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Textures of F = 2 spinor Bose-Einstein condensates with spin-orbit coupling
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We study the textures of F = 2 spinor Bose-Einstein condensates (BECs) with spin-orbit coupling (SOC)
induced by a synthetic non-Abelian gauge field. On the basis of the analysis of the SOC energy and the
numerical calculation of the Gross-Pitaevskii equation, we demonstrate that the textures originate from the
helical modulation of the order parameter (OP) due to the SOC. In particular, the cyclic OP consists of two-
dimensional lattice textures, such as the hexagonal lattice and the 1

3 vortex lattice, commonly understandable as
the two-dimensional network of the helical modulations.
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Motivated by the recent successful generation of gauge
fields in neutral cold atoms [1,2], much attention has been
paid to Bose-Einstein condensates (BECs) in Abelian [1] and
non-Abelian [2–4] gauge fields. The synthetic field technique
has allowed access to the quantum Hall regime [5] and has
realized nontrivial textures in spinor BECs [6–9].

It is well known in fermion systems such as topological
insulators and superconductors that spin-orbit coupling (SOC)
plays a crucial role. This is particularly true for fermionic
superfluid 3He because SOC due originally to the 3He nuclear
dipole-dipole interaction is decisive in determining the order
parameter (OP) textures, although its force is so tiny that it
modifies the Cooper pair structure itself, as first pointed out by
Leggett [10]. Since in bosonic superfluids, namely the spinor
BEC [11,12], no corresponding “natural” SOC exists, one may
implement it by using a “synthetic” gauge potential to better
understand and control the OP space in spinor BEC systems. In
fact, we see that by introducing SOC, they exhibit a plethora of
types of the OP textures in a controlled way, such as fractional
vortices, two-dimensional periodic textures, and skyrmions.

The pseudospin states are the eigenenergy states of the
laser-atom interaction, sufficiently isolated from the other
states. The adiabatic motion of these states produces a vector
potential in real space [2–4,13]. Several schemes to generate
gauge fields are suggested. One of them is the � scheme [3,4],
which is useful to realize a symmetric spin-orbit coupling
term, such as the Rashba-type SOC. The different scheme is
implemented by the NIST group [2], where the SOC consists
of the equal contribution of the Rashba and Dresselhaus
types.

The gauge transformation cannot remove the spatially
uniform non-Abelian vector potential. Thus, the BECs have
a spatially modulated OP and textures due to finite momentum
[6–8]. Nontrivial textures due to the Rashba-type SOC in pseu-
dospin F =1/2 and F =1 BECs have been studied recently [7].
The two possible textures are the one-dimensional plane and
standing waves; in the former, the phase of the OP varies,
and in the latter, the amplitude oscillates along a favorable
direction. In F =1 BECs, the stable region of the plane and
standing waves is equivalent to that of the ferromagnetic and
polar phases, respectively [11]. However, we emphasize here
that an open question remains of how textural structures can
emerge in F = 2 spinor BECs, where the cyclic phase distinct
from the manifold of the ferromagnetic and polar phase can
be the magnetic ground state.

The aim in this Rapid Communication is to clarify the role
of the SOC in bosonic superfluids. We focus on F = 2 spinor
BECs, since they have magnetic ground states that include the
cyclic phase. On the basis of the analysis of the SOC energy, we
reveal that the plane (standing) wave realized in ferromagnetic
(polar) phase can be interpreted as the rotation of the OP
in pseudospin space, which simultaneously propagates along
one direction in real space. In addition, skyrmions of the
uniaxial polar OP emerge in the small size of the system. This
analysis enables us to understand the emergence of nontrivial
textural structures in the cyclic phase. We demonstrate that the
hexagonal lattice and 1

3 -vortex lattice states are energetically
competitive. We also calculate the phase diagram where the
spin-spin interaction favors the cyclic phase.

We consider a zero temperature F = 2 spinor BEC with a
SOC. The single-particle Hamiltonian including the Rashba-
like SOC term is described as

H0 =
∫

d2r ��†(r)

{
h0 − h̄2κ√

2m
M̂SO · ∇

}
��(r),

(1)

M̂SO =

⎡
⎢⎢⎢⎢⎢⎣

0 e− 0 0 0

e+ 0 βe− 0 0

0 βe+ 0 βe− 0

0 0 βe+ 0 e−
0 0 0 e+ 0

⎤
⎥⎥⎥⎥⎥⎦

,

where ��(r) = [ψ2, ψ1, ψ0, ψ−1, ψ−2]T is the OP vector
in an F = 2 BEC, h0 = −∇2/2m + Vpot(r) consists of the
kinetic energy and the trap potential term, and e± = x̂ ± i ŷ.
The planar hexapod setup introduced by Juzeliūnas et al. [4]
realizes Rashba-like SOC with β = 1. However, in an F = 2
spinor BEC system, the experimental setup for realizing the
precise Rashba-type SOC form with β = √

6/2 has not been
found thus far.

To reveal the role of the SOC term in Eq. (1), we first
simplify the OP as

��(r) = R̂(k · r,n̂R) ��I(r0), (2)

where R̂(θ,n̂) denotes the rotation matrix with the angle θ

about n̂ in the pseudospin space; n̂R and k̂ are the rotation axis
and the modulation vector in the x-y plane, respectively. ��I

is an arbitrary OP vector in the pseudospin space at a certain
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point r0. By substituting Eq. (2) in Eq. (1), one can obtain the
SOC energy density:

hSO(k,n̂R, ��I ) = − h̄2κ

16
√

2m
�� ′†

I M̂
′
SO · k �� ′

I,

M̂
′
SO = n̂R

⎡
⎢⎢⎢⎢⎢⎣

4A 0 0 0 0

0 4 0 0 0√
6ω2C 0 0 0

√
6ω−2C

0 0 0 4 0

0 0 0 0 4A

⎤
⎥⎥⎥⎥⎥⎦

(3)

+in̂R × ẑ

⎡
⎢⎢⎢⎢⎢⎣

0 −iω−1A 0 ω3C 0

2ωA 0 0 0 2iω−3C

0 ωB 0 ω−1B 0

2ω3C 0 0 0 2ω−1A

0 ω−3C 0 ω−1A 0

⎤
⎥⎥⎥⎥⎥⎦

,

where A = (1 + √
6β), B = √

3/2(3 + √
6β), C = (3 −√

6β), ω = exp[ik · r], �� ′
I = R̂(π/3,ê111) ��I, and ê111 ‖ x̂ +

ŷ + ẑ.
The diagonal elements of M̂

′
SO in Eq. (3) are found

to be energetically dominant, compared to the off-diagonal
elements. This is because the oscillation terms with ωn (n �= 0)
hardly contribute to energetics when they are integrated over r .
The dominant elements are proportional to k · nR. (i) The SOC
favors the situation where the rotation axis n̂R corresponds to
the modulation vector k̂. We call this spatial modulation the
helical modulation. In addition, we define the angular resolved
SOC energy density hAR(k, ��I) ≡ hSO(k,n̂R = k̂, ��I), which
denotes the SOC energy density for ��I with a given modulation
vector k. (ii) The helical modulation of the OP is independent
of the details of SOC term, such as the precise Rashba-type
SOC (β = √

6/2, that is, C = 0) and the Rashba-like SOC
(β = 1) implemented by the planar hexapod setup [4].

Here, we assume that the atoms in pseudospin states interact
through the most symmetric interaction:

Hint = 1

2

∫
d2r[c0n

2 + c1 S · S + c2|A00|2], (4)

where n = ��† ��, S = ��†σ ��, and A00 = (2ψ2ψ−2 −
2ψ1ψ−1 + ψ0ψ0)/

√
5 are the particle density, the spin density,

and the singlet pair amplitude, respectively. The purpose of
using this assumption is to concentrate on the symmetry
breaking due to the SOC term. In addition, it is known that
the minimization of Hint leads to four magnetic ground states:
Ferromagnetic (FM), biaxial polar (BP), uniaxial polar (UP),
and cyclic (CY) phase [12].

We numerically minimize the full Gross-Pitaevskii energy
functional H0 + Hint without any restriction by using the imag-
inary time evolution scheme in the presence of the cylindrical
symmetric trap. The numerical results presented in this Rapid
Communication are obtained by setting the parameter β = 1
and all of the results are not changed qualitatively by the
parameter β. The numerical calculation reveals that for the FM
parameter region, as shown in Fig. 1(a), the resulting OP can
be simplified to the one-dimensional helical modulation of the
uniform FM OP along the ŷ axis, that is, ��(r) = R̂(ky, ŷ) ��FM

with ��FM = R̂−1(π/3,ê111)[1,0,0,0,0]T. The wave number k

)b()a(

(c) (d)

FIG. 1. (Color online) OP profiles in pseudospin space and
energetically favored modulation vectors of ground states: (a) FM,
(b) BP, and (c) UP. The color on the surface corresponds to the phase
of OP. The UP-skyrmion texture is shown in (d).

depends on κ . In the same way, the favorable OP for the BP is
given by replacing ��FM in ��BP = R̂−1(π/3,ê111)[1,0,0,0,1]T,
which is shown in Fig. 1(b). Using these simplified OPs,
the SOC energy density reduces to |hAR(k ŷ, ��FM(BP))| =
h̄2κk(

√
6β + 1)/4

√
2, independent of the FM and BP. These

one-dimensional helical modulations of the FM and BP
are consistent with those realized in F = 1/2 and F = 1
systems [7].

In contrast, the favorable OP in the UP state reduces to
��(r)= R̂(k · r,k̂) ��UP with ��UP = [0,0,1,0,0]T, where the
modulation vector k can be arbitrary in the x-y plane as shown
in Fig. 1(c). Because k is not unique, the most favorable mod-
ulation turns out to be k ‖ r , resulting in the skyrmion texture
in Fig. 1(d). The SOC energy density of the UP skyrmion is
found to be |hAR(kr, ��UP)| = 3h̄2κk(

√
6β + 1)/16

√
2, which

is less than that of the FM and BP.
We note that the UP and BP are degenerate in the absence

of SOC κ = 0. In the presence of the Rashba-like SOC,
the energetics of the UP-skyrmion texture and BP standing
wave is determined by the ratio of two length scales 1/κ and the
Thomas-Fermi radius RTF, which characterize the modulation
in real space and the size of the condensate, respectively. The
stable region of the UP skyrmion is 1/κ � RTF, while the BP
standing wave becomes stable for 1/κ � RTF.

Next, we move to the textures in the CY parameter region
with c1 � 0 and c2 � 0. The OP of the CY is characterized
by a nodal structure, as shown in inner bottom of Fig. 2,
which has eight point nodes at ±x̂ ± ŷ ± ẑ, ±x̂ ∓ ŷ ± ẑ,
±x̂ ± ŷ ∓ ẑ, and ±x̂ ∓ ŷ ∓ ẑ and six antinodes. Their point
nodes are connected with saddle lines. The inherent difference
from those shown in Fig. 1 arises from the three-dimensional
form of the nodal points. This three dimensionality gives rise
to the textures with the two-dimensional modulation vectors
as mentioned below.

Before going to the numerical results, we discuss the role
of the SOC term in Eq. (1) for the cyclic phase. It is conve-
nient to introduce two OP vectors ��I = R̂(arccos[1/

√
3],x̂ +

ŷ) ��CY ≡ ��P and ��I = R̂(π/2,x̂ + ŷ) ��CY ≡ ��S. Here,
��CY = [i/2,0,1/

√
2,0,i/2] denotes the simple form of the

cyclic OP shown in inner bottom in Fig. 2 and ��P ( ��S) de-
scribes the cyclic OP where one of point nodes (saddle points)
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FIG. 2. (Color online) The main panel describes the SOC energy
EAR(ϑ,ϕ) ≡ ∫

dφkhAR(k, ��I). The bottom inner figures show the
cyclic OP ��CY and the angles ϑ and ϕ, which denote the ẑ axis
of ��I. The two upper panels are the angular resolved SOC energy
|hAR(k̂, ��I)| for the cases of ��I = ��S and ��I = ��P. In these panels,
the radii of the outer and inner lines indicate |hAR(k̂, ��I)| and the
deviation of |hAR(k̂, ��I)| from the value at the antinode, in the kx-ky

plane.

points to the ẑ axis. The two upper panels in Fig. 2 show the
angular resolved SOC energy |hAR(k, ��S)| and |hAR(k, ��P)| for
a given |k|. In the case of ��S, the OP has four point nodes and
two antinodes in the x-y plane. It is seen in the upper panels of
Fig. 2 that for the case of ��S, |hAR(k, ��S)| becomes maximum
(minimum) when k̂ points in the nodal (antinodal) direction.
In contrast, the angularly resolved SOC energy density for
hAR(k, ��P) becomes cylindrically symmetric in the x-y plane.
The main panel of Fig. 2 shows EAR(ϑ,ϕ) ≡ ∫

dφkhAR(k, ��I)
with ��I = R̂(ϑ,êϕ) ��CY and êϕ = − sin ϕ x̂ + cos ϕ ŷ. Here, it
is found that the most stable situation in the cyclic region is
��I = ��P, where one of the point nodes points to the ẑ direction.
However, note that the SOC in Eq. (1) also gives rise to the
helical modulation of the OP, which rotates the direction of
the point node from the ẑ axis.

Let us argue the stable textures in real space for c1/c0 � 0
and c2/c0 � 0. Based on the numerical calculation of the full
GP equation including the SOC term, we find three kinds of
textures: The uniform cyclic texture, the CY-UP hexagonal
lattice texture shown in Fig. 3, and the 1

3 -vortex lattice texture
shown in Fig. 4.

The emergence of the CY-UP lattice texture is straightfor-
wardly comprehensible, on the basis of the argument of the
SOC energy in the cyclic OP. As shown in Figs. 3(a) and 3(b),
this texture consists of the hexagonal unit cell in which the
polar state is localized. Here, we look carefully into the texture
inside the hexagonal unit cell. As seen in Fig. 3(c), the unit cell
consists of the uniaxial polar OP at U0 enclosed by cyclic OPs
at P1 to P6, which are obtained from the numerical calculation
of the GP equation. At all the points P1–P6, one of the point
nodes always points to the ẑ axis, which makes the SOC energy
lower, as discussed in Fig. 2. In addition, at P1 the other three
point nodes are located at (θ,φ)= (θ0, − π/3), (θ0,π/3), and
(θ0,π ) with θ0 = arccos(2

√
2/3). By propagating the helical

modulation around one of the saddle points, the OP ��P at P1

can be continuously transformed to that at P2, which orients
the point node (θ0, − π/3) at P1 to the ẑ direction at P2.

(c)(a)

(b)
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U0
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FIG. 3. (Color online) Profiles of the CY-UP lattice texture:
(a) pseudospin density S(r), (b) singlet amplitude A00(r), and (c)
the order parameter. The parameters are set to be κRTF = 10.1 and
c1/c0 = c2/c0 = 0.2.

The point node (θ0,π/3) and (θ0,π ) at P1 is oriented to the
ẑ direction at P6 and P4. In the same way, the OP at P2 can
propagate with the helical modulation along the circumference
P2 →P3 →· · · →P1. Note that the cyclic phase at P1 can have
six modulation vectors which have isotropic energy gain in the
SOC term, as shown in Fig. 2. The central region of the unit
cell in Fig. 3(c) is occupied by the UP OP to avoid frustration
of the cyclic OP at U0. Hence, in this sense this network of
the helical modulation can be regarded as the close-packed
hexagonal lattice of the cyclic OP whose point node points to
the ẑ axis.

The other possible texture in the cyclic region is displayed
in Fig. 4, which can be the ferromagnetic core at F0 enclosed
by cyclic OPs. At A1 in Fig. 4(c), the antinode points to the
ẑ axis, which cannot be the ground state of the SOC energy in
Eq. (1). The OP at A1 has fourfold symmetry in the x-y plane.
The OP at A1 can be continuously transformed to that at A2

by the helical modulation along −x̂− ŷ with the rotation angle
π/2. After the helical modulation along the path A1 →A2 →
· · · A1 in the same way, the OP results in the shape where
the antinode points to the ẑ axis. However, the resulting OP
differs from the original one and has the phase shift +2π/3.
In order to recover the single-value nature at A1, the phase
shift −2π/3 is compensated by the U (1) phase of the OP.

(c)(a)

(b)
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F0
A2

A3

A4

phase

6

6

6
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1

0

0

0.2

FIG. 4. (Color online) Profiles of the 1
3 -vortex lattice texture:

(a) pseudospin density S(r), (b) singlet amplitude A00(r), and (c) the
order parameter. The parameters are set to be κRTF = 10.1, c1/c0 =
0.2, and c2/c0 = 20.
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FIG. 5. (Color online) Phase diagram of textures spanned by
coupling constant of SOC κ and that of the spin-spin interaction c2/c0.
We fix the parameter c1/c0 = 0.2. The stable phase for κRTF � 1
continuously changes from the UP skyrmion to uniform CY texture.
In the κRTF � 1 region, three textures appear: The BP standing wave
for the small c2/c0, the CY-UP lattice (hexagon), and 1

3 -vortex lattice
(square).

Hence, this texture with fourfold symmetry can be regarded as
the square lattice of the 1

3 vortices, in the sense that the U (1)
phase of the cyclic OP continuously changes by 2π/3 along
the path A1 → A2 → · · · → A1. Here, the central region at F0

is occupied by the ferromagnetic core because of frustration
of the cyclic OP. It is expected that the 1

3 vortex also appears
in the cyclic phase of F = 2 spinor BEC under rotation [14],
which behaves as the non-Abelian vortices.

In Fig. 5, we summarize the phase diagram spanned by
κRTF and c2/c0. For κRTF � 1, the stable texture continuously
changes from the UP skyrmion to the uniform CY. For κRTF �
1, the standing wave of the BP appears in the small c2/c0

region. As c2/c0 increases, the hexagonal lattice of UP core
and the 1

3 -vortex lattice become energetically competitive. The
former texture is the close-packed lattice of the CY OP with
the point node pointing to the ẑ axis. On the other hand, the
FM core in the 1

3 -vortex lattice relatively favors the Hint, which
becomes stable in the large c2/c0 region.

In summary, we have studied the stable textures of F =
2 spinor BEC with a spin-orbit interaction. Based on the
detailed analysis of the spin-orbit interaction, we find that the
ferromagnetic and biaxial polar OPs have a unique direction
for the helical modulation, while that of the uniaxial polar OP
is not unique. The nonuniqueness leads to the emergence of
the skyrmion textures, which become stable in the parameter
region where the polar phase is stable. Moreover, we have
computed the phase diagram where the cyclic phase is the
magnetic ground state. The phase diagram is covered by
two-dimensional lattices, such as the CY-UP lattice and
1
3 -vortex lattice. These lattice structures are understandable
as the two-dimensional network of the helical modulation of
the cyclic order parameters. We emphasize that those novel
textures are not seen in rotating F = 2 spinor BEC [15] and
appear inherently due to SOC.

We should mention that the Hamiltonian for spinor BECs
under synthetic gauge fields does not necessarily have the
pseudospin rotation symmetry [8], which can be altered by
the laser configuration and so on. Hence, the general form of
the Hint is open for future study. Moreover, the experimental
observation of the textures remains a challenging problem
different from those with hyperfine spins [16].

Note added: Recently, we became aware of a preprint by
Xu et al. [17], which has some overlap with our results.
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