMP) system in the ovary plays a critical role in the 

regulation of ovarian steroidogenesis in an autocrine/paracrine manner [11, 12].  

BMP system molecules consisting of BMP ligands and receptors are expressed 

in ovarian follicles in a cell-specific pattern.  The expression of BMP-6 is 
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localized in oocytes as well as granulosa cells in Graafian-staged healthy 

follicles [13].  It has been shown that BMP-6 in granulosa cells elicits an 

inhibitory effect on follicle-stimulating hormone (FSH) receptor 

(FSHR)-dependent activities by suppressing adenylate cyclase (AC), leading to 

cAMP reduction [14, 15].  BMP-6 expressed in rat granulosa cells appears to 

be reduced when dominant follicles are selected [13], suggesting that BMP-6, in 

particular, contributes to the selection process of folliculogenesis.  From clinical 

points of view regarding the pathophysiology of human PCOS, it is intriguing that 

the expression of BMP-6 was upregulated in human granulosa cells isolated 

from PCOS ovaries based on the histological and molecular workup [16-18].   

In the present study, we used a primary culture of rat granulosa cells to 

investigate the functional roles of incretins in ovarian steroidogenesis induced by 

FSH with focus on the luteinizing inhibitor BMP-6.  The findings can be linked to 

a therapeutic strategy for dysregulation of ovarian steroidogenesis such as 

PCOS.  
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Materials and Methods 

 

Reagents and supplies 

Medium 199, McCoy’s 5A medium and HEPES buffer solution were purchased 

from Invitrogen Corp. (Carlsbad, CA).  Bovine serum albumin (BSA), 

diethylstilbestrol (DES), Glucagon-Like Peptide 1 (GLP-1) human and Gastric 

Inhibitory Polypeptide (GIP) human, 4-androstene-3,17-dione, 

3-isobutyl-1-methylxanthine (IBMX), ovine pituitary FSH, and 

penicillin-streptomycin solution were purchased from Sigma-Aldrich Co. Ltd. (St. 

Louis, MO), and recombinant human BMP-6 was from R&D Systems Inc. 

(Minneapolis, MN). 

 

Primary culture of rat ovarian granulosa cells 

Sprague-Dawley (SD) rats were purchased from Charles River (Wilmington, MA).   

Silastic capsules containing 10 mg of DES were implanted in 22-day-old female 

SD rats to increase the number of granulosa cells.  After 3 to 4 days of 
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exposure to DES, ovarian follicles were punctured with a 27-gauge needle.  

Granulosa cells were counted and separated from oocytes by filtering the 

oocyte/granulosa cell suspension through a 100-µm nylon mesh and then 

through a 40-µm nylon mesh (BD Falcon, Bedford, MA), which allowed 

granulosa cells but not oocytes to pass through [19, 20].  The isolated 

granulosa cells were then cultured in a serum-free McCoy’s 5A medium 

supplemented with penicillin-streptomycin at 37°C in an atmosphere of 5% CO2.  

The animal protocols were approved by Okayama University Institutional Animal 

Care and Use Committee. 

 

Determination of estradiol, progesterone and cAMP levels 

Rat granulosa cells (1 × 105 viable cells in 200 µl) were cultured, as described 

above, in 96-well plates with 100 nM of androstenedione, a substrate for 

aromatase.  FSH (30 ng/ml) was added to the culture medium either alone or in 

combination with indicated concentrations of GIP or GLP-1.  After 48-h culture, 

the culture media were collected and stored at -30°C until assay.  The 
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concentrations of estradiol and progesterone in the culture media were 

examined by a chemiluminescent immunoassay (CLIA) using Architect estradiol 

and progesterone kits (Cayman Chemical Co., Ann Arbor, MI, USA).  Steroid 

contents were undetectable (progesterone <10 pg/ml and estradiol <15 pg/ml) in 

a cell-free medium.  To evaluate cellular cAMP synthesis, rat granulosa cells (1 

× 105 viable cells in 200 µl) were cultured, as described above, in 96-well plates 

with 0.1 mM of IBMX (specific inhibitor of phosphodiesterase activity).  After 

48-h culture with indicated treatments, the conditioned medium was collected 

and stored at -30°C until assay.  The concentrations of extracellular cAMP were 

measured by an enzyme-linked immunosorbent assay (ELISA; Enzo Life 

Sciences, Inc., NY, USA) after acetylation of each sample with an assay 

sensitivity of 0.039 pmol/ml. 

 

Granulosa cellular RNA extraction and quantitative RT-PCR 

Rat granulosa cells (5 × 105 viable cells in 1 ml) were cultured in 12-well plates 

with serum-free McCoy’s 5A.  The cells were treated with FSH (30 ng/ml) either 
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alone or in combination with indicated concentrations of GIP and GLP-1.  After 

48-h culture, total cellular RNA was extracted using TRIzol® (Invitrogen Corp.).  

Total RNA amount was quantified by measuring the absorbance of the sample 

at 260 nm, and the RNA was stored at -80°C until assay.  Primer pairs for 

activin receptor-like kinase (ALK)-2, ALK-3, activin type-II receptor (ActRII), 

Smad6 and 7, and ribosomal protein L19 (RPL19) were selected as reported 

previously [21, 22].  For all of the genes, the primer pairs were selected from 

different exons of the corresponding genes to distinguish PCR products that 

might arise from chromosome DNA contaminants as follows: FSHR, 720-739 

and 913-932 (from GenBank accession #NM_199237); P450scc, 147-167 and 

636-655 (J05156); steroidogenic acute regulatory protein (StAR), 395-415 and 

703-723 (AB001349); type-I 3β-hydroxysteroid dehydrogenase (3βHSD), 

336-355 and 841-860 (M38178); P450arom, 1180-1200 and 1461-1481 

(M33986); Id-1, 225-247 and 364-384 (NM_010495); GIPR, 333-352 and 

479-498 (NM_012728); GLP-1R, 749-768 and 980-999 (NM_012714); ALK-6, 

227-246 and 450-469 (NM_001024259); and BMP type-II receptor (BMPRII), 
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1785-1804 and 1942-1961 (NM_080407).  The extracted RNA (1 µg) was 

subjected to reverse transcription using a First-Strand cDNA Synthesis System 

(Invitrogen Corp.) with random hexamer (2 ng/µl), reverse transcriptase (200 U) 

and deoxynucleotide triphosphate (dNTP; 0.5 mM) at 42°C for 50 min and at 

70°C for 10 min.  To quantify the level of target gene mRNA, real-time PCR was 

performed using the LightCycler® Nano real-time PCR system (Roche 

Diagnostic Co., Tokyo, Japan) after optimization of annealing conditions.  The 

relative mRNA expression was calculated by the Δ threshold cycle (Ct) method, 

in which ΔCt is the value obtained by subtracting the Ct value of RPL19 mRNA 

from the Ct value of the target mRNA, and the amount of target mRNA relative to 

RPL19 mRNA was expressed as 2-(
Δ
Ct).  The data are expressed as the ratio of 

target mRNA to RPL19 mRNA.  

 

Western immunoblotting analysis 

Rat granulosa cells (2.5 × 105 viable cells in 500 µ l) were cultured in 24-well 

plates in serum-free McCoy’s 5A medium.  After preculture either alone or with 
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indicated concentrations of GIP or GLP-1, the cells were treated with BMP-6 for 

60 min.  The cells were solubilized in 50 µl RIPA lysis buffer (Upstate 

Biotechnology, Lake Placid, NY) containing 1 mM Na3VO4, 1 mM NaF, 2% SDS, 

and 4% β-mercaptoethanol.  The cell lysates were subjected to 

SDS-PAGE/immunoblotting analysis using anti-phospho-Smad1/5/8(9) 

(pSmad1/5/8(9)) antibody (Cell Signaling Technology, Inc., Beverly, MA) and 

anti-actin antibody (Sigma-Aldrich Co. Ltd.).  The integrated signal density of 

each protein band was analyzed by the C-DiGit® Blot Scanner System (LI-COR 

Biosciences, NE).  To evaluate the target protein levels, the ratios of the signal 

intensities of pSmad / actin were calculated. 

 

Statistical analysis 

All results are shown as means ± SEM of data from at least three separate 

experiments, each performed with triplicate samples.  Differences between 

groups were statistically analyzed using ANOVA or the unpaired t-test when 

appropriate (StatView 5.0 software, Abacus Concepts, Inc., Berkeley, CA).  If 
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differences were detected by ANOVA, Tukey-Kramer’s post hoc test was used 

to determine which means differed (StatView 5.0 software).  P values <0.05 

were accepted as statistically significant. 
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Results 

 

First of all, we examined the expression of incretin receptors in the rat 

ovary.  As shown in Fig. 1A, the expression of GIPR and GLP-1R was detected 

by RT-PCR in the rat ovary as well as in rat pancreas tissues.  The effects of 

incretins, including GIP and GLP-1, on FSH-induced ovarian steroidogenesis 

were examined by using rat primary granulosa cell culture for 48 h.  Treatment 

with GIP or GLP-1 (100 nM) alone had no significant effect on basal 

progesterone (Fig. 1B) and estradiol (Fig. 1C) synthesis.  Of note, treatment 

with incretins (30 to 300 nM) significantly suppressed progesterone synthesis 

induced by FSH (30 ng/ml).  The effect of GIP (300 nM) was more potent than 

that of GLP-1 (300 nM); treatment with GIP and GLP-1 resulted in reductions of 

35% and 19%, respectively, compared with FSH-induced progesterone levels.  

In contrast, GIP or GLP-1 (30 to 300 nM) had no significant effect on basal as 

well as FSH-induced estrogen synthesis by rat granulosa cells.  To clarify the 

mechanism by which incretins suppress FSH (30 ng/ml)-induced 
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steroidogenesis by granulosa cells, the change in cAMP synthesis was 

determined by EIA.  As shown in Fig. 2A, FSH-induced cAMP production was 

suppressed by treatment with GIP (100-300 nM) and GLP-1 (30-100 nM) for 48 

h.  FSHR mRNA expression in granulosa cells was moderately but significantly 

augmented by either GIP or GLP-1 (300 nM) for 48-h culture.  In accordance 

with the effects of incretins on steroid biosynthesis, GIP and GLP-1 (300 nM) 

were found to reduce mRNA levels of progesterogenic factors and enzymes 

including StAR, P450scc and 3βHSD stimulated by FSH (30 ng/ml), although 

GIP or GLP-1 alone had no specific effect on the basal mRNA levels of 

progesterogenic factors and enzymes (Fig. 2C).  On the other hand, the level of 

FSH (30 ng/ml)-induced P450arom mRNA was not altered by treatment with GIP 

or GLP-1 (300 nM) (Fig. 2C).        

Since incretins specifically suppressed FSH-induced progesterone 

production without altering estradiol level, the involvement of BMP activity was 

implicated in the regulatory mechanism of the actions of incretins on 

steroidogenesis.  We therefore examined the effects of incretins on 
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BMP-receptor signaling including Smad1/5/8 phosphorylation and BMP target 

gene Id-1 transcription.  As shown in Fig. 3A, BMP-6 (30 ng/ml) treatment for 1 

h readily stimulated Smad1/5/8 phosphorylation and, of note, 24-h co-treatment 

with GIP (300 nM) significantly enhanced the Smad1/5/8 phosphorylation 

induced by BMP-6 (30 ng/ml) stimulation.  An enhancing effect of 

BMP-6-induced Smad1/5/8 activity was not observed in granulosa cells treated 

with GLP-1 (300 nM) for 24 h (Fig. 3A).  In accordance with the effects on 

Smad activation, Id-1 mRNA induction by BMP-6 (30 ng/ml) was also enhanced 

by co-treatment with GIP but not by co-treatment with GLP-1 (300 nM) (Fig. 3B), 

suggesting that GIP upregulates BMP-receptor signaling that selectively inhibits 

FSH-induced progesterone synthesis [11], leading to effective reduction of the 

levels of progesterone produced by granulosa cells.  On the other hand, as 

shown in Fig. 3C, BMP-6 (30 ng/ml) treatment for 24 h significantly suppressed 

the mRNA expression of GIPR but not that of GLP-1R, implying the presence of 

a feedback loop between the activities of GIP and BMP-6.   

In order to assess the influence of incretins on BMP-receptor activity in 
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granulosa cells, mRNA levels of BMP type-I and type-II receptors and inhibitory 

Smads were evaluated.  As shown in Fig. 4A, treatments with GIP and GLP-1 

(300 nM) for 48 h increased ALK-3 mRNA expression among the type-I 

receptors (ALK-2, -3 and -6), and GIP treatment also increase ALK-6 mRNA, 

whereas they did not affect the expression of type-II receptors (BMPRII and 

ActRII).  It was also found that treatment with GIP and GLP-1 (300 nM) for 48 h 

conversely reduced the mRNA level of inhibitory Smad6, but not that of Smad7, 

in rat granulosa cells (Fig. 4B).   
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Discussion 

 

In the present study, we examined the roles of incretins in ovarian 

steroidogenesis using rat primary granulosa cells.  The effects of incretins on 

FSH response and/or FSH-induced estrogen and progesterone synthesis have 

remained unknown.  It was found that the receptors for GIP and GLP-1 were 

both expressed in the rat ovary and that the suppressive effect of GIP on 

FSH-induced progesterone synthesis was more potent than that of GLP-1.  The 

mechanism by which GIP reduces progesterone production involved the 

upregulation of BMP-receptor signaling with an increase in ALK-3 and ALK-6 

expression and a decrease in Smad6 expression in granulosa cells (Fig. 5).  A 

functional interaction between the receptor signaling of BMP, GIP and FSH was 

uncovered; it was found that BMP downregulates GIPR expression and that GIP 

upregulates BMP and FSH receptor signaling.  Thus, GIP modulates 

FSH-induced ovarian steroidogenesis by regulating BMP-receptor sensitivity in 

rat granulosa cells (Fig. 5).  
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Pathophysiological roles of BMP family molecules in PCOS have been 

suggested [23-25].  For instance, the PCOS phenotype with single unilateral or 

bilateral ovarian cysts lined by several layers of flattened granulosa cells was 

observed in female GDF-9-knockout mouse ovaries [26].  Also, GDF-9 mRNA 

expression was delayed and reduced during the growth and differentiation 

phase of human PCOS ovaries [23].  As for the pathophysiological role of 

BMP-6 in the development of PCOS, BMP-6 expression was found to be 

upregulated in human granulosa cells isolated from PCOS cases in comparison 

with the expression in normal granulosa cells derived from patients who 

underwent in vitro fertilization [16, 17].  In the present study, it was found that 

treatment with GIP augmented BMP-6-induced Smad1/5/8 signaling in rat 

granulosa cells via increases in the expression of type-I receptors and 

concomitant decrease in the expression of inhibitory Smad6.  Thus, incretins 

seem to impair FSH-induced progesterone production, at least in part, by 

upregulating BMP-receptor signaling in rat granulosa cells.   

Androgen’s action is likely to be another key factor contributing to the 
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increased secretion of incretins in PCOS patients [27].  The clinical 

interrelationship between GIP and androgen in PCOS patients suggests that 

both the actions of androgen and incretins are functionally involved in the 

pathophysiology of insulin resistance and reproductive dysfunction in PCOS [27].  

In this regard, we recently demonstrated that the interaction of androgen and 

IGF-I accelerates progesterone synthesis induced by FSH in rat granulosa cells 

[28].  In the present study, both GIP and GLP-1 were found to suppress 

FSH-induced production of progesterone, but not that of estradiol, and the effect 

of GIP for reducing FSH-induced progesterone level was found to be more 

potent.  GIP activates BMP-6-induced Smad1/5/8 signaling by upregulating 

BMP type-I receptor expression and by downregulating inhibitory Smad6 

expression in granulosa cells.  GIP also increases FSHR expression, while 

BMP-6 suppresses GIPR expression.  GIP plays regulatory roles in 

progesterone biosynthesis by facilitating BMP-6 action that enables suppression 

of FSH-induced progesterone production by suppressing cAMP synthesis 

through inhibition of AC in granulosa cells [14].  In pancreatic tissues and cells, 
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incretins have been shown to increase intracellular levels of cAMP and calcium 

[29, 30], and calcium influx was attributed to the activation of voltage-dependent 

calcium channels [29].  However, in the present study, GIP or GLP-1 did not 

show any stimulatory effect on cAMP synthesis.  They in fact suppressed 

FSH-induced cAMP synthesis by granulosa cells, suggesting tissue-dependent 

differences in the actions of incretins and/or their receptor signaling on 

endocrine modulation.  

A disturbance in the secretion of incretins has been observed in PCOS 

with impaired glucose regulation.  Decreased levels of late-phase GLP-1 after 

an oral glucose test but increased levels of total GIP were observed in European 

PCOS patients [31].  In another study, it was found that GIP levels were lower 

in obese women with PCOS than in lean women with PCOS [32].  It has also 

been reported that obese women with PCOS showed lower GIP levels in 

response to oral glucose intake but that the effect of an incretin was rather 

augmented in obese women with PCOS, suggesting that an increased 

insulinotropic effect could counteract the blunted GIP response [33].  A recent 
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study in which a comparison was made with gestational diabetic patients also 

showed decreased secretion of incretins in lean women with PCOS [34].  On 

the other hand, a study on Asian cases showed that PCOS patients have 

elevated glucose-induced responses of GIP [35] and GLP-1 [36]  Hence, the 

results regarding incretin levels in PCOS patients have not been uniform; 

however, it is possible that the alteration of incretin levels is, at least in part, 

involved in the pathophysiology and/or disease activity of PCOS.  

Considering the finding that GIPR and GLP-1R were expressed in the 

ovary, there is a possibility that incretins have a direct impact on reproductive 

function and steroidogenesis.  In view of the therapeutic aspect for PCOS, it 

has been shown that GLP-1R agonists are effective for weight loss and adiposity 

reduction in patients with PCOS [37, 38].  Combined therapy with GLP-1R 

agonists and metformin was also reported to be more effective for reproductive 

functions such as menstrual cycle and hormonal and metabolic derangements 

than either GLP-1R agonist or metformin alone [39].  We previously reported 

the effects of melatonin and somatostatin analogs, which have been shown to 
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be effective for infertility in women with PCOS [40, 41], on the regulation of 

ovarian steroidogenesis [42, 43].  In contrast to the actions of incretins and 

somatostatin analogs, melatonin sustained progesterone synthesis and 

luteinization by inhibiting BMP-6 activity in rat granulosa cells.  These agents 

including incretins are potent effectors for controlling progesterone level and 

follicular development, in which endogenous activity of the ovarian BMP system 

might be physiologically critical for fine-tuning ovarian steroidogenesis in 

growing follicles.   

Collectively, the results suggest that incretins suppress FSH-induced 

progesterone biosynthesis, at least in part, by upregulating BMP-receptor 

signaling in rat granulosa cells.  Modulation of endogenous BMP activity by 

incretins may be applicable to treatment of dysregulated steroidogenesis as 

seen in PCOS ovaries. 
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Figure legends: 
 

Fig. 1. Expression of incretin receptors and effects of incretins on 

FSH-induced steroidogenesis by rat granulosa cells.  A) Total cellular RNA 

was extracted from rat ovary and pancreas tissues, and the expression of GIPR, 

GLP-1R and RPL19 was examined by RT-PCR.  B, C) Granulosa cells were 

cultured in a serum-free condition with FSH either alone or in combination with 

GIP or GLP-1.  After 48-h culture, the levels of progesteone (B) and estradiol 

(C) in the medium were determined by CLIA.  Results in all panels are shown 

as means ± SEM.  The results were analyzed by ANOVA and by the unpaired 

t-test (B, C).  *P < 0.05 vs. control group or between the indicted groups; #P < 

0.05 vs. FSH-treated groups.  MM indicates molecular weight marker. 

 

Fig. 2. Effects of incretins on synthesis of cAMP and expression of FSH 

receptor and steroidogenic enzymes in rat granulosa cells.  A) Granulosa 

cells were cultured in a serum-free medium containing IBMX with FSH either 

alone or in combination with GIP or GLP-1.  After 48-h culture, the levels of 
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cAMP in the medium were determined by ELISA.  B) Total cellular RNA was 

extracted from granulosa cells treated with GIP or GLP-1 for 48 h, and FSHR 

mRNA levels were determined by quantitative PCR.  C) Total cellular RNA was 

extracted from granulosa cells treated with FSH, GIP and GLP-1 for 48 h in a 

serum-free condition, and StAR, P450scc, 3βHSD and P450arom mRNA levels 

were determined by quantitative PCR.  The expression levels of target gene 

mRNA were standardized by RPL19 level and expressed as fold changes (B, C).   

Results in all panels are shown as means ± SEM.  The results were analyzed 

by ANOVA (A, C) and the unpaired t-test (B).  Values with different superscript 

letters are significantly different at P < 0.05; *P < 0.05 vs. control group; n.s., not 

significant.  

 

Fig. 3. Effects of incretins on BMP-receptor signaling and effects of BMP-6 

on incretin receptor expression in rat granulosa cells.  A) After preculture 

in a serum-free condition with incretins for 24 h, granulosa cells were stimulated 

with BMP-6 for 60 min.  Cells were lysed and subjected to 
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SDS-PAGE/immunoblotting analysis using anti-pSmad1/5/8 and anti-actin 

antibodies.  The signal intensities of pSmad1/5/8 were standardized by actin 

signal intensities in each sample and then expressed as fold changes.  B) Total 

cellular RNA was extracted from granulosa cells treated with BMP-6 either alone 

or in combination with incretins for 24 h, and Id-1 mRNA levels were determined 

by quantitative PCR.  C) Total cellular RNA was extracted from granulosa cells 

treated with BMP-6 for 24 h, and GIPR and GLP-1R mRNAs were determined by 

quantitative PCR.  The expression levels of target gene mRNA were 

standardized by RPL19 level and expressed as fold changes (B, C).  Results in 

all panels are shown as means ± SEM.  The results were analyzed by ANOVA 

(A, B) and by the unpaired t-test (C).  Values with different superscript letters 

are significantly different at P < 0.05.  *P < 0.05 vs. control group. 

 

Fig. 4. Effects of incretins on the expression of BMP receptors in rat 

granulosa cells.  Total cellular RNA was extracted from granulosa cells 

treated with GIP or GLP-1 for 48 h, and mRNA levels of BMP type-I (A) and 
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type-II (B) receptors and Smad6/7 (C) were determined by quantitative PCR.  

The expression levels of target gene mRNA were standardized by RPL19 level 

and expressed as fold changes.  Results in all panels are shown as means ± 

SEM.  The results were analyzed by the unpaired t-test.  *P < 0.05 vs. control 

group. 

 

Fig. 5. Possible mechanism by which incretins modulate ovarian 

steroidogenesis in rat granulosa cells.  Both GIP and GLP-1 suppress 

FSH-induced progesterone production but not estradiol production, and the 

effect of GIP for reducing FSH-induced progesterone level is more potent.  GIP 

activates BMP-6-induced Smad1/5/8 signaling by upregulating BMP type-I 

receptor expression and by downregulating inhibitory Smad6 expression in 

granulosa cells.  GIP increases FSHR expression, while BMP-6 suppresses 

GIPR expression.  GIP plays a regulatory role in progesterone synthesis by 

activating BMP-6 signaling that enables suppression of FSH-induced 

progesterone production by suppressing cAMP synthesis through inhibition of 
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adenylate cyclase (AC) in granulosa cells.  


