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1.1 Semiconductor Materials Acting as Photocatalysts 

 

The Sun, which locates at the center of solar system, supports nearly all the life on earth 

by irradiating solar light. For example, through the well-known photosynthesis process, 

plants and other organisms can convert the solar light energy to chemical energy (such as 

carbohydrate molecules).1 In other words, all of the organic compounds and most of the 

energy, which are necessary for life on earth, are originated from the photosynthesis. Nearly 

all the forms of energy (coal, oil, natural gas, etc.) are from solar energy. These abundant and 

economical energies greatly promoted the civilization of human. However, after the industr ia l 

revolution, energy consumption was rapidly increased with the improvement of living 

standards and gave rise to the energy crisis. Meantime, environmental pollution and global 

warming have been also the main problems in need of extrications for the sustainab le 

development of our society. 

 

Displacement of the traditional energy, such as fossil fuels, by the renewable and clean 

solar energy is necessary to solve the global problems. One important and potential 

technology relating to this concept is conversions of abundant natural resources into the fuels 

using solar energy through photocatalysis. Especially hydrogen production by the use of 

photocatalytic water splitting relieves the problem of the energy crisis and global warming. 2  

In this context, various photocatalytic systems exhibiting moderate solar energy conversion 

efficiencies have been developed so far. Especially, inorganic semiconductor materials are 

well explored because of their photocatalytic activities under solar light.3 The photocatalyt ic 
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reaction takes place on the surface of the photocatalysts, where the redox reaction occurs to 

produce, for instance, hydrogen. Owing to the excitation of semiconducting photocatalysts 

with light-wavelength equal to or greater than their band gap energies, mobile holes and 

electrons can be generated in valence and conduction bands, respectively. Figure 1-1 

illustrates the band gap energies of several semiconductors in aqueous electrolyte.4  

 

 

Figure 1-1. Band energy levels and band gap energies of semiconductors used as 

photocatalysts corresponding energy scales vs. the vacuum level (eV) and vs. the normal 

hydrogen electrode (NHE) (V). 

 

Then electrons and holes can facilitate the redox reactions in the photocatalytic process 

(Figure 1-2). It is notable that the absorption of the photocatalysts corresponds to their band 

gap energies.5 

 

  



4 
 

 

 

Figure 1-2. Energy band diagram of a spherical titania particle. 

 

1.2 Issue on Solar-Light Driven Photocatalyst 

     From the viewpoint of an effective use of the sun-light, the photocatalytic activity in long 

wavelength region (> 600 nm) is a problem of the ordinal inorganic photocatalysts. Because 

the energetic ratio occupied by the wavelength shorter than 600 nm is only about 30% among 

the solar spectrum. In this context, Domen reported phthalocyanine dye sensitization of mpg-

C3N4 photocatalyst for H2 evolution, in an attempt to absorb 660-nm-light (Figure 1-3).6 
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Figure 1-3. Hydrogen generating photocatalyst having activity in long wavelength region. 

 

1.3 Advantage of Single-walled Carbon Nanotubes (SWCNTs) for a Solar-Light 

Absorber 

A single-wall carbon nanotube (SWCNT) is a hollow cylinder formed by rolling up a 

graphene sheet along a chiral vector (Figure 1-4).7 The circumference of the SWCNT is 

determined by a chiral vector, Ch = n a1 + m a2, where (n, m) are integers known as the chiral 

indices and a1 and a2 are the unit vectors of the graphene lattice. The structures of SWCNTs 
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strongly affect their electrical and optical properties. Depending on these chiral angles and  

diameters, SWCNTs show semiconducting (s-SWCNT) or metallic (m-SWCNT) in nature. 

In particular, their band gaps can vary from zero to about 2 eV and electrical conductivity 

can be in a range of a metal or semiconductor. For a given (n, m) nanotube, when n = m, the 

nanotube is metallic; when n-m is a multiple of 3, the SWCNTs are semiconducting with 

geometry-dependent band gaps. 

 

Figure 1-4. Schematic of a portion of a graphene sheet rolled up to form a SWCNTs. 

 

In general, as-synthesized SWCNTs are composed of s-SWCNTs and m-SWCNTs in an 

approximately 2:1 ratio.8,9,10 Arnold reported in m-SWCNTs, there is a finite (one-

dimensional density of states) (DOS) in between the lowest conduction and valence VHS 

(Van Hove Singularities) (VHS), and the lowest-energy ground-state electrons reside at the 

Fermi energy in the middle of the gap. In contrast, s-SWCNTs have no DOS in between the 

lowest-energy conduction and valence VHS, and the lowest-energy electrons (in undopeds-

SWCNTs) reside at the top of the valence VHS (Figure 1-5).11 

 

 

Roll up 

SWCNT Graphene sheet 



7 
 

 

Figure 1-5. a) Single-particle DOS for m-SWCNTs (left) and s-SWCNTs (right). b) Various 

kind of s-SWCNTs.12 

 

The bandgap and optical properties of s-SWCNTs are widely tunable with the chirality of 

s-SWCNT, enabling either the selective or broadband absorption of light spanning from the 

ultraviolet to the near-infrared.13 This strong point makes s-SWCNTs quite promising for 

solar energy harvesting. For example, the solar energy conversion efficiency of the solar cell 

based on (6,5) SWCNT is predicted to be ca. 7% (Figure 1-6).9 

 

 

b) 

a) 



8 
 

 

Figure 1-6. Absorption for the solar cell consisting of (6,5)SWCNT overlaid with the solar 

spectrum. 

 

1.4 Issues on Making s-SWCNT-Photocatalysts 

a) Poor Solubility of SWCNTs 

s-SWCNTs are insoluble in aqueous or organic solvents, owing to their extremely 

strong van der Waals interaction (Figure 1-7).14 Since the lateral surface could act as the 

reaction sites of photocatalytic reactions, isolation of the individual s-SWCNTs via 

through a debundling process in the reaction media is required. Furthermore, the bundles 

composed of the mixture of various chiralities are not appropriate to use for 

photovoltaics and photocatalysts because of an energy migration between s-SWCNTs 

and trapping of mobile carriers. However, there is no good example of a dispersant of s-

SWCNT to produce SWCNT-photocatalyst, although several reports described the solar 

cell fabrication through a physical modification of s-SWCNTs using π-π interaction.15 
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Figure 1-7. Van Der Wall interaction between SWCNTs leads to the formation of a 

bundle. 

 

b)   Large Binding Energy of Electron-hole Pairs (exciton).  

Typically, bundled SWCNTs do not exhibit fluorescence because of the quenching 

of the excited state due to m-SWCNTs or thermal quenching. Then isolation of s-

SWCNTs is necessary to use the photoexcited state of s-SWCNTs. However, even the 

photoexcitation of isolated s-SWCNTs does not generate a hole (h+) and an electron (e-) 

because of large binding energy of an exciton (an electron-hole pair). To observe the 

dissociation of the exciton, Fleming and colleagues used a pulse pumping laser to 

generate higher exciton state via exciton-exciton annihilations (Figure 1-8).16 An exciton 

binding energy of 0.41 eV is determined experimentally for a selected nanotube type, 

the (8,3) tube, from the estimation of the energy difference between an electron-hole 

continuum and its precursor exciton. 
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Figure 1-8. Schematic description of the electronic structure of the (8,3)tube and the 

exciton relaxation pathways. 

Dukovic and colleagues also determined the exciton binding energies by the use of 

two-photon excitation spectroscopy.17 Figure 1-9 represents schematic representation of 

electronic transitions associated with the band gap in semiconducting SWNTs. The states 

below the band gap are bound excitons. One-photon absorption is allowed for the lowest-

lying 1u state, while two-photon absorption is allowed for the 2g state. Absorption of two 

photons by the 2g and continuum states is followed by emission from the 1u state. Notably, 

exciton binding energies are large and vary inversely with nanotube diameter. The exciton 

binding energies were estimated to be 0.42 eV for (8,3)tube and 0.27 eV for (11,7)tube, 

respectively, which consisted with the determination reported by Fleming.16 
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Figure 1-9. Schematic representation of electronic transitions associated with the band 

gap in semiconducting SWCNTs. 

 

Wang et. al. also reported the binding energy of exciton, ca. 400 meV for s-SWCNT 

with 0.8-nanometer diameters, estimated by the two-photon excitation spectroscopy 

(Figure 1-10).18 The measured fluorescence intensity is shown in a false-color 

representation as a function of the (two-photon) excitation energy and the (one-photon) 

fluorescence emission energy. Fluorescence peaks of (7,5), (6,5), (8,3), and (9,1)tubes 

(aligned with increasing emission energy) can be identified by black circles. The two-

photon excitation peaks are shifted substantially above the energy of the corresponding 

emission feature, as is apparent by comparison with the solid line describing equal 

excitation and emission energies. The large shift arises from the excitonic nature of 

SWCNTs optical transitions. 
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Figure 1-10. Contour plot of two-photon excitation spectra of SWCNTs.  

 

Figure 1-11(a) shows a schematic picture of one-photon absorption and emission in 

carbon nanotubes. E11 indicates the single-particle transition between the lowest sub bands. 

Emission occurs from the lowest one-photon active 1u state.  Figure 1-11(b) shows two-

photon absorption results in the excitation of exciton states. The luminescence of s-

SWCNT for excitation below the band gap between 1210 and 1970 nm is shown in Figure 

1-11(c). Combining this experiment and theory, Maultzsch and co-workers determined 

binding energies of 0.3–0.4 eV for nanotubes with diameters between 6.8 and 9.0 Å.19 
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Figure 1-11. (a) Schematic picture of one-photon absorption and emission in carbon 

nanotubes. (b) Two-photon absorption and emission in carbon nanotubes. (c) Two-photon 

luminescence spectra of carbon nanotubes. 

 

1.5 s-SWCNTs/C60 Heterojunction for Solar Cells 

Recently, construction of heterojunction between s-SWCNT and electron acceptors 

have been attracted a great attention in order to generate an electron (e-) and a hole (h+) 

from the exciton in s-SWCNTs. In particular, since C60 can provide an appropriate band 

offset (~ 130 meV), there is an increasing focus on s-SWCNT/C60 heterojunction. 

Although Takaguchi and colleagues reported the first example of a water-dispersible 
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SWCNT nanocomposite having an ideal coaxial SWCNT/C60 heterojunction,20 its 

application for photovoltaic devises was behind in other simple mixture of SWCNTs and 

C60. Imahori et. al. reported dye-sensitized solar cells by the use of SWCNT/C60 and 

SWCNT/C70 composites as dye moieties.14,21 Arnold et. al. reported a photovoltaic film 

device made by deposition of the C60 film on the s-SWCNT film, where the dissociat ion 

of exciton into h+ and e- at the interface between two films (Figure 1-12).22   

 

Figure 1-12. Exciton dissociation at SWCNT/C60 heterojunction. 

 

2.  Fullerodendron 

Fullerene-functionalized dendrimers, i.e., fullerodendrimer, are attractive candidates for a 

variety of interesting features in supramolecular chemistry and materials science.24,25,26 

Takaguchi reported the synthesis of water-soluble fullerodendron by a Diels-Alder reaction 

of C60 with poly(amidoamine) (PAMAM) dendron bearing an anthracene moiety at the focal 

point.27,28 There are two advantages of the fullerodendron for construction of nanocarbon 

nanohybrids (Figure 1-13): 
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Figure 1-13. Advantages of fullerodendron for construction of nanocarbon hybrids. 

 

2.1 “C60 moiety can associate with CNTs through π-π interaction.”   

Imahori and coworkers reported the formation of SWCNT/C60 and SWCNT/C70 (Figure 

1-14a).14,21 A C60 unit of fullerodendron also can associate with SWCNTs. Takaguchi have 

reported that fullerodendron was very effective at dispersing SWCNTs in water via the 

formation of supramolecular nanocomposites, although SWCNT/C60 reported by Imahori’s 

group is not dispersible in any solvents (Figure 1-14b).29 

 

 

Figure 1-14. a) SWCNTs/C60 composites and b) SWCNTs/fullerodendron. 
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2.2 “PAMAM dendron unit of fullerodendron shows the affinity to inorganic materials.” 

Three examples of the fabrication of the hybrids consisting of fullerodendron and 

inorganic materials are described as follows; 

(a) Scaffold for the crystallization of inorganic materials in solution system 

It is well-known that PAMAM dendrimer is useful for the nucleation site of 

crystalization.20,30-33 Takaguchi et al. reported the fabrication of C60/CaCO3 

composites,34 and SWCNT/CaCO3 hybrids35 by the use of fullerodendron through 

the biomimetic crystallization process. Furthermore, MWCNT/CaCO3 and 

MWCNT/CaCl2 nanohybrids were fabricated by the use of PAMAM dendrimer 

having a 1,10-bis(decyloxy)decane core.36 The dendritic dispersants act as an 

effective ‘glue’ between the CNTs and inorganic crystals and enable the facile 

formation of CNT/inorganic hybrids (Figure 1-15). 
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Figure 1-15. SEM images of nanocarbon/CaCO3 hybrids obtained by the biomimetic 

crystallization process using dendritic ‘glue’ molecules. 

 

(b) Coordination sites for metal complex and stabilizer of metal nanoparticle  

PAMAM dendrimer has many metal-ion-coordination sites, such as tertiary amine 

groups and CO2–. Therefore, PAMAM dendrimer itself act as ligand of metal ion.37 In 

addition, subsequent reduction of the complex with NaBH4 affords encapsulated zero-

valent metal nanoparticles (Figure 1-16). Takaguchi et. al. reported the direct 

incorporation of Pt(II) into the shell of SWCNT/fullerodendron supramolecular 

nanocomposites (Figure 1-17).38,39 

  

Fullerodendron/CaCO3 SWCNT/CaCO3 

MWCNT/CaCl2 MWCNT/CaCO3 
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Figure 1-16. PAMAM dendrimer metal complex and PAMAM dendrimer encapsulated 

metal nanoparticle. 

 

Figure 1-17. Schematic illustration of SWCNT/fullerodendron/Pt(II) coaxial nano-hybrids.  

 

(c)  Catalyst of sol-gel condensation 

Takaguchi et. al. reported the SWCNT/fullerodendron/SiO2 coaxial nanohybrid, which 

was fabricated by sol-gel polycondensation of tetraethoxysilane (TEOS) on the surface of 

SWCNT/fullerodendron supramolecular nanocomposite (Figure 1-18).40 

  

SWCNT 
fullerodendron Pt 
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Figure 1-18. Schematic illustration of SWCNT/fullerodendron/SiO2 coaxial nano-hybrids. 

 

3.  Photosensitized Hydrogen Evolution from Water Using SWCNTs/C60 Coaxial 

Composites 

Resent theoretical and experimental studies have indicated that coaxial nanowire  

structures could potentially improve the carrier collection and overall efficiency relative to 

bulk semiconductors of the same materials. Takaguchi and coworkers have reported effic ient 

photoinduced electron transfer processes of single-walled carbon nanotube 

(SWCNT)/anthryl dendron20,40 and SWCNT/fullerodendron20,41 supramolecular 

nanocomposites, of which coaxial nanowire structures provide a photofunctional interface 

between the SWCNT core and the dendron shell. Interestingly, the charge-separated state of 

SWCNT/fullerodendron is capable of migrating electron to methyl viologen (MV2+) yielding 

MV•+. Subsequently, the electron pool of MV•+ provides electrons to Pt nanoparticles (PVP-

Pt) to generate H2 (Figure 1-19).40  
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Figure 1-19. Energy-level diagram of photocatalytic H2 evolution system using 

SWCNT/fullerodendron as a photosensitizer. 

Takaguchi et. al. reported the introduction of Pt(II) complexes into the shell moieties of 

the coaxial photosensitizer, SWCNT/fullerodendron, since efficient charge migration and 

inhibition of the charge recombination might be expected.38 Moreover, direct incorporation 

of Pt(II) co-catalyst into the shell of 6,5-enriched SWCNT/fullerodendron supramolecular 

composites.39 Upon chirality-selective photo-excitation using monochromatic light (λ = 680 

nm), which is the E22 absorption of (8,3) SWCNTs, we observed the first example for the 

evolution of H2 (Φ = 0.015) triggered by the photoexcitation of s-SWCNTs. Then we 

understand that the fullerodendron plays the important role of a n-type semiconducting 

material of p/n heterojunction, SWCNT/C60 coaxial heterojunction, showing photocatalyt ic  
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activity to produce H2 from water (Figure 1-20). In order to develop SWCNT/fullerodendron 

to a practical photocatalyst, the improvement of the efficiency of the SWCNT-photocatalyst 

is required. 

 

Figure 1-20. Mechanism of hydrogen evolution using the SWCNT-photocatalyst. 

 

4.  Why We Introduce TiOx Layer into the Shell of the SWCNT-photocatalyst 

 

4.1 Transition Metal Oxide (TMO)  

As examples of dye-sensitized solar cells or perovskite solar cells, electron extraction 

layer made of transition metal oxides (TMOs) plays a crucial role for achieving high solar 

energy conversion efficiency. Meyer et. al. described that TMOs have been used to realize 

charge-generation junctions for stacked organic light emitting diodes (OLED), sputtering 

buffer layers for semi-transparent devices, such as organic photovoltaic (OPV) cells.42 Fermi 
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level and conduction band level depend on metals, so it is possible to use the most appropriate 

metals according to the electron transporting materials (Figure 1-21).42 

 
 

Figure 1-21. CB minimum and VB maximum with respect to the vacuum level (EVL) for 

MoO3, V2O5 and WO3. 

Titanium oxide (TiOx), which is produced by the sol-gel condensation of Ti(OPr)4, is 

semiconductor materials having a unique set of features which include chemical stability, 

non-toxicity, low cost, and transparency to visible light. Since TiOx exhibit conduction band 

levels that match the LUMOs of the C60-derivatives used in OPVs, TiOx is used as a 

promising prospect for electron-transport material.43,44 There are two important roles of 

amorphous titanium oxide (TiOx). 

 

4.2 Electron-extraction Layer Attained with a Combination of C60 Layer 

Waldauf et. al. demonstrated OPVs containing interfacial TiOx layer between active layer 

of P3HT:PCBM and ITO exhibit improved fill factors(FF) (Figure 1-22).43 
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Figure 1-22. The normal OPV is based on ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al (left part 

of figure) and the inverted OPV is based on ITO/TiOx/P3HT:PCBM/PEDOT:PSS/Au (right 

part of figure). 

 

Kubawara et. al. reported very convenient and useful TiOx thin film, which was fabricated 

by chemical bath deposition (CBD) method, as the electron extraction- layer of the inverted-

type organic solar cell. The ITO/CBD-TiOx/bis-PCBM:P3HT/PEDOT:PSS/Au device shows 

an improved short-circuit photocurrent (Jsc), open-circuit voltage (Voc), FF, and power-

conversion efficiency (η) (Figure 1-23).44 

 

Figure 1-23. Schematic structures of solar cells having CBD-TiOx layer. 
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4.3 Hole Blocking Layer for Organic Solar Cells 

Hayakawa et. al. reported the TiOx layer works as an effective barrier to physical damage 

and chemical degradation, resulting in high durability under aerobic conditions, and also 

serves as a hole blocking layer, resulting in improved parallel resistance and rectificat ion 

(Figure 1-24).45 

 

Figure 1-24. a) Series resistance (Rs) and parallel resistance (Rp) of the photovoltaic device 

with varying thickness of the TiOx layer b) and their rectification ratio. 

 

In summary, titanium oxide (TiOx) can enhance solar cells efficiency because of its unique 

structure and characteristics. This is mainly related to its high chemical stability, intrins ic 

transparency to visible light (band gap Eg = 3.2–3.4 eV)46 and to the favorable energy level 

alignment at the solar cell interfaces, which enables an efficient and selective charge carrier 

uptake and transport (n-type charge transport as a photoanode and/or as a hole-blocking, 

electron-extraction layer) from the photoactive material to the front transparent electrode of 

the solar cell. 

 

 

a) b) 
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5.  Purpose of This Work 

As described above, the recent successful realization of SWCNTs-based solar cells and 

positive effect of TiOx on OPVs containing C60 as a n-type semiconducting material prompt 

the author to explore the enhancement the photocatalytic activity of SWCNT/fullerodendron 

photocatalytic system. A new coaxial photosensitizer with a TiOx shell as an electron-

extraction layer covering a SWCNTs/C60 interface was fabricated to investigate the 

photocatalytic hydrogen evolution from water. Utilization an electron-extracting TiOx shell 

for photocatalytic hydrogen evolution is of an interest because of its capability of acceleration 

of the electron transfer under concomitant deceleration of the undesirable back electron-

transfer (Figure 1-25).  

 

Figure 1-25. An energy-level diagram of the SWCNT/fullerodendron/TiOx. 

 

Here we describe the fabrication of SWCNT/fullerodendron/TiOx coaxial nano-hybrid s 

that can be used for the effective photocatalytic evolution of hydrogen (Figure 1-26). 
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Figure 1-26. Hydrogen generation by SWCNT/fullerodednron/TiOx and co-catalyst system 

using xenon lamp (λ = 450 nm). 
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Chapter 2 

 

 

 

 

 

 

 

 

 

Effect of TiOx Shell on Photocatalytic Activity of the SWCNT-

Photocatalyst 
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2.1 Introduction 

 

The interfaces between metal oxides and organic compounds play an important role in the 

field of organic electronics, which include organic light-emitting devices (OLEDs),1,2 organic 

photovoltaic cells (OPVs),1,3 dye-sensitized solar cells (DSSCs),1c and transistors.4 To 

improve the device performance, these interfaces can often be modified by insertion of a 

functional interfacial layer. For example, transparent titanium oxide (TiOx) exhibit electronic 

levels that match the LUMOs of the C60-derivatives used in OPVs well, which renders TiOx  

a promising prospect for electron-transport materials.5,6 Waldauf and co-workers have 

prepared OPVs with an ITO/TiOx/RR-P3HT:PCBM/PEDOT:PSS/Au structure using coating 

techniques, and demonstrated that these OPVs exhibit improved fill factors (FF).5 Kuwabata 

et al. have reported efficient inverted BHJ solar cells that contain TiOx as the electron-

extraction layer,6 which resulted in an improved short-circuit photocurrent (Jsc), open-circuit 

voltage (Voc), FF, and power-conversion efficiency (η). 

 

Meanwhile, coaxial nanowires with a donor-acceptor heterojunction have shown great 

potential for applications in innovative photofunctional materials. A SWCNTs heterojunction 

can be constructed from two segments of SWCNTs through topological defects,7 such as a 

pentagon-heptagon (5–7) pair defect,8 which could influence the optical, electronic, and 

mechanical properties of the constituent SWCNTs. Such a heterojunction provides not only 

an efficient way to design circuits with different electrical properties but also the potential to 

serve as a functional component in nanodevices,9 rectifying diodes,10 and switches. 
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SWCNTs are considered ideal supports for photocatalysts because SWCNTs have a large 

electron storage capability of one electron per 32 carbon atoms that reduces electron–ho le 

recombination have a high specific surface area (SSA) of 1315 m2 g-1 for photocatalyst 

loading can act as a photosensitizer that enlarges titanium oxide (TiOx) absorption bandwidth 

and are transparent layer and highly electrically conducting for efficient electron transport.11-

14 From this viewpoint the author exploring a new coaxial photosensitizer with a TiOx shell 

as an electron-extraction layer that covers a photo-functional SWCNTs/C60 interface. Here 

the author describe the fabrication of SWCNT/fullerodendron/TiOx coaxial nano-hybrids that 

can be used for the effective photocatalytical evolution of hydrogen (Figure 2-1). 

 

Figure 2-1. Fabrication of SWCNT/fullerodendron/TiOx. 
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2.2 Experimental Section 

 

2.2.1 General 

 

TEM measurements for the composites were conducted using a Hitachi S-5200. The 

specimens for the measurements were prepared by applying a few drops of the sample  

solution onto a holey carbon-coated copper grid (Ouken-Shoji 200-Abmesh), and then 

evaporating the solvent. The absorption data were recorded on a Shimadzu UV-3150 

spectrophotometer using a standard cell with a path length of 10 mm. Atomic force  

microscopy (AFM) observation was carried out using a Seiko SPA 400-DFM and the samples 

for the observations were prepared by placing a drop of SWCNT/fullerodendron/TiO x  

coaxial nanohybrids aqueous solution on freshly cleaved mica, then allowing them to dry 

with a dryer FT-IR spectra were recorded using Shimadzu IR Affinity-1. Three-dimensiona l 

fluorescence spectra data were obtained using a spectrofluorometer (Shimadzu, NIR-PL 

system). SWCNTs (HiPco) were purchased from Unidym Co. Fullerodendron and 

SWCNT/fullerodendron supramolecular nanocomposites were prepared according to the 

reported procedure.15 All other reagents were purchased from Kanto Kagaku Co., Ltd, 

Aldrich Chemical Co., and Tokyo Kasei Co., Ltd., and were used as received. 
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2.2.2 Preparation of SWCNT/fullerodendron supramolecular nanocomposites  

 

SWCNTs (HiPco: 1.0 mg) were placed in a water solution (10 mL) of the fullerodend ron 

(25.5 mg, 0.01 mmol) and then sonicated with a bath type ultrasonifier (ULTRASONIC  

CLEANER vs-D100, 110 W, 24 kHz) at 17–25 ˚C for 4 h. After the suspension was 

centrifuged at 3000 g for 30 min, a black-colored supernatant dispersion, which included 

SWCNT/fullerodendron supramolecular nanocomposites and superfluous fullerodendron,  

was collected. The SWCNT/fullerodendron nanocomposites were purified by dialysis for 3 

days using dialysis tubing (SPECTRUM RC MEMBRANES Pro 4) to remove superfluous 

fullerodendron. The dialysis process was continued until the dialysate showed no absorption 

change at 258 nm in UV-vis spectra. This dialysate solution was used for further experiment 

as a stock solution of SWCNT/fullerodendron supramolecular nanocomposites.15 

 

2.2.3 Fabrication of SWCNT/fullerodendron/TiOx coaxial nanohybrids 

 

An aqueous solution of SWCNT/fullerodendron nanocomposites (1 mL, 0.1 mg 

SWCNTs) was added by HCl (1.0 N, 2.8 µL) adjust pH  3 then strring for 15 min to 

homogeneous solution. Titanium tetra isopropoxide (TTIP) (5 mg, 1.8 × 10-2 mmol) was 

dissolved with ethanol (4 mL) then, centrifugation at 4000 rpm for 10 minutes. The 

supernatant was added to the SWCNT/fullerodendron composite at 0 ºC and gently stirred 

for 24, 48 and 72 h.  
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2.2.4 Synthesis of Colloidal PVP-Pt 

 

An aqueous solution (10 mL) of H2PtCl6·6H2O (0.034 g, 66 µmol) was dropped into 

poly(vinylpyrrolidone) (PVP, 0.320 g, Mw = 40.000 g/mol) in H2O (20 mL) at room 

temperature. After diluting with H2O (20 mL) and ethanol (50 mL), the solution was stirred 

under reflux conditions for 2 h. After the removal of solvents, the resulting precipitate was 

dissolved in H2O (15 mL). After centrifugation at 15000 ppm for 13 h, a clear phase was 

collected to obtain a colloidal PVP-Pt. 

 

2.2.5 Hydrogen evolution 

 

Typically, 150 mL of an aqueous solution consisting of SWCNT/fullerodendron/TiOx (1 

mL), Tris-HCl buffer (3.5 mL in H2O, pH 7.5, 5 mM), methyl viologen dichloride (92.4 mg, 

359 mol), 1-benzyl-1,4-dihydronicotinamide (BNAH) (38.6 mg, 180 mol), and a colloida l 

PVP-Pt (15 mL in H2O, of which Pt atom content was 512 µmol) in a Pyrex reactor was 

degassed for five cycles and purged with Ar. Upon vigorous stirring at 25 ºC, that solution 

was irradiated with a 300 W Xenon arc light (Ushio model UXL 500 W) through the band-

pass filter (450 ± 5 nm: ASAHI SPECTRACO, M. C. 450/10 nm 50 × 50). After a designated 

period of time, the cell containing the reaction mixture was connected to a gas chromatograph 

(Shimadzu, TCD, molecular sieve 5A: 2.0 m × 3.0 mm, Argon carrier gas) to measure the 

amount of H2 above the solution. The apparent quantum yield (AQY) is defined as follows. 

AQY = (number of H2 generated × 2)/(number of photons absorbed), which was evaluated  
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from a change in power of the transmitted light, measured using a power meter (Photo-Radio 

meter Model HD 2302.0 coupled with the irradiance measurement probe LP 471 RAD having 

an exposure window diameter of 1.6 cm) placed behind the cell parallel to the irradiation cell 

face.16 

 

2.3 Preparation SWCNTs Solution for Spray Coating 

 

SWCNTs (1.0 mg) were mixed 1 wt% sodium dodecyl sulfate (SDS) to make SDS 

dispersion with a concentration of 1 mg/mL. Such suspension was ultrasonically agitated 

using a probe sonicator with an output sonication power of  2 W for 4 h followed by 

centrifugation at 3000 G for 30 min in order to separate out the undissolved SWCNTs bundles 

and catalyst impurities. 

 

2.3.1 Preparation Thin Film SWCNTs 

 

FTO substrates were cleaned with ethanol:acetone (90 : 10) by sonication process for 30 

min, then immersed in the hot ethanol for 10 min, drying FTO substrate with Nitrogen gasses.  

The FTO substrate was heated in air at 110 °C for 1 h to promote SWCNT/SDS solution 

were directly spray-coated onto the FTO substrates by using an airbrush pistol. During the 

spraying process, the FTO substrates were maintained at 110 oC in order to prevent the 

formation of fine droplets on the surface of the FTO substrates. When the spray process 

terminated, the films was immersed into deionized water for 24 h to remove the superfluous 
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SDS surfactant and then dried at 90 °C for 1-2 h. Special care for the choice of the (6,5)-

enriched SWCNTs concentration, the nozzle size of the pistol, and the distance from the 

pistol nozzle to the FTO substrates should be simultaneously done in order to obtain uniform 

ultrathin SWCNTs films with a high quality.17  

 

2.3.2 Decoration Thin Film SWCNT with Fullrodendron 

 

An aqueous solution of the fullerodendron (10 mL, 40 μM) was added by 3 L HCl (1N) 

to adjust pH  3 then thin film FTO/SWCNT was immersed for 24 h in the fullerodendron 

acidic solution for decorated surface of thin film FTO/SWCNTs. Therefore rinsed thin film 

FTO/SWCNT/fullerodendron in the water surface for 3 time to removal from superfluous of 

fullerodendron on the surface. 

 

2.3.3 Decoration TiOx on the Surface of Thin Film SWCNT/fullerodendron 

 

Titanium tetra isopropoxide (TTIP) (5 mg, 1.8 × 10-2 mmol) was dissolved with ethanol 

(4 mL) then, centrifugation at 4000 rpm for 10 minutes. Then pipette supernatant 20 L and 

was dropped into spin-coated on the substrate in air at 1000 rpm for 60 s and kept in the 

ambient at room temperature for 1 h. A thermal treatment at 85 °C for 10 min was observed 

to be beneficial for the device performance. 
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2.4 Results and discussion 

 

2.4.1 Fabrication of SWCNT/fullerodendron/TiOx  

 

SWCNT/fullerodendron/TiOx nano-hybrids were fabricated by polycondensation reaction of 

titanium tetra isopropoxide (TTIP)18 using SWCNT/fullerodendron supramolecular nano-

composites as catalytic scaffolds according to previous reports on 

SWCNT/fullerodendron/SiO2 nano-hybrids.19  In a typical run, HCl (1.0 N, 2.8 µL) was 

added to an aqueous solution of SWCNT/fullerodendron nano-composites (1 mL). 

Subsequently, TTIP (20 µL, 0.17 mM) in ethanol was added to the solution at 0 ˚C. After 

gentle stirring for 24, 48, and 72 h, a dispersion of SWCNT/fullerodendron/TiOx was 

obtained. 

 

2.4.2 Characterization of SWCNT/fullerodendron/TiOx 

 

a) Scanning Electron Microscopy (SEM) 

 

The morphology of the SWCNT/fullerodendron/TiOx nano hybrids was examined by 

scanning electron microscopy (SEM). Here we shown SEM images 

SWCNT/fullerodendron/TiOx after sol-gel reaction for 24, 48 and 72 h. The tiny fibers with 

1–3 m length and 60–120 nm diameters were observed after sol-gel reaction for 48 h. 

Thickness of the very thin nanofiber shown in the white rectangle in Figure 2-2 is ca. 50 nm. 
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Figure 2-2. The shell thickness affecting the photoactivity. 

 

b) Transmission Electron Microscopy (TEM) 

 

The TEM images prepared in the water solution containing SWCNT/fullerodendron/TiO x  

coaxial nano-hybrids. In addition to a clear coaxial nanowires structure of 

SWCNT/fullerodendron/TiOx  that a uniformly thick shell composed of nano-sized TiOx  

covered the SWCNT/fullerodendron nano-wire with 50 nm wide (Figure 2-3).  

  

 

 

 

 

Figure 2-3. TEM image of SWCNT/fullerodendron/TiOx supramolecular nanohybrids. 
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c) Atomic Force Microscopy (AFM) 

 

Atomic force microscopy (AFM) is a classic technique for characterising SWCNTs and 

provides vital information on their diameter, length and degree of individualisation. When 

studying the dispersion quality using AFM, attention usually focuses only on the linear 

features associated with the SWCNTs. Other non-SWCNTs species are often simply assigned 

as impurities, such as amorphous carbon or catalyst particles inherited from SWCNTs 

synthesis.20 

In addition the height profiles in the AFM analysis revealed that the thickness of 

SWCNT/fullerodendron/TiOx coaxial nano-hybrids (~15 nm) is higher than that of the 

SWCNT/fullerodendron supramolecular nano-composite (2-3 nm) (Figure 2-4). Based on 

these results, the thickness of the TiOx layer was estimated to be 6-7 nm. These observations 

are consistent with the SWCNT/fullerodendron/TiOx coaxial nano-hybrid structure, the 

SWCNT-core surrounded by the fullerodendrons, coated by the outer TiOx shell (Figure 2-

5).  

 

 

 

 

 

 

Figure 2-4. AFM image of SWCNT/fullerodendron/TiOx supramolecular nanohybrids. 
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Figure 2-5. Confirmation thickness of each layer in the SWCNT/fullerodendron/TiOx. 

 

d) Photoluminescence Mapping of SWCNT/Fullerodendron/TiOx 

 

The photoluminescence of SWCNTs is consistent with isolated SWCNTs and therefore 

characterization of isolated SWNTs is possible. Individual SWCNTs dissolved in a surfactant 

solution exhibit photoluminescence in the near-IR region.21 The coaxial nanowire structure 

with isolated SWCNTs was confirmed by three-dimensional photoluminescence (PL) 

intensity mapping in D2O, allowed assigning four intense peaks with reasonable certainty to 

the (9,4), (8,6), (7,6), and (8,4) SWCNTs.22 It should be noted that the coaxial structure is 

maintained, i.e., the formation of bundles and/or aggregation of the SWCNTs after the 

formation of the SWCNT/fullerodendron/TiOx coaxial nano-hybrids was not observed 

(Figure 2-6). 
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Figure 2-6. Three-dimensional fluorescence spectra of SWCNT/fullerodendron/TiOx 

coaxial nano hybrids. 

 

e) Spectroscopy Visible-Near Infrared (NIR) 

 

Confirmation layer the TiOx layer of the SWCNT/fullerodendron/TiOx nano hybrid shows 

high optical transparency in the visible and near infrared (NIR) region. (Figure 2-7) shows 

the Vis-NIR absorption spectra of the SWCNT/fullerodendron supramolecular 

nanocomposites and the SWCNT/fullerodendron/TiOx coaxial nanohybrids. The absorption 

of the SWCNT/ fullerodendron/TiOx coaxial nano-hybrids is smaller than that of the 

SWCNT/fullerodendron composites, as the concentration of the 

SWCNT/fullerodendron/TiOx coaxial nano-hybrids was lowered during the sol–gel 

condensation process. However, the absorption and/or scattering due to the TiOx layer on the 

shell should be negligible on account of the nano-sized thickness of the TiOx layer. From the 
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comparison of absorption bands (500-1350 nm) before and after the sol-gel condensation, we 

can be found four kinds of type SWCNTs such as (9,4), (8,6), (7,6), and (8,4) that allowed 

assigned in the photoluminescence (PL) mapping spectra.22  

 

 

 

 

 

 

 

 

Figure 2-7. Vis-NIR spectra of SWCNT/fullerodendron supramolecular nanocomposites and 

SWCNT/ fullerodendron/TiOx coaxial nanohybrids. 

 

f) Infrared Spectra of SWCNT/fullerodendron/TiOx 

 

To obtain a better understanding of the fullerodendron/TiOx junction, FTIR spectroscopic 

measurements of the SWCNT/fullerodendron/TiOx nano-hybrid were conducted (Figure 2-

8). The IR spectra of the SWCNT/fullerodendron/TiOx nanohybrids exhibit the C=O 

stretching modes at 1725 cm-1, which is shifted toward higher frequencies than those of the 

SWCNT/fullerodendron supramolecular nano-composites (1680 cm-1). This result indicates 

the formation of Ti–OCOR bonds at the termini of the fullerodendrons.23 The sharp 

absorption band observed at 635 cm-1 was ascribed to the Ti-O-Ti moieties, while the strong 
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absorption band at 1055 cm-1 was attributed to the Ti-O-C stretching mode. Based on these 

observations, we concluded that the TiOx layer is attached onto the surface the 

SWCNT/fullerodendron supramolecular nano-composites without significant damage to the 

  

 

 

 

 

 

 

 

 

 

Figure 2-8. IR spectra of (i) SWCNT/fullerodendron, (ii) SWCNT/fullerodendron/TiOx and 

(iii) TiOx. 

 

g) Raman Spectra of SWCNT/fullerodendron/TiOx 

 
Raman scattering is well known as an important technique to characterize the different 

form of carbon material. Recently, the resonance Raman scattering (RRS) technique has been 

shown to provide a powerful tool for studying and characterizing single-walled carbon 

nanotubes (SWCNTs), first for bundles and recently for isolated SWCNTs.24 In addition to 

clear a Raman spectrum of the SWCNT/fullerodendron/TiOx coaxial nano-hybrids showed 
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typical scattering of the disorder induced mode (D) and the tangential displacement mode 

(TDM; also called the G band), which were observed at 1339 and 1610 cm–1, respectively 

(Figure 2-9).25,26 The very small intensity of the D-band indicates that the SWCNTs within 

the composites did not sustain any substantial damage. Broad peaks at 610 and 425 cm-1 were 

ascribed to TiOx.27 

 

 

 

Figure 2-9. Raman spectra for SWCNT/fullerodendron (Gray line) and SWCNT/ 

fullerodendron/TiOx (black line). 

 

2.4.3 Application of SWCNT/fullerodendron/TiOx Coaxial Nano-hybrids 

2.4.3.1 Hydrogen Evolution from SWCNT/fullerodendron/TiOx 

 

To probe the beneficial aspects of the incorporation of the transparent electron-extract ion 

layer into an SWCNT/fullerodendron coaxial photosensitizer, we explored the photocatalyt ic 
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evolution of hydrogen from water using a system based on the SWCNT/fullerodendron/TiO x  

supramolecular nano-composites coupled with colloidal poly(vinylpyrrolidone)-plat inum 

(PVP-Pt). The plots of the total amount (4.0 mol/h) proceeded steadily and an induction 

period or decreasing activity was not observed during 6 h of irradiation. Although the 

SWCNT/fullerodendron supramolecular nanocomposites also worked as a photosensit izer 

for the evolution of hydrogen, the reaction rate of the hydrogen generation (1.9 mol/h) is 

lower than that of SWCNT/fullerodendron/TiOx nano hybrids (4.0 mol/h). Given that the 

absorbance of the SWCNT/fullerodendron/TiOx nano-hybrids is lower than that of the 

SWCNT/fullerodendron supramolecular nano-composites, the photocatalytic activity of the 

SWCNT/fullerodendron/TiOx nano-hybrids must be higher than that of the 

SWCNT/fullerodendron supramolecular nano-composites. In order to compare the efficiency 

of the photocatalytic evolution of hydrogen between the SWCNT/ fullerodendron 

supramolecular nano composite and the SWCNT/fullerodendron/TiOx nano-hybrids 

photocatalysts, we evaluated their quantum yields by using monochromic light (λ = 450 ±5 

nm), which revealed apparent quantum yields (AQYs) for the evolution of hydrogen (2 × 

number of molecules of hydrogen generated/number of photons absorbed) of 0.47 

(SWCNT/fullerodendron/TiOx) and 0.12 (SWCNT/fullerodendron) (Figure 2-10). 
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Figure 2-10. Time dependence of the evolution of hydrogen from water using 

SWCNT/fullerodendron (▲) or SWCNT/fullerodendron/TiOx (♦).  

 

2.5 Energy-level diagram of the SWCNT/fullerodendron/TiOx  

 

An energy-level diagram of the conduction (C1 and C2) and valence bands (V1 and V2) of 

(7,6) SWCNT,28 which is one of the most commonly encountered types of CNTs in HiPco, 

together with the LUMO levels of C60,29 MV2+,30 BNAH,31 and the energy level of Pt and 

TiOx is shown in (Figure 2-11). A distinctive advantage of the coaxial architecture is that the 

carrier separation occurs in the shorter radial direction as opposed to the longer axial direction. 

Moreover, the energy-level diagram indicates that the electron-extraction layer of TiOx not 

only decelerates the electron back-transfer, but also accelerates the electron forward-transfer 

from the conduction band of TiOx to the LUMO of MV2+, thus leading to an effic ient 

electron-transfer pathway.  
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Figure 2-11. Energy-level diagram of the SWCNT/fullerodendron/TiOx coaxial 

photocatalyst system. 

 

2.6 Fabrication Thin Film FTO/SWCNT/fullerodendron/TiOx 

 

Thin film FTO/SWCNT/fullerodendron/TiOx was fabricated by spray coating dispersation 

of SWCNT (1.0 mg) in the SDS solution (1 wt%). During the spray coating process, the FTO 

substrates were maintained at 110 oC in order to prevent the formation of fine droplets on the 

surface of the FTO substrates. When the spray process terminated, the films was immersed 

into deionized water for 24 h to remove the superfluous SDS surfactant and then dried at 

90 °C for 1-2 h. The obtained films were immersed in an aqueous solution of fullerodendron 

to decorate the surface of the film photocathode with fullerodendron. The photocathode was 

decorated with TiOx by the polycondensation reaction of titanium tetra isopropoxide (TTIP).  
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2.6.1 Hydrogen Evolution from Thin Film SWCNT/fullerodendron/TiOx 

 

A steady generation of H2 generation from recycles used of the thin film 

FTO/SWCNT/fullerodendron/TiOx first used (1.82 mol/h) and second used (1.48 mol/h) 

was observed upon exposure to a light of wavelength 422 ± 5 nm nm with a 300 W Xenon 

arc lamp (Figure 2-12). It is notable that 81% of H2-evolving activity was remained for the 

second use of a spray-coated film of SWCNT/fullerodendron/TiOx on a FTO plate coupled 

with colloidal poly(vinylpyrrolidone)platinum (PVP-Pt) after the 6 hour H2 evolution 

reaction. 

 

 

 

Figure 2-12. Time dependencies of the H2 production from water in the systems of recycle 

use of the thin film FTO/SWCNT/fullerodendron/TiOx catalyzed by a colloidal PVP-Pt. Thin 

film FTO/SWCNT/fullerodendron/TiOx first used (■) and second used (♦).  
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2.6.2 Photoelectrode Hydrogen Evolution  

 

The photoelectrochemical measurements were carried out in a typical three-electrode 

electrochemical cell under Xenon lamp (λ > 422 nm). The as-prepared photoelectrode thin 

film FTO/SWCNT/fullerodendron/TiOx act as working electrode, Ag/AgCl as reference 

electrode, and Pt wire were used as the counter electrode, respectively. The photoelectrode 

measurements were conducted in 0.1 M Na2SO4/NaOH solution (pH = 7). The result show 

that enhancement of the photoelectrode thin film FTO/SWCNT/fullerodendron/TiOx can be 

evaluated hydrogen at wavelength 550 nm (green light) and also at 650 nm (red light) using 

bias potential 0.3 V (Vs Ag/AgCl). 

 

2.7 Summary 

 

A bespoke SWCNTs photocatalyst with an electron-extracting TiOx shell was fabricated. 

On account of the presence of the TiOx shell, the SWCNT/fullerodendron/TiOx coaxial 

nanowire exhibits a high activity in the catalytic evolution of H2 from water under irradiation 

with visible light, because the electron-extracting TiOx layer accelerates the electron forward-

transfer under concomitant deceleration of the undesirable back electron-transfer (Figure 2-

13). Incorporations of the TiOx electron-extraction layer to the p-n heterojunction consisting 

of s-SWCNT (p-type) and C60 (n-type) is very useful and efficient to provide anionic lateral 

surface to improve efficiency photocatalytic H2 evolution from water, make robustness thin 

film based on SWCNT/C60, fullerodendron and TiOx. 
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Figure 2-13.  Efficiency TiOx shell to enhance photocatalytic hydrogen evolution from water 

under visible light. 
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Chapter 3 
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Conclusion 

 

Incorporations of the TiOx electron-extraction layer to the p-n heterojunction consisting 

of s-SWCNT (p-type) and C60 (n-type) is very useful and efficient to fabricated the SWCNT-

photocatalyst and the SWCNT-photoelectrode generating H2 from water. In this thesis, the 

author have shown that the dendrimer assisted sol-gel condensation of the titanium 

tetraisopropoxide (TTIP) is effective method to incorporate the electron-extraction layer to 

the SWCNT/C60 heterojunction. In addition, this strategy is quite effective not only to 

enhance the photocatalytic H2 evolution activity of SWCNT/fullerodendron nanocomposite 

but also to stabilize the individual coaxial heterojunction or the SWCNT/C60 film structure 

(Figure 4-1). 

 

For example, the author described, the new coaxial photosensitizer with the electron-

extraction TiOx shell covering a SWCNTs/C60 interface in chapter 2. On account of the 

presence of the TiOx shell, the SWCNT/fullerodendron/TiOx coaxial nanowire exhibits a 

high activity (Φ = 0.47), which is 3.9 times higher than that of SWCNT/fullerodendron, in 

the catalytic evolution of H2 from water under irradiation with visible light. This result 

provides the evidence, i.e., the electron-extracting TiOx layer accelerates the electron 

forward-transfer under concomitant deceleration of the undesirable back electron-transfer. 

As figure 4-1 shown introduce TiOx-layer to improve H2 evolution efficiency. 
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Figure 4-1. Introduction of the TiOx shell on the coaxial SCWNT/C60 heterojunction. 

 

Futhermore, the author found an alternative and simple method for the fabrication of a 

robust film possessing the SWCNT/C60 heterojunction decorated with TiOx-layer. The 

photoelectrode thin film FTO/SWCNT/fullerodendron/TiOx displayed photoelectrochemica l 

water splitting in an aqueous electrolyte solution with a negative onset potential of –0.3 V vs. 

Ag/AgCl, which is 0.1 V more positive in comparison to a SWCNT electrode. Importantly, 

the film shows higher stability against the bias voltages compared to the FTO/(6,5) enriched 

SWCNT/fullerodendron. Fabrication of a photoelectrode film based on SCWNT/C60 shown 

in the Figure 4-2. 
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Figure 4-2. Introduction of the TiOx-layer on the top of SWCNT/C60 heterojunction film. 

 

Enhancement various kinds of organic and inorganic coaxial nanowires have been 

developed so far, coaxial nanowire photocatalysts consisting of (p-type semiconductor)/(n-

type semiconductor)/(electron-extraction layer) are still in the early stages of development, 

mostly due to their relatively complicated fabrication procedures. Here, the fabrication 

technique described in this thesis provides a versatile method to produce a wide variety of 

coaxial heterojunction structures and film devices. The dendron unit functions as effective 

“glue” between the carbon materials and electron extract layer and enables the facile 

formation or fabrication of photofunctional materials. Incorporating an electron-extract ing 

layer to nanocarbon materials described in this thesis should be an effective strategy toward 

further challenging photofunctional materials based on CNTs.  
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