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Abstract

Wireless Local-Area Network (WLAN) has become popular today. The WLAN provides the flexible
Internet access to users with low costs through installations of access points (APs) in network
fields. Many organizations including universities and companies are using WLANs. To satisfy
the increasing number of users, a WLAN can be expanded easily by deploying additional APs
in the network field. However, the random deployment of APs can degrade the communication
performance due to radio interferences among them. On the other hand, when a small number of
users use the WLAN, the number of APs should be reduced to minimize the operational costs.
Thus, it is expected to realize the WLAN system that is adaptive and elastic to the traffic load in
the network.

In this thesis, we firstly present the concept of the elastic WLAN system as a solution to the
above-mentioned problems in WLANs. The elastic WLAN system controls the number of active
APs, the operating channels of these active APs, and the host associations to the active APs in the
network, so that it can save energy, reduce interferences, and improve the performance of networks.

Secondly, we present the active AP configuration algorithm for the elastic WLAN system using
heterogeneous access points (APs). These APs can include dedicated commercial APs, mobile
routers, and software APs using personal computers (PCs). For this purpose, we formulate the AP
configuration problem as a combinatorial optimization problem and prove the NP-completeness
of its decision problem. Then, we propose the heuristic algorithm composed of seven phases to
dynamically control the network topology by activating or deactivating APs to be matched with
the traffic load in the network. We verify the effectiveness of our algorithm through extensive
simulations using the WIMNET simulator.

Unfortunately, this algorithm assumes that every AP uses a different channel from the other
ones to avoid interferences among them, although the number of non-interfered channels in IEEE
802.11 protocols is limited. Therefore, thirdly, we propose the extension of the AP configuration
algorithm to consider the channel assignment to the active APs under this limitation. For the proper
channel assignment, AP associations of some hosts are modified here to improve the network per-
formance by averaging loads among channels. The effectiveness of this extension is also evaluated
using the WIMNET simulator.

Finally, we present the implementation of the elastic WLAN system using the proposed algo-
rithm. The number of active APs and the associations of hosts are dynamically optimized based
on the traffic load in the network. For implementation, Linux PCs are adopted for the hosts and
Raspberry Pi are for the APs. Using several Linux commands, this system collects the necessary
information for the AP configuration algorithm to determine the activations/deactivations of APs,
the host associations, and the channels for active APs. Based on the algorithm outputs, it controls
the active APs, their channels, and the associations of hosts automatically. The feasibility and
performance of this elastic WLAN system implementation is verified through experiments using
testbeds.
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In future, we will study further enhancements of the AP configuration algorithm and the elastic
WLAN system implementation, and their evaluations in various practical scenarios.
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Chapter 1

Introduction

1.1 Background
Nowadays, the Internet plays a very important role today in daily lives. With rapid developments
of high-speed communication technologies and small-sized inexpensive communication devices,
it has become easy to access to a variety of information, data, and services through the Internet.
It is very common for people to use social networking sites in order to regularly contact with
their friends and relatives over the Internet. This increasing usage of the Internet leads to strong
demands of a secure, reliable, and high-speed Internet services for us. A common solution to meet
these demands is the use of a wireless local area network (WLAN) with low cost WLAN enabled
devices [1].

WLANs have been widely deployed for the Internet access, since they use wireless medium
over the air. This feature makes WLANs inexpensive, flexible, and scalable [2]. The wireless
aspect of the WLAN leads the users to move freely in the network field without losing connections.
It has provided a solution to one of the key challenges characterizing wired networks that restrict
the user mobility due to the wired medium.

With the rapid advancements of wireless communication technology, WLAN users can set up
their WLAN systems using a variety of low cost access points (APs) such as commercial APs
and mobile routers according to their budgets and demands. Unfortunately, these APs are often
installed and used in a service field randomly, which can cause poor network performances due to
overlapping of the same frequency signals [3]. Besides, the configuration of these APs should be
arranged properly based on communication demands in the network field, where redundant APs
should be turned off for energy saving and interference prevention.

In the real world scenarios, the number of users in a network often fluctuates depending on time
and day of week. For example, in a university, the number of network users or students increases
in the afternoon during weekdays, while it decreases in the morning or evening, and the whole
days in the weekend. Besides, conditions of network devices or communication links are changed
due to power shortages, device failures, regulations of bandwidth by authorities, and even by the
weather [4].

Developing countries like Bangladesh and Myanmar suffer from the unreliable and slow In-
ternet access. The major reason is the load shedding, i.e. the fluctuation and the discontinuity
of the electricity supply for the time being. In these countries, only 60% and 30% of the people
can use electricity respectively [5][6]. They suffer from the load shedding frequently, because the
power production is comparatively less than the growing demand. The power authority stops the
supply to certain areas so as to supply electricity to other areas. This problem is dominant when
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the extra energy, such as air conditioning in summer, is required. The irregular flow of electricity
often causes damages to network devices. In such uncertain cases, a very limited number of APs
can be supplied power using back up power sources by generators and batteries.

Another reason for slow and interrupt Internet connections in developing countries is the fluc-
tuation of the allocated bandwidth to the organization. Network cables are often cut off at con-
struction sites. Network devices and cables are stolen in many places. They hamper the continuity
of the Internet access. In addition, Internet service providers restrict the bandwidth of clients for
their own selfish ends. These reasons can decrease the available bandwidth, which is far from its
expected value.

The Internet access through 3G/4G mobile networks is increasing in these countries at recent
time, as their usage fees are continuously falling down with time. Currently, many people are
using the Internet through mobile network devices including mobile routers, pocket routers, and
smart-phones. Besides, it has become common for them to share the Internet use among friends,
families, and groups by them these days.

The guaranteed throughput, which allows the access to a Web site or the use of an e-mail
without strong stress, may not be essential for the personal use of the Internet, because the Internet
access fee by a mobile network may still matter for them. However, for the commercial use in
a school or a company, the consistent Internet access with the guaranteed throughput is more
desirable and significant than the cost.

Under these circumstances, we have studied the elastic WLAN system for burning demands
in developing countries. Figure 1.1 shows the topology of a simple elastic WLAN system with
heterogeneous AP devices. The elastic WLAN system allows the dynamic control of active APs
according to the network environment. As the more traffic demands appear, the more active APs
are required. The implementation of the elastic WLAN system, which is adaptive to the network
changes, is important for energy efficient, reliable, and high performance wireless communication
services.
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Figure 1.1: Illustration of elastic WLAN with heterogeneous devices.
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1.2 Contributions
In this thesis, we have carried out research works in the following three stages.

In the first stage [7–9], we propose the active AP configuration algorithm to activate the min-
imum number of APs in the network while satisfying the constraints of throughputs for the hosts.
Three types of APs, namely dedicated APs (DAPs), virtual APs (VAPs), and mobile APs (MAPs),
are considered for this algorithm. Virtual APs use personal computers (PCs) of users installing
the software for AP functions. Mobile APs are often called mobile routers. To connect with the
backbone network in the Internet, DAPs and VAPs use wired connections, whereas MAPs use cel-
lular networks. For the positions of MAPs, the same locations as the hosts should be considered,
because the host owners may use MAPs for the Internet access.

In this stage, first, we formulate the AP configuration problem as a combinatorial optimization
problem, and prove the NP-completeness of its decision version through the reduction from the
minimum set cover problem that has been known as a NP-complete problem [10]. Then, we propose
its heuristic algorithm composed of seven phases. The effectiveness of the algorithm is verified
through numerical experiments in different network instances using the WIMNET simulator.

In the proposed algorithm, we assume that each AP can use a different channel from the other
APs to avoid interferences among them at all. In reality, the number of non-interfered channels
available in IEEE 802.11 protocols is limited [11]. Some APs have to share the same channel
if the number of APs is larger than the number of available non-interfered channels. Therefore,
the channels should be assigned properly to the active APs to avoid the interference as much as
possible to improve the network performance.

Therefore, in the second stage [12, 13], we propose the channel assignment extension of the
active AP configuration algorithm for the elastic WLAN system to solve the above mentioned
problem. One channel is assigned to every active AP from the limited number of the orthogonal
channels in a way of minimizing the overall interference in the network. Besides, AP associations
of hosts are modified to improve the network performance by averaging loads among channels.
After the channel assignment, the communication loads among the channels may become imbal-
anced, because the previous algorithm finds the AP-host associations assuming the infinite number
of the orthogonal channels. The effectiveness of the proposed extensions is verified through simu-
lation in two network topologies using the WIMNET simulator.

In the third and final stage [13], we implement the model for the elastic WLAN system. In
this system, the number of active APs and the associations of hosts is optimized by the proposed
algorithm. In the implementation, Raspberry Pi [14] is adopted for the AP and Linux PC is for the
host. Raspberry Pi is a small-size low-cost computer, and has become popular in academics and in-
dustries around the world. The use of Raspberry Pi in the elastic WLAN system is important for its
dissemination in developing countries. As an open-source operating system, Linux has been used
as a platform to implement new algorithms, protocols, methods, and devices for advancements of
wireless networks [15]. By using several Linux tools and commands, this system collects neces-
sary information of the network in real time for the algorithm input, and optimizes the topology of
the network by turning APs on/off, and changing the AP-host associations according to the algo-
rithm output. Finally, the elastic WLAN system implementation is evaluated through experiments
using the testbed.

In short, the main contributions of this thesis are:

• proposal of the active AP configuration algorithm that can dynamically adjust the number of
active APs in the network.
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• proposal of the channel assignment extension to the active APs from the limited number of
non-interfered channels in a way to minimize the overall interference in the network.

• implementation of the elastic WLAN system using Raspberry Pi and Linux PCs.

1.3 Contents of Thesis
The remaining part of this thesis is organized as follows.

Chapter 2 introduces related wireless network technologies, such as IEEE 802.11n protocol,
heterogeneous AP devices, channels in IEEE 802.11 protocols and important WLAN tools in the
Linux operating system.

Chapter 3 describes the elastic WLAN system briefly.
Chapter 4 proposes the active AP configuration algorithm for the elastic WLAN system.
Chapter 5 describes the channel assignment extension of the AP configuration algorithm.
Chapter 6 evaluates the AP configuration algorithm through simulations in several network

instances using the WIMNET simulator.
Chapter 7 presents the implementation of the elastic WLAN system using Raspberry Pi and

Linux PC.
Finally, Chapter 8 concludes this dissertation with some future works.
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Chapter 2

Background Technologies

In this chapter, we briefly introduce some wireless network technologies as backgrounds for this
dissertation. First, we give an overview of IEEE 802.11 protocols, specially IEEE 802.11n proto-
col, and our link speed estimation model for this protocol. Then, we introduce three different types
of APs assumed in the AP configuration algorithm and discuss the characteristics and the speed
difference of them. Then, we discuss the available channels in the IEEE 802.11n protocol. Fi-
nally, we briefly describe Linux tools and commands used in the implementation of elastic WLAN
system.

2.1 Overview of 802.11 WLAN
A wireless local area network (WLAN) is an alternative or an extension to a wired LAN that
supports flexibility in data communication. A WLAN can minimize the need for wired connections
by transmitting and receiving data over the air using the radio frequency (RF) technology. Thus, a
WLAN can combine the data connectivity with the user mobility. IEEE 802.11 protocols provide
standards for WLANs.

2.1.1 Advantages of WLAN
A WLAN offers the following convenience, productivity, and cost advantages over traditional
wired networks [1]:

• Mobility: Users move, but data is usually stored centrally. Thus, users can access data while
they are in motion. In wired networks, users need to use wired lines to stay connected to the
network.

• Easy and faster deployment: A WLAN system can eliminate the need to put cables between
hosts and network connection hubs. Thus, the installation can be fast and easy.

• Flexibility: The coverage area by a WLAN can be easily expanded because the network
medium can cover it without additional costs.

• Cost: The initial installation cost can be higher than the cost of wired LANs, but the life-
cycle cost can be significantly lower. In environments requiring frequent moves and changes,
a WLAN can provide the long-term cost benefit.
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• Scalability: According to specific applications, a WLAN system can be configured in a
variety of topologies. They can support a peer-to-peer network suitable for a small number
of users and a full infrastructure network for thousands of users.

2.1.2 Components of 802.11 WLANs
A WLAN system with IEEE 802.11 protocols consists of four major physical components shown
in Figure 2.1:

Access Point

Station

Station

Station
Distribution

System

Wireless

Medium

Figure 2.1: Components of WLAN system.

• Stations: Data are transferred between stations in a network. Stations are computing de-
vices such as desktop or notebook computers, or hand-held devices with wireless network
interfaces. Stations are often called hosts.

• Access points (APs): To deliver a data frame from an 802.11 network to other networks, it
needs the conversion. An AP performs the wireless-to-wired bridging function along with
some other tasks.

• Wireless medium: The 802.11 standard uses a wireless medium to transmit frames from a
station to a station.

• Distribution system: If several APs are connected together to form a large coverage area,
they must communicate with each other to track the movements of the mobile stations. The
distribution system is the logical component of the 802.11 standard which is used to forward
frames to their destinations. It is often called as the backbone network. Mostly, Ethernet is
used as the backbone network technology.

2.1.3 Types of WLANs
The basic building block of an 802.11 network is simply a group of stations that communicate
with each other that is called the basic service set (BSS). BSS can be of two types as illustrated in
Figure 2.2.

• Independent or ad hoc network: This is a local area network (LAN) that can be formed
spontaneously as devices connect each other. Instead of relying on a base station or an AP to
coordinate the flow of messages, the stations forward packets to and from each other directly.
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Figure 2.2: Types of 802.11 networks.

There is no AP in an independent BSS as shown in Figure 2.2(a). The ad hoc network is
rarely used due to reasons related to performance and security.

• Infrastructure network: Infrastructure networks or infrastructure BSS use APs as shown in
Figure 2.2(b). APs are used in all communications in the infrastructure network. If one
station wants to communicate with another station, it always needs to communicate through
the AP. Thus, in an infrastructure network, any station must be associated with an AP to
obtain network services.

• Extended service areas: Multiple BSS can be chained together with a backbone network to
form the extended service set (ESS) as shown in Figure 2.3. It can form large size wireless
networks. All the APs in an ESS are given the same service set identifier (SSID), which
serves as a network “name” for the users. Stations within the same ESS can communicate
with each other, even if they are in different basic service areas.

Distribution System

Station

AP1

Station

AP2

Station

BSS2BSS1

Figure 2.3: Extended service set.
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2.2 IEEE 802.11n Protocol
In this section, we briefly give the overview the IEEE 802.11n protocol that we have used for
throughput measurements and implementations of the elastic WLAN system. IEEE 802.11 proto-
cols is a group of the standards created by the IEEE 802 LAN/MAN (Local Area Network/Metropoli-
tan Area Network) Standards Committee. They specify over-the-air interfaces between a wireless
client and a base station or between two wireless clients within a local area in either fixed, portable,
or moving stations mode [16].

IEEE 802.11n is an amendment to the IEEE 802.11-2007 wireless networking standard. This
standard was introduced with the 40 MHz bandwidth channel called channel bonding, the Multiple-
Input-Multiple-Output (MIMO), the frame aggregation, and security enhancements over its prede-
cessors. Table 2.1 briefly summarizes the IEEE 802.11n protocol.

Table 2.1: IEEE 802.11n specification.

specification IEEE 802.11n
frequency band 2.4 GHz 5 GHz
number of available channels 13 19
number of uninterfered channels 2 9
maximum speed 600Mbps
maximum bandwidth 40 MHz
number of maximum streams 4
maximum modulation 64 QAM

In the channel bonding technique, two adjacent channels within a given frequency band are
combined together to increase the transmission speed. In the IEEE 802.11n protocol, the physical
data rate can be doubled by using two adjacent 20 MHz channels simultaneously.

The spatial multiplexing and the space-time block coding are two MIMO-specific innovations
of the IEEE 802.11n. For the spatial multiplexing, the transmitter transmits multiple independent
data streams simultaneously from multiple antennas to increase the data rate. For the space-time
block coding, the transmitter transmits dependent data stream which is spatially and time encoded
to increase the signal reliability. Table 2.2 shows the throughput enhancement of IEEE 802.11n
protocol using channel bonding and MIMO.

Table 2.2: Effects of channel bonding and MIMO on IEEE 802.11n throughput.

Stream number Bandwidth
20 MHz 40 MHz

1 stream 72.2Mbps 150Mbps
2 streams 144.4Mbps 300Mbps
3 streams 216.7Mbps 450Mbps
4 streams 288.9Mbps 600Mbps

IEEE 802.11n also provides the performance improvement through the frame aggregation in
the MAC layer. The frame aggregation can transmit multiple frames as one big frame with a single
pre-ample and header information to reduce the overhead by them. IEEE 802.11n introduces Ag-
gregation of MAC Service Data Units (A-MSDUs) and Aggregation of MAC Protocol Data Units

8



(A-MPDUs). The frame aggregation is a process of packing multiple A-MSDUs and A-MPDUs
together to reduce the overheads and average them over multiple frames, thereby increasing the
user level data rate [17].

2.2.1 Link Speed Change Feature of IEEE802.11n
The link speed or throughput is affected by many factors such as the modulation and the coding
scheme, the transmission power, the transmission distance, and even the design of the network
adapters [18]. Therefore, the theoretical computation of the link speed is very difficult. In this
thesis, we take an alternative approach of conducting real-world measurements to model the actual
link speed.

• Link Speed Model
Through measurements [19], we derived the following link speed (Mbps) function f (x) with
the transmission distance x (m).

Table 2.3: Devices and software for measurements of IEEE 802.11n link speed.

model Ultra book Lesance NB S3441/L
PC1 CPU Intel(R) Core i5 3317U (2.6 GHz)

OS Windows 7
model Ultra book Lesance NB S3532-SP

PC2 CPU Intel(R) Core i3 2350M (2.3 GHz)
OS Windows 7

NIC Buffalo WZR-G1750DHP
software iperf2.0.5
protocol TCP

f (x) =


−2.20 × 10−3x3 + 1.85 × 10−1 x2 − 5.33x + 117 if 0 ≤ x < 40
−6.00 × 10−4x3 + 9.50 × 10−3 x2 − 1.73x + 117 if 40 ≤ x < 75

4.38 × 10−4x3 − 1.10 × 10−1 x2 + 8.48x − 189 if 75 ≤ x < 100
1.0 if x ≥ 100

(2.1)

The distance between the ith host and the jth AP is defined by the Euclidean distance:

d(i, j) =

√
(xh

i − xAP
j )2 + (yh

i − y
AP
j )2 (2.2)

where xh
i , yh

i , xAP
j , and yAP

j are the x and y coordinate of the ith host and the jth AP.

For our measurements, two PCs with the setting listed in Table 2.3 are prepared respectively
as the source and destination nodes. The link speed is measured when both end nodes adopt
the IEEE 802.11n protocol. At the measurements, the link distance between two end nodes
is increased from 1m to 110m with the 5m interval. The parameters in iperf are set at 50
seconds for the measurement time, and 8Kbytes and 477Kbytes for the buffer size and the
window size respectively. Figure 2.4 shows the link speed measurement and estimation
results.
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Figure 2.4: IEEE 802.11n link speed measurement results.

According to our measurements, the peak throughput becomes about 115Mbps at 1m dis-
tance. Then, the effective throughput is rapidly dropped as the link distance increases. The
throughput becomes the half of the peak at 40m distance, and is about 10Mbps at 80m dis-
tance.

• Wall Effect
Since a WLAN system is based on radio frequency (RF) signals, factors affecting RF signal
strengths should be taken into considerations for planning the efficient WLAN system. As
the RF signal at 2.4GHz or 5GHz becomes weak after penetrating obstacles such as concrete
walls in a building, the throughput becomes low, which is called wall effect in this paper. The
type of the materials used in the obstacle determines the drop rate of the link speed. Besides,
mobile operators (carriers) offer different mobile data plans to meet various subscribers
demands and satisfactions. Depending on a plan, several choices can be taken for the link
speed to connect to the Internet, which is called the MAP speed in this paper. To make the
WLAN adaptable to such situations, these factors must be considered.

To examine the wall effect, we measured throughputs between a host and an AP that are
located in different rooms separated by one concrete wall. The distance is fixed at 5m. Then,
it is confirmed that the link speed is dropped by about 15% when the signal passes through
one concrete wall in a room. In simulations, the link speed is decreased by multiplying
85/100 if there exists a wall between an AP and a host. Figure 2.5 shows the speed drop by
the wall effect.

• Device Effect
Furthermore, it is found that a PC provides a maximum of 54Mbps when it works as a VAP
while a MAP supports a maximum of 30Mbps speed. Thus, in this thesis, the link speed
estimated from the link speed function f (x) is adjusted by multiplying 45/100 for the VAP
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Figure 2.5: Wall effect.

(a) Dedicated AP (DAP) (b) Virtual AP (VAP) (c) Mobile AP (MAP)

Figure 2.6: Three types of APs.

and 25/100 for the MAP. The same wall effect is applied for any AP type. These parameters
are used in our algorithm and the WIMNET simulator for simulations.

2.3 Heterogeneous Access Points
In this thesis, three types of APs are considered for the AP configuration algorithm, namely dedi-
cated APs (DAPs), Virtual APs (VAPs), and mobile APs (MAPs), shown in Figure 2.6.

• A DAP is a commercial AP that adopts the IEEE 802.11n wireless protocol and connects PCs
to the Internet. A DAP usually has the coverage radius of around 110m and the transmission
speed around 120Mbps. However, the transmission speed varies significantly depending on
the environment including obstacles, channel interferences, number of antennas, and place-
ment heights of APs.

• A VAP is a software-based router using a personal computer (PC) with either Windows or
Linux for the operating system. Multiple Internet connection mediums including wired,
wireless, or cellular interfaces are available for the VAP. A network device can connect to
a VAP the same way as it does to a conventional DAP. Most of VAPs support the IEEE
802.11n protocol with a maximum of 54Mbps transmissions.
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• A MAP is a device that connects to the Internet through 3G/4G wireless technology, e.g.,
smart phone, while a DAP and a VAP uses the wired Ethernet to access the Internet. For
this portable MAP, the power supply is unnecessary because of the built-in battery. With
the rapid developments of the cellular technology, most MAPs support the IEEE 802.11n
protocol, in which the transmission speed is capped to around 30Mbps due to the bottleneck
in the cellular network1.

2.4 Channels in IEEE 802.11 Protocols
A WLAN using the IEEE 802.11n [16] can operate in two unlicensed frequency spectrum bands:
the 2.4 GHz Industrial, Scientific, and Medical (ISM) band and the 5 GHz Unlicensed National
Information Infrastructure (U-NII) band. The IEEE 802.11n standard defines the limited number
of channels for use in APs and clients. One channel has 22 MHz width and is separated by 5 MHz
from the adjacent channel, which is conventionally referred as the 20 MHz channel. Figure 2.7
illustrates the available channels in IEEE 802.11n for the 2.4 GHz spectrum.

In this 2.4 GHz band, 13 channels exist where only four channels can be non-interfered. If
the channel bonding technique [18] is adopted, which is common in IEEE 802.11n, the 40 MHz
channel is derived by bonding two adjacent 20 MHz channels. It achieves more than twice data
throughputs. At the same time, it reduces the number of non-interfered channels to only two. Since
the 2.4 GHz band becomes crowded, clients start using the 5 GHz band. This can carry up to nine
non-interfered 40 MHz channels, but it has a shorter transmission range than the 2.4 GHz.

2.5 Linux Tools for Wireless Networking
In this section, we introduce the Linux tools and software used for the implementation of the elastic
WLAN system.

• ‘arp-scan’ - to Explore Devices in Network
arp-scan [20] is used to scan the network devices. This tool uses the ARP protocol to
discover all the devices in the network. It can be installed by downloading the source code
from [21] or using the following command:

$ sudo ap t −g e t i n s t a l l arp −s can

The corresponding Linux command to scan the network using arp-scan is given by:

$ arp −s can −− i n t e r f a c e =e t h 0 −− l o c a l n e t

--interface=eth0 represents the interface to be used for scanning devices. The use of --
localnet makes arp-scan scan all the possible IP addresses in the network that are connected
through this interface. The interface is defined by the interface IP address and netmask. The
name of the network interface depends on the operating system, the network type (Ether-
net, wireless etc.), and the interface card type. Here, the interface name eth0 is used as an
example.

1We should note that the DAPs and the VAPs share the gateway to the Internet. The bandwidth of this gateway
becomes the total available bandwidth for the whole WLAN.
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Figure 2.7: Available channels in IEEE802.11n for 2.4GHz band.

• ‘nm-tool’ - to Obtain Signal Strength from APs
The Linux tool nm-tool [22][23] can find the receiving signal strength (RSS) at a device
from all the reachable APs. In our implementation, we use this tool to get the necessary
information on the host, such as the currently associated AP, the associable APs, and the
receiving signal strength from each associable AP. nm-tool has been installed as a part of
NetworkManager package [24] by default on the Ubuntu distribution. It can be installed
using the following command manually:

$ sudo ap t −g e t i n s t a l l network−manager

The simple way to run nm-tool to find the receiving signal strength is:

$ nm− t o o l

• ‘hostapd’ - to Make AP-mode in Raspberry Pi
Raspberry Pi [14] can be set up as the AP by using Host access point daemon (hostapd) [25][26].
hostapd is capable of turning network interface cards (NICs) into access points (APs). It can
be installed by downloading the source code from [27] or using the following command:

$ sudo ap t −g e t i n s t a l l h o s t a p d

The hostapd can be started or stopped by the following commands:

$ sudo / e t c / i n i t . d / h o s t a p d s t a r t
$ sudo / e t c / i n i t . d / h o s t a p d s t o p
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• ‘ssh’ - to Remotely Execute Command
ssh [28][29] is an abbreviation of Secure Shell that is a cryptographic network protocol to
initiate a secure shell session on a remote machine. It is operated in two parts: ssh-client and
ssh-server, and establishes a secure channel between them. The open source version of ssh
is OpenSSH [30] that can be installed using the following command:

$ sudo ap t −g e t i n s t a l l openssh − s e r v e r openssh − c l i e n t

An example to remotely execute nm-tool on a remote host using ssh is shown below:

$ s s h username@192 . 1 6 8 . 1 . 3 1 ’nm− t o o l ’
username@192 . 1 6 8 . 1 . 3 1 ’ s password :

Here, 192.168.1.31 represents the IP address of the remote host.

• ‘nmcli’ - to Change Associated AP
nmcli [31][32] is a command-line Linux tool to manage, configure, and control the Network-
Manager package. This tool is pre-included in the NetworkManager package. It can be used
to associate a host with an AP through the following command:

$ sudo −s nmc l i dev w i f i c o n n e c t NewSSID password PASSWORD

Here NewSSID represents the newly associated AP for the host and PASSWORD does the
security key of the AP.

• ‘iwconfig’ - to Collect Information of Active Network Interface
iwconfig [33] is a command-line Linux tool to display and change the parameters of the
active network interface for wireless operations. It can also be used to display the wireless
network parameters and statistics. This tool is usually installed by default in the Ubuntu
distribution, which can also be installed manually using the following command:

$ sudo ap t −g e t i n s t a l l w i r e l e s s − t o o l s

An example to display the information of the currently associated AP using iwconfig is
shown below:

$ i w c o n f i g wlan0

This command shows the RSS of the currently associated AP in dBm. The RSS can be
converted to the estimated link speed using the sigmoid function in [34]

• ‘iperf’ - to Measure Link Speed
iperf [35] is a tool to measure the throughput between two nodes or the link speed. Both
TCP and UDP protocols are supported by iperf. This tool is usually installed by default in
the Ubuntu distribution. It can also be installed manually using the following command:

$ sudo ap t −g e t i n s t a l l i p e r f

To measure the throughput between two devices, one should be in the server-mode while
the other in the client-mode. The output contains the time-stamped report of the transmitted
data amount and the measured throughput. The following list shows the typical use of iperf
on the server and client sides for the throughput measurement:
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$ i p e r f −s / / s e r v e r s i d e
$ i p e r f −c 1 7 2 . 2 4 . 1 . 1 / / c l i e n t s i d e

In the command, 172.24.1.1 represents the IP address of the server.

2.6 Summary
In this chapter, we presented wireless network technologies, heterogeneous WLAN devices and
Linux tools that we adopted in this thesis. Since the theoretical computation of the link speed is
difficult, we conducted the throughput measurement approach to estimate the link speed for IEEE
802.11n protocol. Besides, we considered the reduction of the link speed due obstacle such as
walls. In the next chapter, we will introduce the elastic WLAN system.
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Chapter 3

Overview of Elastic WLAN System

In this chapter, we introduce the overview of the elastic WLAN system. First, we discuss the
motivation for the study of the elastic WLAN system. Then, we clarify the challenges of the
elastic WLAN system design. Finally, we present the system design and the operational flow for
this system.

3.1 Motivation
WLANs are commonly deployed to provide the Internet access in various places such as company
offices, airports, shopping malls, educational institutes, hotels, and train stations. Multiple APs
are deployed in each service field to provide the uninterrupted Internet connection service. These
APs are often installed randomly, which may cause the poor network performance due to the
interferences among them caused by using the same frequency signals. Besides, redundant APs
can increase operational costs for power consumptions and their managements. Therefore, the APs
should be configured properly to avoid interferences and reduce costs as much as possible.

In the network field, the distribution of users is usually non-uniform. A high concentration of
users in a limited area can increase the loads on the APs allocated there. Then, the poor network
performances are provided to the users. The APs in the congested area can be overloaded, whereas
the APs in the less-crowded area can be under-utilized. To solve such circumstances, to change
the associations of user hosts from highly congested APs to less congested APs can be useful to
improve network performances.

In real worlds, APs in a network may get overloaded during office hours where the users may
suffer from low network performances. In this case, it is necessary to activate additional APs so
that they can ensure the expected performance. On the other hand, these APs are less loaded at the
night time or weekends. In this case, such APs should be deactivated to save the energy and reduce
management costs.

At the same time, due to the power shortages, the device failures, and the network backbone
inefficiency, an organization receives the lower Internet bandwidth than its expected value. In such
cases, the link speed between the host and the AP needs to be adjusted for a fair Internet access to
all the users. Then, cellular network based devices like MAPs should be activated in the WLAN
to ensure the network performance.

Therefore, WLANs is expected to be adaptive according to the traffic demands and the network
conditions. This can be obtained by dynamically controlling the number of active APs in the
network and by changing the associations of hosts to these active APs based on the network traffics.
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To realize this goal, we have studied the elastic WLAN system. The elastic WLAN systems can
play an important role for energy-saving and performance improvements for WLANs.

The motivation of the elastic WLAN system study is summarized below:

1. Reduction of operational cost and energy usage:

• An organization generally allocates the number of APs required to ensure high perfor-
mances during peak-hours, and keep the WLANs active for 24-hours a day. However,
only a few of the APs are used during off-peak hours or in holidays. The elastic WLAN
system activates the minimum number of APs required for the current traffic demand,
and saves a huge amount of energy.

• Developing countries like Bangladesh and Myanmar suffer unreliable Internet access
due to discontinuities of electricity supplies for the time being. In such situations, the
elastic WLAN system can improve the network performance through the efficient use
of the available power sources.

2. Improvement of WLAN performances:

• When APs become overloaded by increasing users and suffer from low network per-
formances, the activations of additional APs can maintain the desirable network per-
formances to cope with the increasing traffic demands.

• Due to the backbone network inefficiency, power shortages, or ISP failures, an orga-
nization may receive a lower bandwidth than its expected one. In such cases, cellular
network based mobile APs should be activated in the elastic WLAN system to ensure
the desirable network performance.

• When the number of active APs become high in a network area, users may suffer from
the interferences among them due to overlapping of the frequency signals. In such
situations, the elastic WLAN system can dynamically change assigned channels to
APs in a way to minimize the interferences among them and improve the performance.

The dynamic configuration of the active APs and the host associations in the elastic WLAN
system is provided by the AP configuration algorithm that is the main contribution in this thesis.

3.2 Challenges of Elastic WLAN System Design
The elastic WLAN system can be a solution of the abovementioned issues of WLANs. How-
ever, there are a substantial number of major challenges in developing the elastic WLAN system.
In this section, we show the challenges to implement the elastic WLAN system in real network
environments and the possible solutions to mitigate them.

1. The first major challenge is to collect the necessary network information and generate the
inputs for the AP configuration algorithm in real network environments. This includes the
following key points to consider:

• How to explore the WLAN enabled devices in the network?

• How to collect the necessary information from each host in the network? The informa-
tion includes the currently associated AP, the possible associable APs and the receiving
signal strength (RSS) of each host from all the reachable APs in the network.
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• How to estimate the link speed and interferences from the collected network informa-
tion to use as the inputs to the AP configuration algorithm and the channel assignment
algorithm?

2. The choice of operating system platform and the software is another key challenge of the
elastic WLAN system. The system requires fully customizable tools and integrations of
several software components developed independently.

3. The choice of the WLAN enabled devices in the elastic WLAN system is another challenge.
With the rapid developments of wireless technologies, there are varieties of WLAN enabled
devices in the market. The system should support the integration of heterogeneous WLAN
devices.

4. The final challenge is to apply the changes in the network configuration according to the al-
gorithm outputs. The changes should be carried out remotely and dynamically. This includes
the following points to consider:

• How to automatically activate/deactivate APs according to the network traffic if neces-
sary?

• How to automatically change the channel of APs to minimize the interference if neces-
sary?

• How to automatically change the associations of hosts to the active APs in the network
if necessary?

Our solutions to address the abovementioned challenges are listed below:

• The Linux environment is adopted to implement the elastic WLAN system. The Linux
environment has a lot of tools and software to manage and control the WLAN system. All
of them are open source and can be easily customized. On the other hand, the network
management tools in Windows operating system are less flexible, not customizable, and not
open source to use.

• In our implementation, a centralized network system is assumed, where one PC serves as
the control hub to all the network devices. This server has the administrative access to every
device in the network for the remote command executions. This server executes the AP
configuration algorithm and controls the network remotely.

• There are many tools available to explore the network condition, such as arp-scan [20],
nmap [36][37], and Wireless Network Watcher[38]. We adopted the Linux tool arp-scan
to discover the network devices in this work. Other tools have large response time or not
flexible for customization for our study.

• To collect the network information such the receiving signal strength (RSS) of each host
from the currently associated AP and the possible associable APs, the Linux tool nm-tool
[22][23] is adopted in this study. Other tools are also examined such as iwconfig[33] and
wavemon[39]. Some of them provide RSS of only the associated AP. On the other hand,
nm-tool provides more precise and organized data to be used in the system.
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• To control the network configuration according to the outputs of AP configuration algorithm,
the APs must be controlled remotely. For this purpose, Raspberry Pi is adopted as a con-
figurable and inexpensive AP. The AP mode of Raspberry Pi can be activated/deactivated
through command lines. Raspberry Pi is small in size, cost-efficient, and consumes less
power comparing to laptop PCs.

• The system sometimes needs to change the associations of hosts through command lines to
control the network configuration. The Linux tools nmcli [31][32] and iw [40] are used to
change the association of a host through the command line. nmcli is a part of the network
manager tool by default.

3.3 System Design and Operational Flow
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Figure 3.1: Example elastic WLAN system topology.

Figure 3.1 offers an example topology of the elastic WLAN system. The elastic WLAN system
dynamically controls the number of active APs in the network by activating or deactivating APs
according to the network condition. Figure 3.2 shows the operational flow of the elastic WLAN
system.

Our implementation of the elastic WLAN system adopts a server to manage and control the
APs and the hosts. This server has the administrative access to all the devices in the network. The
server controls the system by the following five steps:

1. The server explores the devices in the network and collects the necessary information for the
AP configuration algorithm.

2. The server executes the AP configuration algorithm using the inputs derived in the previous
step. The outputs of the algorithm contain the list of the active APs and the host associations.
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Figure 3.2: Operational flow of elastic WLAN system.

3. The outputs of the AP configuration algorithm become the inputs to the channel assignment
algorithm. The server executes the channel assignment algorithm, too. The output is the list
of channels for the active APs.

4. The server applies the outputs of the AP configuration algorithm to the network by activating
or deactivating the specified APs and changing the specified host associations.

5. The server assigns the channels to the active APs according to the output of the channel
assignment algorithm.

3.4 Summary
In this chapter, we first described the motivation for the study of the elastic WLAN system. Then,
we introduced the challenges in implementing the elastic WLAN system and possible solutions
to overcome them. Finally, we presented the proposed design and operational flow of the elas-
tic WLAN system. In the next chapter, we will describe the proposed active AP configuration
algorithm for the elastic WLAN system.
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Chapter 4

AP Configuration Algorithm

In this chapter, we present the AP configuration algorithm that dynamically controls the number
of active APs in the network field by activating/deactivating APs based on traffic demands. First,
we present the background of the AP configuration problem, followed by some related works.
Then, we present the formulation of AP configuration problem and its proof of NP-completeness.
Finally, we describe the proposed seven-phase AP configuration algorithm.

4.1 Introduction
The IEEE 802.11 wireless local area networks (WLANs) have been deployed everywhere for the
Internet access [2]. Wireless connections between hosts and APs make WLANs inexpensive, flex-
ible, and scalable. With the rapid advancements of wireless communications, WLAN users can
set up their WLAN systems with different types of APs such as DAPs, VAPs and MAPs accord-
ing to their budgets and demands. The channel and transmission power of each AP are generally
configured by its management group.

However, if many APs are allocated and activated in the same network field, they may result in
overlapping of coverage areas, and hence strong inter-AP interferences which may deteriorate the
communication performance [3]. The configuration of these APs should be arranged according to
the traffic demands and the network topologies.

The elastic WLAN system can adapt the network configuration with respect to network envi-
ronment changes. Specifically, some APs may become crowded during peak hours and users suffer
from low network performances. Then, activating new APs can ensure the expected performance.

Due to the power shortages, the device failures, and the network backbone inefficiency, an
organization receives the lower Internet bandwidth than its expected value. In such cases, the
link speed between the host and the AP needs to be adjusted for a fair Internet access to all the
users. Then, the activations of cellular network based devices like MAPs can ensure the network
performance.

In this research, we propose the active AP configuration algorithm to control the number of
active APs for optimizing the elastic WLAN system under the minimum host throughput constraint
and the use of heterogeneous APs. Three types of AP devices, namely DAPs, VAPs, and MAPs,
are considered in this algorithm. MAPs are embedded with batteries and use cellular networks, so
that they can be flexibly allocated at almost anywhere. In this research, we consider the locations
of the hosts as the candidate positions for the MAPs, because host owners may use MAPs for the
Internet access.
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4.2 Related Works
Several researches have been conducted to improve the performance of the WLAN system and/or
to reduce the operational cost.

In [41], the energy consumption is reduced by minimizing the transmission range of nodes
while ensuring the desired coverage of the field of interest and connectivity of the network. It
uses a scheduling protocol to periodically turn off communication radios i.e., deactivating nodes.
Actually, they consider the dynamic deactivation of APs for wireless sensor networks. On the other
hand, our approach considers a general wired-backbone WLAN.

In [42], an optimal AP placement problem for the uniform quality of services has been pro-
posed to realize the WLAN in public.

In [43], a local search algorithm for the joint AP placement and channel assignment for IEEE
802.11 WLANs is proposed to optimize the performance of the WLAN system. In their AP place-
ments, the loads of APs are not considered in optimizations. On the other hand, in our approach,
the load of each AP is considered to optimize the throughput. The channel interference is not
considered in our approach, which will be in our future works.

In [44], an optimization of the AP aggregation using virtual instances of DAPs has been pro-
posed. The aggregation has been performed considering the receiving signal strength and the
current bandwidth usage of APs.

In [45], an aggressive scheme is proposed to adapt APs according to the density of actual traffic
loads. This method keeps APs inactive to the extent so that the remaining active APs can provide
the coverage for the hosts. The number of active APs is changed according to the changes of traffic
demands of hosts. Unfortunately, the associations of APs and hosts are optimized for given static
traffic demands in this approach, where the dynamic changes of traffic demands are not considered.

In [46], an AP selection algorithm is proposed to maximize the throughput while preserving
the newly arriving user throughput in a multi rate WLAN.

In [47], an active AP selection algorithm is introduced for wireless mesh networks ensuring
the optimal operational cost and throughput. In [48], an AP allocation algorithm is proposed for
wireless mesh networks with multiple gateways and the hop count limitation. These approaches
aim to maximize the throughput by minimizing the number of hops between gateways and APs in
wireless mesh networks while the number of active APs remains the same. On the other hand, in
our approach, the number of active APs is minimized and the associations between APs and hosts
are optimized.

4.3 Network Dynamics under Considerations
In this section, we describe the three major scenarios that we consider in this study for the elastic
WLAN system.

• Network Load Increase Scenario: The number of users increases in the network.

• DAP Failure Scenario: Some DAPs do not function properly due to power shortages or
device failures.

• Bandwidth Limitation Scenario: The total available bandwidth for the whole WLAN drops
by the regulation of the authority or device failures at backbone networks.
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To deal with these network dynamics, the elastic WLAN system works as follows. First, in
the case of network load increase, VAPs by using user PCs are introduced. Second, in the case
of DAP failures, VAPs and MAPs are gradually introduced. Last, in the case of the bandwidth
limitation, MAPs are introduced in the network. The locations of hosts are considered as the
candidate locations of MAPs.

4.3.1 Network Load Increase Scenario
When the network load increases, the number of hosts associated with each AP increases, and
thus, throughputs for certain hosts may decrease. In this case, additional APs should be activated
to meet the required throughput by increasing the internal bandwidth of the network. To satisfy the
minimum host throughput constraint at every AP in the network, our algorithm introduces VAPs
by utilizing PCs that connect to the Internet gateway by Ethernet and the installed VAP software
there.

4.3.2 DAP Failure Scenario
This scenario considers situations where some DAPs are unable to function properly. For example,
because of the power failure, only a few APs can be powered on with backup power sources like
generators or batteries while others remain powered off. When some APs are out of services, the
number of hosts associated with any functioning AP increases, and the overall performance may
not meet the expected level. Like the previous scenario, there is enough available bandwidth but
the internal network cannot fully utilize it due to the active APs shortage. If there are PCs that can
be turned into VAPs, they can be used as APs to increase the bandwidth utilization in the network.
To satisfy the minimum host throughput constraint at every AP, we introduce VAPs first, and then
MAPs if necessary to ensure the minimum throughput for every host.

4.3.3 Bandwidth Limitation Scenario
The total allocated bandwidth to the whole network in an organization may be limited due to unex-
pected reasons like maintenances or some regulation works. This limited total available bandwidth
should be distributed fairly to every host in the network. Otherwise, the total available bandwidth
may be dried up by some greedy users, and the network becomes inaccessible to the remaining
users. Thus, the adjustment of the link speed between a pair of AP and host is necessary, so that
the limited bandwidth is fairly assigned to the users.

To satisfy the minimum host throughput constraint at every AP as best as possible, the number
of active APs should be increased in the network. In this case, this limitation of bandwidth affects
only the wired connection to the backbone network, and the introductions of VAPs will not increase
the available bandwidth. Only MAPs can increase it as they use cellular networks. Thus, we
introduce MAPs into the network to increase the available bandwidth of the network. This extra
bandwidth by MAPs is not affected by the bandwidth limitation.

4.4 Formulation of AP Configuration Algorithm
In this section, we describe the active AP configuration problem to optimize the configuration of
APs for the elastic WLAN system as a combinational optimization problem.
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4.4.1 Basic Terminology
In this section, we briefly describe the definitions of some important terms that are used throughout
this paper.

1. Coordinate of network field(x,y): In our paper, x and y in Eq. (2.2) represent the x-
coordinate and y-coordinate in the network field of the transmission/reception device of a
link.

2. Inactive AP, active AP, and candidate AP: In this paper, we categorize three states of an
AP: inactive AP, active AP, and candidate AP. Initially, APs are switched off and are not
connected to any host. We called them inactive APs. The proposed algorithm turns on some
APs and connects to hosts. These APs are called active APs. Candidate APs are the APs that
are considered that the algorithm can turn on.

3. Available bandwidth and expected bandwidth: Available bandwidth is the total speed al-
located to the network field through wired connections to the backbone network. Expected
bandwidth is the total speed required to the network field through wired connections such
that every host communicates with the associated AP at the given link speed. These band-
widths are compared to find link speed reductions due to the available bandwidth limitation
at the network field.

4. Speed drop rate per wall: In this thesis, the speed drop rate per wall indicates the percent-
age of the speed decrease from the original speed while passing through one wall, which is
used for simulations. Our measurements found that the link speed decreases by about 15%
when the transmitted signal passes through one concrete wall in our building. For example,
in Figure 2.5, the link speed between the AP and the host is 60Mbps without any walls,
while the link speed decreased to 51(= 60 × 0.85)Mbps with a wall. The same speed drop
rate per wall is adopted for any AP or wall type.

5. Modifiable host and modifiable host list: In our algorithm, the modifiable host represents
the host that can be connected to two or more APs to satisfy the minimum host throughput
constraint. Using Figure 4.1, the example for the modifiable host and the modifiable host
list is explained. In this example, the solid line between a host and an AP represents that

Host2 Host3 Host4 Host5Host1

AP1 AP2 AP3

Figure 4.1: Example of modifiable hosts.

this host is connected with that AP, and the dotted line represents that the host is currently
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not connected with that AP but can be connected. In Figure 4.1, when Host2 connects
with AP1, it can also connects with AP2. Hence, Host2 is a modifiable host for AP1. The
modifiable host list for AP1 is {Host2}. Similarly, the modifiable host list for AP2 is {} and
the modifiable host list for AP3 is {Host4}.

4.4.2 Problem Formulation
The AP configuration problem in this paper is formulated as follows

1. Hierarchical optimization :

(a) To minimize the number of active APs (DAPs, VAPs, and MAPs).

(b) Holding the first objective, to maximize the minimum host throughput.

As the provisions in the active AP configuration algorithm for user increase and DAP failure
scenarios, the two cost functions, E1 and E2 are introduced in this study. First, the cost
function E1 is used to represent the number of active APs in the network.

E1 = ED
1 + EV

1 + EM
1 (4.1)

where ED
1 represents the number of active DAPs, EV

1 does the number of active VAPs, and
EM

1 does the number of active MAPs respectively.

The transmission delay of the jth AP can be defined as

T j =

|P j |∑
k=1

Dk

s jk
(4.2)

where Dk represents the traffic of the kth host, s jk represents the link speed between the jth
AP to the kth host and |P j| is the set of hosts that connect to the jth AP. | · | denotes the
cardinality operation.

Then, the throughput of the ith host in the jth AP, Ri j can be calculated by

Ri j =
Di

T j
=

Di

|P j |∑
k=1

Dk
s jk

(4.3)

where Di represents the traffic of the ith host. Then, the minimum host throughput can be
defined by

Rmin, j = min
i=1,2,..,|P j |

[
Di

|P j |∑
k=1

Dk
s jk

]
(4.4)

Since the traffic of each host is unpredictable, we assume the identical traffic of each host,
which can be represented by the unit traffic for the sake of simplicity:

Rmin, j =
1∑

k

1
s jk

(4.5)
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Now, we can formulate the objective function of the problem as follows:

E2 = min
j

[
Rmin, j

]
(4.6)

Under the constraints, we want to maximize E2.

2. Inputs :

(a) Network topology:

• Number of hosts: H
• Number of APs: N = ND + NV + NM where ND, NV and NM respectively represent

the number of DAPs, VAPs, and MAPs.

(b) Information of APs:
• AP ID: i = 1 to N

(c) Information of hosts:
• Host ID: i = 1 to H

(d) Link speed of the ith AP to the jth host, si j (i = 1 to N, j = 1 to H)
The proposed algorithm uses link speeds between APs and hosts as the inputs. The link
speeds can be estimated by measuring the signal strength of the hosts and our derived
formula in Section 2.2.1.

(e) Algorithm parameters:
• Data plan for MAP (Mbps)
• Minimum host throughput constraint: G(Mbps)
• Throughput limit (bounded by the Ethernet capacity) constraint: Ba(Mbps)

3. Outputs :

(a) The set of active DAPs, VAPs, and MAPs
(b) The associated hosts for each active AP

4. Constraints :

(a) Minimum host throughput constraint, G: every host in the network will enjoy the min-
imum throughput.

(b) Throughput limit constraint, Ba: the bandwidth for the wired network must be less
than the total available bandwidth of the network. The total available bandwidth of the
network is determined by the external Ethernet bandwidth.

4.4.3 NP-Completeness of AP Configuration Problem
The AP configuration problem requires extensive computations to obtain the optimal solution. In
this setting, we prove that the AP configuration is an NP-complete problem by reformulating this
problem in the form of the minimum set cover problem [50], which is a well-known NP-complete
problem [49].

To prove the NP-completeness of the AP configuration problem, first the problem is translated
to its decision version. Then, the well known NP-complete problem can be reduced to this decision
version of the AP configuration problem.
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4.4.3.1 Decision Version of AP Configuration Problem

The decision version of the AP configuration algorithm is defined as follows:

• Instance The same inputs as the AP configuration problem and an additional constant E0.

• Question Is there an AP configuration result to satisfy E1 ≤ E0 such that E1 = ED
1 +EV

1 +EM
1 ?

4.4.3.2 Minimum Set Cover Problem

The minimum set cover problem, min set is defined as follows

• Instance A collection C of subsets S i of a finite set S for i = 1, 2, , ..., |C| and a constant
volume K.

• Question Is there an sub-collection C′ ⊆ C such that every element in S is included in at
least one member of C′ and |C′| ≤ K?

4.4.3.3 Proof of NP-Completeness

Clearly, the AP configuration problem belongs to the class NP. Then, an arbitrary min set certifi-
cate can be transformed into the following AP configuration problem instance, which proves the
NP-completeness of AP configuration algorithm.

• Input N = |C| and H = |S | for any host and any AP, the set of associable hosts for the ith AP
= S i and spi j = 1 for the ith AP to the jth host and vice-versa.

4.5 Active AP Configuration Algorithm
In this section, we propose the AP configuration algorithm to realize the elastic WLAN system
by deploying active DAPs, VAPs and MAPs properly. The proposed algorithm first minimizes the
number of active APs in the network, and then, minimizes the transmission delay to ensure the min-
imum host throughput for every host in the network. In addition, the proposed algorithm adjusts
the host link speed if the expected bandwidth is higher than total available bandwidth. As depicted
in Figure 4.2, the proposed algorithm comprises the preprocessing, the initial solution generation,
the host association improvement, the AP selection optimization, the link speed normalization, the
termination check, the additional VAP activation, and the additional MAP activation phases.

4.5.1 Preprocessing
In this phase, if the locations of the hosts and the APs (DAPs, VAPs, or MAPs) are given as
inputs to the algorithm for simulation, the link speed between every possible pair of AP and host
is estimated by using Eq. (2.1) and (2.2) and considering the speed drop rate per wall. Then,
this phase initializes the variables for the next phases. This phase comprises of the following
procedures:

1. For every AP, make a list of hosts that can be associated to this AP. We call this associable
host list for the AP.
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Figure 4.2: Flow chart of the AP configuration algorithm

2. For every host, make a list of APs that can be associated to this host. They are called
associable APs for the host.

3. Initialize each AP as a non-active AP. Initially, only the DAPs are selected as candidate APs.

4.5.2 Initial Solution Generation
In this phase, an initial solution is derived using a greedy algorithm [51]. This provides the initial
number of active APs, E1 and the hosts associated to these APs. This solution quality may be poor
at this stage.

To find the initial solution, the number of active APs, E1 is first initialized by E1 = 0. Then,
the initial AP configuration is found by repeating the following three steps until all the hosts are
covered in the network:

1. From the associable host list for APs, select one AP (let APi) that can cover the maximum
number of uncovered hosts |Pi| and associate all the associable hosts to APi.

2. Activate the AP and increment E1 by one.
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3. Update the number of remaining hosts in the associable host list that can be covered by
remaining APs.

4.5.3 Host Association Improvement
In this phase, host associations of active APs found in the previous phase are improved by randomly
changing the association of a host. This modification is carried out with a view to improve the
overall throughput by optimizing the minimum host throughput, E2. The host association for each
AP is optimized by repeating the following steps with 10,000 times:

1. Change the association of every host to the AP that provides the maximum link speed among
the associable APs. Calculate the cost function E2 and store it as the best found cost at this
stage, Ebest

2 .

2. Find the AP that gives the lowest host throughput in Eq. (4.6), and make the list of modifiable
host that are associated with this AP and can be associated with the other APs.

3. Select one modifiable host randomly from the modifiable host list. Then, randomly associate
this host with another associable active AP. Calculate the new cost function Enew

2 .

4. If Enew
2 >Ebest

2 , replace Ebest
2 by the newly found Enew

2 and keep the new association. Otherwise,
roll back to the previous association and the best cost function Ebest

2 .

4.5.4 AP Selection Optimization
The cost functions E1 and E2 are further jointly optimized in this phase by the local search [52]
under the constraints mentioned before. This phase minimizes the number of active APs, E1, if the
current number of active APs can satisfy the minimum host throughput constraint, G. Otherwise,
this phase increases the number of active APs to satisfy the minimum host throughput constraint.
In both cases, the host association is optimized using Phase 4.5.3. The procedure is described as
follows:

1. Initialize Ebest
1 and Ebest

2 as the current algorithm output after Phase 4.5.3. Repeat Steps 2 to
4 with 40 × N × H times.

2. While Ebest
2 ≥ G (minimum host throughput constraint) is satisfied, repeat the following

procedures:

(a) Select an active AP randomly such that all the hosts associated to this AP, can be
associable to other active APs.

(b) Deactivate this AP and associate all the hosts associated to this AP to other associable
active APs. If there are multiple such active APs, select one in order of the largest
number of unassociated hosts they can cover.

(c) Decrease E1 by one.

(d) Call Phase 4.5.3 to optimize the host association for the current number of active APs.

(e) Calculate the new value for cost function E2, say, Enew
2 .

(f) If Enew
2 >Ebest

2 , replace Ebest
2 by Enew

2 , keep the current association, otherwise roll back to
the previous association.
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3. If Ebest
2 ≥ G is not satisfied, repeat the following procedures with 5 × N times:

(a) Randomly select one non-active AP and activate it.
(b) Select an active AP randomly and deactivate it if all the hosts associated to this AP, can

be associable to currently active APs.
(c) Call Phase 4.5.3 to optimize the host association for the current active APs.
(d) Calculate the new value for the cost function E2 say, Enew

2

(e) If Enew
2 >Ebest

2 , replace Ebest
2 by Enew

2 , keep the current association, otherwise roll back to
the previous association.

4. If Ebest
2 ≥ G is not satisfied in the previous step, do the following:

(a) Randomly select a non-active AP and activate it.
(b) Increase E1 by one.
(c) Call Phase 4.5.3 to optimize the host associations for the current active APs.
(d) Calculate the new value for the cost function E2 say, Enew

2

(e) If Enew
2 >Ebest

2 , replace Ebest
2 by Enew

2 .
(f) Go back to 2.

5. Output the best found result Ebest
1 and Ebest

2 .

4.5.5 Link Speed Normalization
For the bandwidth limitation scenario, we need to adjust the link speed to reflect the total available
bandwidth. First, a new constraint parameter Ba is introduced into our algorithm to represent the
total available bandwidth of the network. We apply the fairness criterion when the total expected
bandwidth exceeds Ba. In this case, the throughput of the ith AP is given by

bi =
|Pi|

|Pi |∑
j=1

1
si j

(4.7)

where |Pi| represents the number of hosts associated with the ith AP, and si j does the link speed
between the ith AP and the jth host. With the derived throughputs for APs, the total expected
bandwidth Be can be computed by

Be =

N∑
i=1

bi (4.8)

If Be is larger than Ba, our algorithm normalizes the link speed si j to satisfy the available bandwidth
limitation:

ŝi j = si j ×
Ba

Be (4.9)

where ŝi j is the normalized link speed. It should be emphasized that only the links associated with
the DAPs or VAPs are adjusted, because the MAPs using cellular networks are not influenced by
the total bandwidth limitation of the wired backbone network.

To normalize the link speed, do the following:

1. Calculate the expected total bandwidth Be using Eq. (4.7) and (4.8)

2. If Be>Ba, adjust every AP-host link speed as described in Eq. (4.9).
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4.5.6 Termination Check
This phase terminates the algorithm when either of the following conditions is satisfied:

1. The minimum host throughput constraint condition is satisfied.

2. All the APs in the network have already been activated.

4.5.7 Additional VAP Activation
If VAPs are not selected for candidate APs, they are selected as candidate APs. Go back to Phase
4.5.3. Otherwise, go to Phase 4.5.8.

4.5.8 Additional MAP Activation
In this phase, the locations of hosts are considered as the locations for the candidate MAPs. The
MAPs are activated sequentially until the minimum host throughput constraint is satisfied. The
location of a newly introduced MAP is found by the following procedure:

1. Find the APs that do not satisfy the minimum host throughput constraint, which are called
unhappy APs in this thesis. This constraint for the jth AP can be checked by:

1
|P j |∑
k=1

1
s jk

≥ G (4.10)

where G represents the minimum host throughput constraint threshold that has been specified
by the network designer.

2. Find the most unhappy AP that has the lowest throughput among the unhappy APs.

3. Select the location of the associated host with this most unhappy AP that has the smallest
link speed for the new MAP.

Here, we must note that when the minimum host throughput constraint is checked, the link speed
for any DAP or VAP is adjusted by Eq. (4.9) if Be > Ba. The additional MAP activation is
completed by repeating the following procedure:

1. Initialize K = 1. K denotes the number of MAPs necessary to be activated to satisfy the
constraint.

2. Apply the procedure to find the location of a newly introduced MAP described above.

3. Turn on the new MAP at the selected location, activate this MAP, and associate hosts to this
MAP holding the minimum host throughput for any host.

4. Apply the Host Association Improvement Phase to improve the host association with a view
to improve the overall throughput.

5. Apply the following Host Association Swapping to further improve the host association in
this AP.
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• Host Association Swapping

1) Initialize Ebest
2 by the current algorithm output value of E2.

2) Select a new pair of hosts that satisfy the following conditions:
a) They are not associated with the same AP.
b) The minimum host throughput, E2 in Eq. (4.6) is increased after the swapping.

If no such pair is found, terminate the procedure and return the Ebest
2 .

3) Swap their associated APs, and calculate value of E2 i.e. Enew
2 .

4) If Enew
2 > Ebest

2 , replace Ebest
2 by Enew

2 . Otherwise, resume the previous host associ-
ations.

5) Go to 2).

6. Check the minimum host throughput constraint in the current solution. If it is not satisfied
and K is smaller than the upper limit, reset the allocated MAPs, increment K by one, and go
to 2. Otherwise, terminate the algorithm and output the final solution.

4.6 Summary
In this chapter, we presented the active AP configuration algorithm for the elastic WLAN system.
Three types of AP devices are considered in this algorithm, namely DAPs, VAPs, and MAPs,
with their link speed differences. The AP configuration problem is formulated as a combinatorial
optimization problem and is proved the NP-completeness of its decision version. The proposed
heuristic algorithm is composed of seven phases. This algorithm can dynamically control the
number of active APs under the constraint of minimum host throughput and heterogeneous APs in
the network. In the next chapter, we will present the channel assignment algorithm for the elastic
WLAN system.
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Chapter 5

Channel Assignment Extension

In this chapter, we present the channel assignment extension to the AP configuration algorithm.
First, we present the background of the extension, followed by some related works. Then, we
formulate the channel assignment problem. Finally, we describe the procedure for the proposed
channel assignment extension for the elastic WLAN system.

5.1 Introduction
In the previous chapter, we presented the AP configuration algorithm for the elastic WLAN system.
We formulated the AP configuration problem, proved its NP-completeness, and proposed its seven-
phase heuristic algorithm [9]. The proposed algorithm dynamically adjusts the number of active
APs in the network field depending on communication demands.

This algorithm assumes that each AP can use a different non-interfered channel from the other
APs to avoid interferences among them at all. In reality, the number of non-interfered channels
available in IEEE 802.11 protocols is limited [11]. Therefore, some APs have to share the same
channel with each other if the number of APs is larger than the number of available non-interfered
channels. Therefore, the proper channels should be assigned to the APs so that it can reduce the
interference as much as possible to improve the network performance.

In this research, we propose the channel assignment extension of the AP configuration algo-
rithm for the elastic WLAN system to solve the above mentioned problem. One channel is assigned
to every active AP from the limited number of the non-interfered channels in a way to minimize
the overall interference in the network, after the active APs and the AP-host associations are found
in the previous algorithm.

Then, the channel load averaging is applied to balance the loads among the channels by chang-
ing some AP-host associations. After the channel assignment, the communication loads among the
channels may become imbalanced, because the previous algorithm finds the AP-host associations
assuming the infinite number of the non-interfered channels.

In short, the contributions of this section are summarized as below:

1. The channel assignment extension to the active APs from the limited number of non-interfered
channels in a way to minimize the overall interference in the network,

2. The load averaging extension among the channels for the throughput improvement after the
channel assignment.
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5.2 Related Works
A variety of studies have been addressed to the channel assignment problem in WLAN. In [53],
the Least Congested Channel Search (LCCS) approach was proposed. The network administra-
tor conducts the on-site survey of radio frequencies to determine the number of APs and their
locations that are required for the coverage. Then, these APs are configured manually with non-
interfered channels to avoid interferences as much as possible. This approach is manual, whereas
our proposal is automatic.

In [54], a centralized traffic and interference-aware channel assignment approach was pro-
posed for a mesh network. Channels are assigned to APs based on the ranking that is generated
from important parameters such as the aggregate traffic, the distance from the gateway node, and
the number of interfaces at each node. This approach focuses on finding the optimal route in a
mesh network allocating non-interfered channels, whereas our proposal assigns channels to APs
in WLAN.

In [55], an interference system model using the interference graph was proposed. The degree
of the interference between two channels is defined using the interference table. Then, the interfer-
ence minimization problem is formulated, and the channel assignment algorithm is developed to
minimize the total interference in the network. This algorithm is a simple greedy one that cannot
often find optimal solutions, whereas our proposal combines a greedy algorithm and a simulated
annealing to seek optimal solutions.

In [56], another interference system model was proposed to consider the channel bonding and
frame aggregation mechanisms in the IEEE 802.11n protocol. First, the throughput of each host in
the system is estimated. Then, a channel assignment problem is formulated and translated into a
throughput optimization problem. Finally, a distributed channel assignment algorithm is developed
for multi-rate 802.11n WLANs. This approach pays the higher cost to exchange the throughput
information among hosts, whereas our proposal is the centralized one to avoid it.

5.3 Formulation of Channel Assignment Problem
In this section, we formulate the channel assignment problem as a combinatorial optimization
problem to present the corresponding algorithm. The channel assignment problem is formulated
as follows:

1. Inputs:

• Output of the AP configuration algorithm: the set of active APs and their associated
hosts

• Number of non-interfered channels

2. Outputs:

• Channel assignment to the active APs

3. Objectives:

• The total interfered communication time E should be minimized.

E =

N∑
i=1

[τi] =

N∑
i=1

[ ∑
k∈Ii

ck=ci

Tk

]
(5.1)
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where τi represents the interfered communication time for APi, Ti does the communi-
cation time for APi, Ii does the set of interfered APs for APi, and ci does the assigned
channel to APi.

4. Constraint:

• Every AP must be assigned one channel.

5.4 Procedure of Channel Assignment Extension
In this section, we describe the procedure for the channel assignment extension to the AP configu-
ration algorithm. Figure 5.1 shows the flow chart for the proposed channel assignment extension.
The outputs of the AP configuration algorithm, namely the list of the active APs, the list of the
hosts and the information of AP-host associations, become the inputs to the channel assignment
extension. The procedure for the channel assignment extension is composed of the four phases.

Interfered AP Set Generation

Initial Solution Construction

Solution Improvement by 

Simulated Annealing

Initialization

AP Selection

Host Selection

Association Change 

Application

Channel Assignment Algorithm Channel Load AveragingINPUT

Input is the 

output of AP 

Configuration

Algorithm

Assignment of 

channels to all 

active APs

Preprocessing

#Active APs

OUTPUT

Figure 5.1: Channel assignment extension flow.

5.4.1 Preprocessing
The interference and delay conditions of the network are represented by a graph.

1. Construct the interference graph, G = (V, E), from the APs and the hosts, where the vertex
V represents the set of APs and the edge E presents the existence of the interference between
two APs. e(i, j) ∈ E if the ith AP is interfered with the jth AP in the network.

2. Calculate the communication time for each AP. The communication time Ti for the ith AP is
defined as the total time when the AP transmits 1-bit to all the associated hosts. It is given
by:

Ti =
∑

j

1
si j
. (5.2)

where si j represents the link speed between the ith AP to the jth host.
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3. Calculate the neighbor interfered communication time for each AP. The neighbor interfered
communication time T̂i for the ith AP is given by:

T̂i =
∑

e(i,k)=1

Tk. (5.3)

5.4.2 Interfered AP Set Generation
The set of APs that are interfering with each other is found for each AP.

1. Sort the APs in descending order of T̂i, where the tie-break is resolved by Ti.

2. Find the interfered AP set for each AP by repeating the following steps:

(a) Initialize the interfered AP set by Ii = {i} for APi.

(b) Expand Ii by checking the APs in the sorted order in (a) whether the AP is interfered
with every AP in Ii. If so, include this AP, AP j into Ii, i.e. Ii = Ii ∪ { j}.

3. Calculate the total interfered communication time T i for the ith AP that is given by:

T i =
∑
k∈Ii

Tk. (5.4)

5.4.3 Initial Solution Construction
Then, an initial solution is derived using a greedy algorithm.

1. Sort the APs in descending order of the total interfered communication time T i, where the
tie-break is resolved by T̂i.

2. Assign a channel c to APi such that the interfered communication time τi is minimized if
assigned. τi is given by:

τi =
∑
k∈Ii
ck=c

Tk (5.5)

where ck is the assigned channel to APk.

3. Repeat 2. until each AP is assigned one channel.

4. Calculate the cost function E using Eq. (5.1) and save this initial solution as the best solution
Ebest.

5.4.4 Solution Improvement by Simulated Annealing
Finally, the initial solution is improved by repeating the following simulated annealing (SA) pro-
cedure with the constant SA temperature T S A for the SA repeating times RS A, where T S A and RS A

are given algorithm parameters:

1. Randomly select one AP and one new channel for the channel change trial.
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2. Calculate the interfered communication time, τi after assigning this new channel by:

τi =
∑
k∈Ii

ck=ci

Tk. (5.6)

3. Calculate Enew using Eq. (5.1) for the new channel assignment, and ∆E = Enew − E.

4. If ∆E ≤ 0, accept the new channel assignment, and keep this new solution as the best one.

5. Otherwise, generate a 0-1 random number, rand, and if rand ≤ −∆E
T S A , then accept the new

channel assignment.

5.4.5 Channel Load Averaging
After the channel assignment to the APs, the total load can be imbalanced between different chan-
nels. That is, some channels may be crowded, and some channels may not. Because the associated
hosts with each AP are fixed during the channel assignment, it is impossible to average the load
by changing host associations. Thus, to further improve the performance of the network, the load
averaging procedure among channels is applied to the solution from the channel assignment.

5.4.5.1 Initialization

The AP flag is initialized by 0(= OFF) for every AP. This flag is used to avoid processing the same
AP again.

5.4.5.2 AP Selection

One AP is selected to move its associated host to a different AP that is assigned a different channel.

1. Terminate the procedure if every AP has 1(= ON) AP flag.

2. Initialize the host flag by 0(= OFF) for every host.

3. Select one AP, say APi, that satisfies the two conditions:

(a) The AP flag is OFF.

(b) The interfered communication time τi is largest among the OFF APs.

4. If one AP is selected, set the corresponding AP flag ON.

5.4.5.3 Host Selection

Then, one host associated with APi is selected for the AP movement.

1. Select one host, say H j, that satisfies the four conditions:

(a) The host flag is OFF.

(b) The host is associated with APi.
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(c) The host can be associated with another AP that is assigned a different channel from
APi, or is located out of the interference range of APi.

(d) The link speed of APi and the host is the smallest among the hosts satisfying (a)–(c).

2. If one host is selected, set the corresponding host flag ON.

3. Otherwise, go back to 5.4.5.2 for the new AP selection.

5.4.5.4 Association Change Application

Finally, the new associated AP is selected for H j.

1. Select the AP that has the largest link speed among the APs found in 5.4.5.3−1. − (c).

2. Calculate the cost function E using Eq. (5.1) if H j is associated with this AP.

3. If the new cost function E is equal to or smaller than the previous E, accept the new associ-
ation, and go back to 5.4.5.3.

4. Otherwise, select another AP that has the next largest link speed, and go back to 2.

5. If no such AP exists, go back to 5.4.5.3 for the new host selection.

5.5 Channel Assignment Example
In this section, we will give a brief explanation of the proposed channel assignment algorithm with
an example. Let us consider the following topology with 8 APs and 17 hosts as shown in Figure5.2.

1 2 4 6

7

8

3

5

HostAP

Figure 5.2: Example channel assignment topology.

The circle and rectangular shapes represent the APs and hosts. An edge between an AP and a
host does the association of a host to that AP. First, the interference graph is constructed from the
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given topology as described in 5.4.2. Figure5.2 shows the derived interference graph. The edge
between two nodes represents the interference between them. Two APs are interfered with each
other if their distance is less than 110m.
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8

3

5

HostAP

Figure 5.3: Interference graph of example channel assignment topology.

Then, the greedy channel assignment algorithm is applied as described in 5.4.3. Figure5.4.
shows the channel assignment after applying the greedy algorithm. In the figure, the different
non-overlapping channels are represented by different shapes.
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Figure 5.4: Channel assignment after greedy algorithm.

Then, the simulated annealing is applied as described in 5.4.4. Figure5.5. shows the channel
assignment after applying the simulated annealing. The figure indicates that the greedy algorithm
fails to assign different channels to AP#6 and AP#7, and AP#6 and AP#8, while the simulated
annealing avoids them.
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Figure 5.5: Channel assignment after simulated annealing.
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5.6 Summary
In this chapter, we first presented the motivation of the channel assignment extension to the AP
configuration algorithm. Then, we formulated the channel assignment problem. Finally, we de-
scribed the procedure for the proposed extension channel including the load averaging for the elas-
tic WLAN system. In the next chapter, we will evaluate the proposed AP configuration algorithm
with extensions using the WIMNET simulator.
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Chapter 6

Evaluation of AP Configuration Algorithm
by Simulation

In this chapter, we evaluate the proposed AP configuration algorithm in various network envi-
ronments using the WIMNET simulator [47]. First, we give a brief description of the WIMNET
simulator and its extensions for simulating the AP configuration algorithm. Then, we evaluate the
AP configuration algorithm through simulations in two different network topologies. Finally, we
evaluate the channel assignment extension and the load averaging through simulations in different
two network topologies.

6.1 WIMNET Simulator
The WIMNET simulator [47] has been originally developed to evaluate a large-scale Wireless
Internet-access Mesh NETwork (WIMNET) with a reasonable CPU time on a standard PC. Some
modifications have been made to the WIMNET simulator for the simulations of the elastic WLAN
system with heterogeneous APs.

This simulator simulates the least functions for wireless communications between hosts and
APs that are required to estimate throughputs or delays. Several network field parameters such as
host locations, AP locations, link distances, communication routes, wall existences, and repeater
existences are adopted in the WIMNET simulator. The sequence of the wireless communications
including the host movements, the communication request arrivals, and the link activations is syn-
chronized by a single global clock called a time slot. Within an integral multiple of time slots, a
host or an AP can complete the one-frame transmission and the acknowledge reception. Different
transmission rates can be set by manipulating the number of time slots required for the one link
activation. Table 6.1 summarizes the hardware and software platforms used in our simulations.

Table 6.1: Simulation Environment.

simulator WIMNET Simulator
interface IEEE 802.11n

CPU Intel Core i7
memory 4 GB

OS Ubuntu LTS 14.04

In this thesis, two types of nodes, namely VAPs and MAPs, are newly introduced in the WIM-
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NET simulator, in addition to existing hosts and DAPs. For each MAP, the corresponding gateway
node is introduced so that every host associated with the MAP has the Internet access through this
gateway.

6.2 Network Environments
In this thesis, we consider the indoor network environment inside a building for the target one
of our proposal, because wireless local area networks (WLANs) are usually used there. In such
environments, users often use personal computers (PCs) to access the Internet at fixed positions
where chairs or tables are available. The mobility of WLAN users is much lower than that of
cellular system users, because PCs are much larger and heavier than smart phones, and often
require the use of both hands. Thus, WLAN users connect with WLANs while sitting on chairs
and putting their PCs on tables. Besides, to consider the effects by the walls along the transmission
link between two devices in simulations, it is assumed that the link speed is reduced by 15% each
time the link passes through one wall. The hosts here are often regularly distributed since students
have their fixed positions in the laboratories.

6.3 Evaluation of AP Configuration Algorithm
In this section, we evaluate the AP configuration algorithm in two network instances using the
WIMNET simulator. First, we present simulation results under network environment changes.
Then, we present the results under different values of the MAP speed and the wall effect. Finally,
we compare the performance of our algorithm with other algorithms.

6.3.1 Simulations Under Network Environment Changes
The proposed AP configuration algorithm is first evaluated sequentially in three scenarios men-
tioned in Section 4.3. We consider the network topology which models the third floor of Engi-
neering Building-2 in Okayama University, Japan, where it is slightly modified for simulations.
There are six rooms with two different sizes, 7m × 6m and 3.5m × 6m. We allocated two DAPs
and 10 VAPs in this field. The number of MAPs is determined by the proposed algorithm. Any
DAP or VAP is connected to the Internet via a wired cable, and the MAP is connected to the Inter-
net through the cellular mobile network. Various cases are considered with the different number of
hosts from 40 to 60, the different minimum host throughput constraint, G from 5Mbps to 10Mbps,
and the different throughput limit Ba from 50Mbps to 150Mbps for limited bandwidth scenario,
otherwise∞.

6.3.1.1 Network Load Increase Scenario Result

First, we consider the scenario where the increase of users raises the loads on the network. The
number of hosts H and the minimum host throughput constraint G are both increasing. Table 6.2
summarizes the simulation results for this scenario. The table shows the required number of ac-
tive APs, the analytical result estimated by our algorithm, and the numerical result generated by
the WIMNET simulator for different network loads and different minimum host throughput con-
straints. Throughout this paper, ana. min. host through. represents the analytical minimum host
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throughput estimated by our algorithm, num. min. host through. represents the numerical min-
imum host throughput and num. overall through. represents the numerical overall throughput
generated by the WIMNET simulator.

Table 6.2: Simulation results for network load increase scenario with DAP=2, VAP=10, and Ba =

∞.

G (Mbps) 5 10
number of hosts (H) 40 50 60 40 50 60
active VAPs 1 2 3 6 9 10
ana. min. host through. 5.97 5.53 5.51 11.08 10.97 9.95
num. min. host through. 6.54 5.79 5.75 10.68 10.82 9.97
num. overall through. 245.47 289.63 345.39 441.59 563.92 580.11

This table indicates that, as the number of hosts increases, the algorithm increases the num-
ber of active VAPs, and that the larger minimum host throughput G requires more VAPs. Un-
fortunately, the algorithm cannot find a feasible solution for the extreme network load of hosts
H = 60and the minimum host throughput G = 10 where more APs are presumably required.

6.3.1.2 Solution Example

To illustrate this network topology, Figure 6.1 shows one solution determined by the algorithm for
the DAP failure scenario with H = 60, G = 10, one active DAP, 10 active VAPs, and five active
MAPs, presented in Table 6.3. It is observed that the DAP has the largest number of associated
hosts, and the MAPs have the smallest number of associated hosts. The number of associated hosts
is nearly proportional to the link speed. In this figure, each DAP, VAP, and MAP is connected
respectively to 10, 4 and 2 hosts and the link speed to the Internet is around 100Mbps, 40Mbps,
and 20Mbps.

6.3.1.3 DAP Failure Scenario Result

Then, we consider the DAP failure scenario where one DAP is not functioning properly. The same
number of hosts H and the same value for the minimum host throughput constraint G are used as
those in the previous scenario. Table 6.3 summarizes the results for this scenario.

Table 6.3: Simulation results for DAP failure scenario with DAP=1, VAP=10, data plan =

30Mbps, and Ba = ∞.

G (Mbps) 5 10
APType VAP MAP VAP MAP VAP MAP VAP MAP VAP MAP VAP MAP
number of hosts (H) 40 50 60 40 50 60
active number 3 0 4 0 6 0 8 0 10 1 10 5
ana. min. host through. 5.99 5.62 6.03 10.98 10.05 10.13
num. min. host through. 5.96 5.61 5.97 10.82 10.09 10.04
num. overall through. 238.45 280.67 359.20 440.95 505.27 583.26

This table indicates that our algorithm can find a feasible solution that satisfies the constraints
by activating more VAPs than the previous scenario and activating new MAPs if necessary. When
a DAP fails, the throughput in the network drops and additional AP activations are needed to
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Figure 6.1: Solution of proposed algorithm for scenario with H = 60, G = 10, DAP=1, VAP=10,
MAP=5, and data plan=30Mbps in Okayama University instance.

maintain the minimum host throughput constraint in the network. For additional traffic demands,
our algorithm first activates the VAPs, and then activates the MAPs if necessary in the network.
Even if one DAP is failed, it can satisfy G = 10, the minimum host throughput constraint, by
activating five MAPs.

6.3.1.4 Bandwidth Limitation Scenario Result

Finally, we consider the bandwidth limitation scenario, where the total available bandwidth for
the network is limited. The same number of hosts H is used as those in the previous scenarios. The
minimum host throughput constraint G is fixed as 5. The throughput limit constraint Ba is set 150,
100, and 50Mbps. If two DAPs are active, they consume all the capacity of the wired access to the
Internet, where VAPs become useless in this scenario. Then, the activations of MAPs can provide
the additional bandwidth if it is necessary in the network.

Table 6.4 summarizes the results for this scenario. This table indicates that our algorithm
can find a feasible solution by activating more MAPs than the previous scenarios. When Ba de-
creases from 150Mbps to 50Mbps, our algorithm activates more MAPs to satisfy the minimum
host throughput constraint by increasing the bandwidth for the Internet connections. For 40 users,
when Ba is 150Mbps, two DAPs along with three MAPs can satisfy the minimum host throughput
constraint. When Ba is 100Mbps, 1 DAP and six MAPs are needed, and when Ba is 50Mbps, one
DAP and nine MAPs are needed to satisfy the minimum host throughput constraint.
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Table 6.4: Simulation results for bandwidth limitation scenario with DAP=2, VAP=10, G = 5, and
data plan = 30Mbps.

Ba number of hosts (H) 40 50 60
(Mbps) AP Type DAP MAP DAP MAP DAP MAP

active number 2 3 2 7 2 10
150 ana. min. host through. 5.23 5.32 5.21

num. min. host through. 5.21 5.31 5.17
num. overall through. 213.32 267.13 316.54
active number 1 6 1 9 1 12

100 min. host through. 5.16 5.21 5,16
num. min. host through. 5.09 5.09 5.11
num. overall through. 209.44 259.84 307.37
active number 1 9 1 12 1 14

50 ana. min. host through. 5.04 5.08 5.03
num. min. host through. 5.01 5.03 5.01
num. overall through. 201.55 257.41 302.12

6.3.2 Simulations Under Various Parameter Values
Then, we evaluate the effectiveness of the AP configuration algorithm under different values of the
MAP speed and the wall effect for the algorithm. Since a MAP uses a cellular network to connect
with the Internet, the access speed to the Internet can be different depending on the adopted data
plan and the network environment such as the distance from the connecting base station and the
number of users at the station. Thus, we evaluate the performance of the algorithm under different
MAP speeds.

When there exists a wall between an AP and a host, the link speed drops significantly. Then,
the overall performance of the network degrades and may not meet the throughput requirement.
MAPs are again introduced into the network to increase the available bandwidth of the network. In
[19], we found that the link speed can be dropped by about 15% when the signal passes through
one 5 inch concrete wall in a room, and about 30% if the wall is 10 inch.

For this evaluation, we consider the network topology which models the second floor of Science
Building in Kabi Nazrul University, Bangladesh. There are six rooms with two different sizes,
7m × 6m and 3.5m × 6m. We allocated three DAPs in this field. Any DAP is connected to the
Internet via a wired cable, and the MAP accesses the Internet by the cellular mobile network. We
consider the cases with the number of hosts H = 40, 50, and 60, the minimum host throughput
G = 5, the drop rate of the speed at a wall is 0% to 30%, and the data plan for MAPs 12, 18 and
24Mbps 1.

6.3.2.1 Solution Example

To illustrate this network topology, Figure 6.2 shows one solution found by the algorithm for
H = 60, G = 5, and data plan for MAP = 24Mbps with 2 active DAPs and 8 active MAPs, which
is presented in Table 6.5. Again, we observe that the DAP has the largest number of associated
hosts, while the MAPs have the least number of associated hosts.

1To evaluate the additional MAP activation phase, any VAP is not used in this instance.
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Figure 6.2: Solution for bandwidth limitation with mobile data plans scenario with H = 60, G = 5,
data plan = 24Mbps, DAP=2, and MAP=8 in Kabi Nazrul University instance.

6.3.2.2 Results for MAP Speed Changes

Here, we consider changes of the MAP speed for different data plans for MAPs. The number of
hosts H = 60 and the minimum host throughput G = 5 are used. Table 6.5 summarizes the results

Table 6.5: Simulation results for MAP speed changes for G = 5.

data plans for MAPs (Mbps) 12 18 24
active MAPs 11 9 8
ana. min. host through. 5.09 5.17 5.25
num. min. host through. 5.06 5.21 5.22
num. overall through. 309.43 315.99 318.23

for this scenario. This table indicates that when the MAP speed in the data plan increases from
12Mbps to 24Mbps, our algorithm reduces the number of active MAPs.

6.3.2.3 Results for Wall Effect Changes

Then, we consider the changes of the wall effect for H = 60, the minimum host throughput G = 5,
and the speed drop rate per wall are increasing from 0% to 30%. Table 6.6 summarizes the results
for this scenario. This table indicates that as the speed drop rate becomes larger, the algorithm
increases the number of active MAPs in the network to satisfy the throughput constraints.

Table 6.6: Simulation results for wall effect changes for G = 5

speed drop rate per wall 0% 15% 30%
active MAPs 4 8 11
ana. min. host through. 5.19 5.16 5.12
num. min. host through. 5.18 5.15 5.11
num. overall through. 323.34 318.72 312.67
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6.3.3 Comparisons with Greedy Algorithm
Finally, we evaluate the performance of our algorithm by comparing it with other algorithms.
To the best of our knowledge, this work is the first one that investigates this issue. Thus, we
implemented a simple greedy algorithm for the AP configuration problem by ourselves for the
purpose of comparisons:

1. Activate one AP (let APi) that satisfies the following three conditions:

(a) It is inactive.

(b) Its throughput is the highest among the candidates.

(c) It can cover the maximum number of uncovered hosts among the candidates.

2. Associate the host with APi sequentially that satisfies the following four conditions, until no
more host can be associated:

(a) It is uncovered.

(b) It can be associated with APi.

(c) Its link speed is the maximum among the candidates.

(d) The minimum host throughput constraint is satisfied after the association.

3. Terminate the procedure if every host is covered or every AP is activated.

4. Go to 1.

Then, we applied this greedy algorithm to Okayama University instance (1st instance) and
KabiNazrul University instance (2nd instance). For 1st instance, we applied the greedy algorithm
with the network load increase scenario and for the 2nd instance we applied it with the MAP speed
change scenario.

Tables 6.7 and 6.8 show the comparison results respectively. These simulation results show
that, except the case of 24Mbps data plan in Table 6.8, the proposed algorithm activates the less
number of MAPs compared with the greedy algorithm, which demonstrates the effectiveness in the
first priority of our proposal, i.e., the active AP minimization. The second priority in this work is
the optimization of the minimum host throughput. As demonstrated by the numerical experiments,
for all the cases, the proposed algorithm delivers the higher minimum host throughput than the
greedy algorithm, since the proposed algorithm yields the better host associations.

Note that for the case of 18Mbps data plan, the analytical minimum host throughput of the
greedy algorithm is slightly higher (20Kbps). This is because that, the analytical calculation in
Eq. (4.10) assumes all the hosts transmit the same amount of data, which results in several hundred
Kbps estimation errors as shown in Table 6.7 and Table 6.8. By far, the difference of 20Kbps is
due to this approximation error and hence can be ignored.

6.4 Evaluation of Channel Assignment Extension
In this section, we evaluate the channel assignment extension to the AP configuration algorithm
in Chapter 5 through simulations in two network topologies using the WIMNET simulator [47].
Here, we describe the simulation platform with adopted parameters for the WIMNET simulator,
the simulated network topologies, and the simulation results.
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Table 6.7: Comparison results between the proposed algorithm and the greedy algorithm for
Okayama University instance: network load increase scenario with DAP=2, VAP=10, G = 5,
and Ba = ∞.

Number of Hosts (Mbps) 40 50 60
Comparison Greedy Proposed Greedy Proposed Greedy Proposed
active VAPs 2 1 3 2 4 3
ana. min. host through. 5.03 5.97 5.11 5.53 5.10 5.51
num. min. host through. 5.02 6.54 5.14 5.79 5.00 5.75
num. overall through. 209.72 245.47 262.14 289.63 304.93 345.39

Table 6.8: Comparison results between the proposed algorithm and the greedy algorithm for Kabi-
Nazrul University instance: MAP speed change scenario with DAP=2, H = 60 and G = 5, and
Ba = ∞.

Data plans for MAPs (Mbps) 12 18 24
Comparison Greedy Proposed Greedy Proposed Greedy Proposed
active MAPs 15 11 10 9 8 8
ana. min. host through. 5.03 5.09 5.19 5.17 5.20 5.25
num. min. host through. 4.81 5.06 4.95 5.21 4.75 5.22
num. overall through. 299.27 309.43 314.11 315.99 303.52 318.23

6.4.1 Network Topologies
As the first topology, the random topology in Figure 6.3 is considered, where 30 hosts and 8 DAPs
are distributed in a 400m × 200m rectangular area. The circles and squares represent the APs
and hosts respectively. The minimum host throughput constraint G = 5 and the bandwidth limit
constraint Ba = ∞ are examined. For simplicity, VAPs and MAPs are not used in this topology.

Active AP Inactive APHost

Figure 6.3: Random topolgy with 30 hosts and 8 DAPs.

Then, as the second topology, the regular topology in Figure 6.4 is considered, which basically
models the third floor of Engineering Building-2 in Okayama University, Japan. There are six
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rooms with two different sizes, 7m × 6m and 3.5m × 6m. Six DAPs and 60 hosts are regularly
distributed in the field. The minimum host throughput constraint G = 5 and the bandwidth limit
constraint Ba = ∞ are examined.

Room D304 Room D306Room D305

Room D303Room D302Room D301

Active AP Inactive APHost

Figure 6.4: Regular topolgy with 60 hosts and 6 DAPs.

6.4.2 Evaluation of Channel Assignment Algorithm
Firstly, the channel assignment algorithm in Section 5.4 is evaluated in the two topologies with two,
three, and four channels. Here, the throughput results by the random channel assignment and the
algorithm assignment without using SA are also obtained through simulations, in order to compare
them with the proposed channel assignment extension. To avoid the bias in the random channel
assignment, 20 different channel assignments are generated by using different random numbers,
and their average results are used in evaluations. Tables 6.9 and 6.10 show the minimum host
and overall throughput results in the three cases for the random topology and the regular topology
respectively. They indicate that the greedy initial solution in our algorithm provides better results
than the random assignment, and SA can further improve them by reducing interferences. With
four channels, the greedy initial solution has no interference, which cannot be improved by SA.

Figure 6.5 compares the channel assignment results before and after applying SA, where differ-
ent channels are represented by different shapes for APs. They indicate that in the initial solution of
the algorithm, the same channel is assigned to AP#6, AP#7, and AP#8, which causes interferences,
and it is resolved by applying SA.
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Table 6.9: Throughput comparisons in three cases of channel assignment for random topology.

# of channels 2 3 4
case random w/o SA with SA random w/o SA with SA random w/o SA with SA
# of active APs 8 8 8 8 8 8 8 8 8
min. host through. 3.63 3.87 4.73 4.68 5.10 6.61 5.04 6.61 6.61
overall through. 113.76 120.53 147.96 145.06 154.91 201.46 151.74 201.46 201.46

Table 6.10: Throughput comparisons in three cases of channel assignment for regular topology.

# of channels 2 3 4
case random w/o SA with SA random w/o SA with SA random w/o SA with SA
# of active APs 4 4 4 4 4 4 4 4 4
min. host through. 3.05 3.17 3.27 3.13 3.24 3.4 3.51 6.17 6.17
overall through. 188.27 200.06 201.67 191.88 201.07 205.07 222.61 402.12 402.12

6.4.3 Evaluation of Channel Load Averaging
Secondly, the channel load averaging (CLA) in Section 5.4.5 is evaluated in the two topologies
with two, three, and four channels. Tables 6.11 and 6.12 compare the minimum host and overall
throughput results between the cases with and without applying CLA for the random topology and
the regular topology respectively. They indicate that CLA can further improve the throughput by
averaging the loads among the channels, except for two channels case where the loads between
two channels are already balanced before SA.

Table 6.11: Throughput comparisons between two cases of channel load averaging for random
topology.

# of channels 2 3 4
case w/o CLA with CLA w/o CLA with CLA w/o CLA with CLA
# of active APs 8 8 8 8 8 8
min. host through. 4.39 4.39 6.61 6.80 6.61 6.80
overall through. 147.96 147.96 201.46 219.23 201.46 219.23

Table 6.12: Throughput comparisons between two cases of channel load averaging for regular
topology.

# of channels 2 3 4
case w/o CLA with CLA w/o CLA with CLA w/o CLA with CLA
# of active APs 4 4 4 4 4 4
min. host through. 3.27 3.27 3.4 4.5 6.17 6.19
overall through. 201.67 201.67 205.07 283.27 402.12 404.34

6.4.4 Evaluation of Dynamic Network Load Changes
Thirdly, we evaluate the performance of the proposed algorithm when the network load changes
dynamically. In simulations, the number of hosts is changed from 20 to 30 for the random topology,
and from 40 to 60 for the regular topology respectively. Tables 6.13 and 6.14 summarize the

52



3 7

421

5

6

8

(a) Before simulated annealing

3 7

421

5

6

8

(b) After simulated annealing

Figure 6.5: Channel assignment results by algorithm for random topology with three channels.

simulation results respectively. They indicate that depending on the number of hosts, the algorithm
dynamically optimizes the number of active APs in the network while satisfying the minimum host
throughput constraint.

Table 6.13: Simulation results under network load changes for random topology.

# of hosts 10 20 30
algorithm proposed random proposed random proposed random
# of active APs 3 3 5 5 8 8
min. host through. 5.0 4.01 5.78 4.07 6.80 5.04
overall through. 54.09 42.43 124.78 93.17 219.23.47 151.74

Table 6.14: Simulation results under network load changes for regular topology.

# of hosts 40 50 60
algorithm proposed random proposed random proposed random
# of active APs 2 2 3 3 4 4
min. host through. 5.09 3.87 5.85 3.84 6.19 3.51
overall through. 209.13 163.73 303.12 209.52 404.34 222.61

6.4.5 Evaluation of Network with Uncontrolled APs
Fourthly, we evaluate the extension for the two network topologies when the number of APs that
cannot be deactivated by the algorithm/system is increased from 1 to 4. Here, the APs that cannot
be deactivated by the system are calleduncontrolled APs in this paper. The uncontrolled APs are
always active where their channels are assigned randomly. In simulations, the uncontrolled APs
are randomly selected, and the average results are examined after 10 trials are repeated for each
number of uncontrolled APs to avoid the bias in random selections.

Tables 6.15 and 6.16 summarize the simulation results for the random topology and regular
topology respectively. They indicate that the network throughput drops when the number of un-
controlled APs increases in the network.
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Table 6.15: Simulation results with uncontrolled APs for random topology.

# of uncontrolled APs 0 1 2 3 4
# of active APs 8 8 8 8 8
min. host through. 6.80 6.43 6.03 5.26 5.14
overall through. 219.23 197.56 189.11 161.79 156.21

Table 6.16: Simulation results with uncontrolled APs for regular topology.

# of uncontrolled APs 0 1 2 3 4
# of active APs 4 4 4 4 4
min. host through. 6.19 6.16 4.94 4.01 3.47
overall through. 404.34 402.12 307.42 282.56 220.51

6.4.6 Comparison with Existing Algorithm
Finally, the performance of the proposed channel assignment algorithm is evaluated through com-
parisons with the representative existing algorithm called the ADJ-minmax approach [55]. In the
simulations of both algorithms, the same interference model is adopted for fair comparisons. Ta-
bles 6.17 and 6.18 compare the minimum host and overall throughput results between the proposed
algorithm and the ADJ-minmax approach for the random topology and the regular topology respec-
tively. They indicate that the proposed algorithm increases the overall throughput by 3% and 1%
for the random topology with two and three channels, and by 1% and 38% for the regular topology
with two and three channels respectively.

Table 6.17: Throughput comparisons between proposed algorithm and ADJ-minmax for random
topology.

# of channels 2 3
algorithm proposed ADJ-minmax proposed ADJ-minmax
# of active APs 8 8 8 8
min. host through. 4.7 4.7 6.8 6.8
overall through. 147.97 144.27 219.23 217.28

Table 6.18: Throughput comparisons between proposed algorithm and ADJ-minmax for regular
topology.

# of channels 2 3
algorithm proposed ADJ-minmax proposed ADJ-minmax
# of active APs 4 4 4 4
min. host through. 3.31 3.30 4.50 3.39
overall through. 201.67 200.30 283.27 204.98

6.5 Summary
In this chapter, we first introduced the WIMNET simulator and network environments for simu-
lations. Then, we evaluated the AP configuration algorithm through simulations in two network
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scenarios using the WIMNET simulator. After that, we evaluated the channel assignment exten-
sion in two different network instances using the same simulator. In next chapter, we will present
the implementation of the elastic WLAN system using the AP configuration algorithm and its
evaluation using the testbed.
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Chapter 7

Elastic WLAN System Implementation
Using Raspberry Pi

In this chapter, we present the implementation of the elastic WLAN system and evaluate it using the
testbed. First, we provide the background and motivation of the elastic WLAN system, followed
by some related works. Then, we present the system topology for the elastic WLAN system and
describe the implementation procedures. Finally, we verify the feasibility and performance of the
implementation through experiments using the testbed.

7.1 Introduction
In a network, traffic demands can change by the network environments. Therefore, a WLAN sys-
tem should be adaptive and elastic to the change of the network environments and traffic demands.
For this purpose, in [9][13], we proposed the active AP configuration algorithm to activate the
minimum number of APs in the network while satisfying the constraints of the throughputs offer-
ing for the hosts. Unfortunately, we have verified the effectiveness of the proposal through only
simulations. To show the effectiveness in real worlds, need to we implement the elastic WLAN
system using WLAN devices.

In this chapter, we present the system design of the elastic WLAN system and its implementation
usingRaspberry Pi for the AP and Linux PC for the host. Raspberry Pi is a small-size low-cost
computer, and uses the open-source operating system, Linux. Thus, it has become popular in cost
efficient embedded system designs including wireless networks.

In this work, we use several Linux tools and commands to collect necessary information of
the system in real time for the algorithm input, and to activate/deactivate APs and the AP-host
associations according to the output of the algorithm. Besides, we prepare a testbed, and evaluate
the practicality and the performance of the elastic WLAN system testbed in a real network.

7.2 Related Works
In this section, we show our brief surveys to this work.

In [57], Moursy proposed a testbed implementation of an automatic network performance man-
agement framework for a mesh network.

In [58], Lei et al. proposed a campus WLAN framework based on the software defined network
(SDN) technology.
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In [59], Luengo et al. also proposed a design and implementation of a testbed for integrated
wireless networks based on SDN. Although this framework is flexible, it requires SDN-enabled
devices and network virtualizations.

In [60], Ahmed et al. describe the important design issues in preparing a large-scale WLAN
testbed for evaluations of centralized control algorithms and presented experimental results. They
did not analyze the power-saving and adaptive control mechanism of centralized WLANs, which
is one of the main purposes of our research.

In [61], Debele et al. proposed a Resource-on-Demand (RoD) strategy for energy-saving in
dense WLANs where they analyzed user behaviors in the network and formulated the stochastic
characteristics. Our system also adapts with the user demands. Moreover, we present a implemen-
tation of our system in real networks.

7.3 System Topology
Figure 7.1 shows a simple network topology of the elastic WLAN system including the manage-
ment server. This server has the administrative access to all the devices in the network. It collects
the necessary information to the inputs of the AP configuration algorithm, executes the algorithm,
and controls the activations/deactivations of the APs and the associations of the hosts according to
the algorithm output. In this implementation, Raspberry Pi is used for the AP and a Linux laptop
PC is for the host and the management server.
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Figure 7.1: Elastic WLAN system topology.
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7.4 Implementation Procedures
In this section, we describe the implementation of the elastic WLAN system usingRaspberry
Pi.The implementation for the channel assignment extension with the load averaging is also pre-
sented. Figure 7.2 shows the execution procedure for the elastic WLAN system implementation.

Generation of Input for AP Configuration 

Algorithm

Execution of AP Configuration Algorithm

Execution of Channel Assignment 

Extension

AP Configuration of Raspberry Pi

Application of AP Configuration

Application of Channel Assignment

Figure 7.2: Elastic WLAN system execution flow.

7.4.1 AP Configuration of Raspberry Pi
First, Raspberry Piis set up as the AP by using host access point daemon (hostapd) [25][26].
hostapd is capable of turning network interface cards (NICs) into access points (APs) by the fol-
lowing steps:

1. Install the hostapd using the following command:

$ sudo ap t −g e t i n s t a l l h o s t a p d

2. Modify the configuration file /etc/hostapd/hostapd.conf with desired SSID and PASSWORD.
A simple example of hostapd.conf file is given below:

i n t e r f a c e =wlan0
s s i d =SSID
c h a n n e l =1
w p a p a s s p h r a s e=PASSWORD

3. Uncomment and set DAEMON CONF to the absolute path of a hostapd configuration file to
start hostapd during system boot:
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DAEMON CONF=” / e t c / h o s t a p d / h o s t a p d . con f ”

4. Setup the wlan0 interface to have a static IP address in the network interface configuration
file /etc/network/interfaces. An example of interface file is given below:

a u t o wlan0
i f a c e wlan0 i n e t s t a t i c
a d d r e s s 1 9 2 . 1 6 8 . 1 . 1 1
netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
ne twork 1 9 2 . 1 6 8 . 1 . 0

7.4.2 Generation of Input for AP Configuration Algorithm
The management server explores all the connected devices in the network, and generates the input
data for the AP configuration algorithm by the following three steps:

1. The Linux tool arp-scan [20] is used to scan the network. The command is given below:

$ sudo arp −s can −− i n t e r f a c e =e t h 0 1 9 2 . 1 6 8 . 1 1 . 0 / 2 4

Here, eth0 represents the network device and 192.168.11.0/24 does the range of the IP ad-
dresses to scan. The output from the command consists of the IP and MAC addresses of the
hosts and the APs available in the network. A simple C program was developed to identify
the hosts and APs in this system using the MAC addresses of the devices.

After this step, the server generates the following lists:

• List of permitted APs.

• List of permitted hosts.

2. The Linux command nm-tool [22][23] is executed remotely from the server in each host to
find the receiving signal strength from each AP. The ssh [28][29] protocol is used for the
remote procedure call. The command is given below:

$ sudo nm− t o o l

After this step, the server has the following information:

• Currently associated AP.

• List of the associable active APs.

• Receiving signal strength from each associable AP.

3. The signal strength is converted to the estimated link speed using the sigmoidal function
in [34]. Then, the collected information is used to generate the input file for the AP config-
uration algorithm.
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7.4.3 Execution of AP Configuration Algorithm
After the input file is generated, the minimum host throughput constraint and the bandwidth limita-
tion constraint are specified by the user. Then, the AP configuration algorithm is run with a given
number of available channels using the following bash script:

$ g++ −o apc A P C o n f i g u r a t i o n A l g o r i t h m . cpp
$ . / apc i n p u t . t x t m i n h o s t t h r o u g h p u t b w l i m i t

In this script, input.txt is the input file generated in the previous step, min host throughput does
the minimum host throughput constraint, and bw limit does the bandwidth limitation constraint.
After it, the list of active APs and their association with the hosts is obtained from the algorithm.

7.4.4 Execution of Channel Assignment Extension
Then, the channel assignment extension is applied using the following bash script:

$ g++ −o ca Channe lAss ignment . cpp
$ . / ca H o s t A P a s s o c i a t i o n . t x t n u m o f c h a n n e l s

In this script, HostAPassociation.txt is the input file for the channel assignment extension that
contains the list of active APs and their associations with the hosts that are derived in the previous
step, and num of channels does the number of available channels.

7.4.5 Application of AP Configuration
The management server applies the algorithm output to the APs and hosts in the network by acti-
vating or deactivating APs and changing the host associations.

1. Activation/Deactivation of APs: The AP-mode of Raspberry Pi can be activated or deacti-
vated by the following commands:

$ sudo / e t c / i n i t . d / h o s t a p d s t a r t
$ sudo / e t c / i n i t . d / h o s t a p d s t o p

2. It is necessary to change the associations of the hosts to the active APs that are suggested by
the AP configuration algorithm. The following Linux command nmcli [31][32] is adopted to
change the association of a host and an AP:

$ sudo −s nmc l i dev w i f i c o n n e c t NewSSID password PASSWORD

Here NewSSID represents the new AP for the host and PASSWORD does the security key of
the AP.
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7.4.6 Application of Channel Assignment
The management server assigns the specified channel in the algorithm output to each AP. To assign
a channel in Raspberry Pi, the configuration file /etc/hostapd/hostapd.conf has to be modified with
this channel number. After this modification, the hostapad process must be restarted to make
the change take effect. The Linux command sed[62] is used for the purpose. Then, the required
commands are given below:

$ sed − i −e ‘ s / . ∗ c h a n n e l . ∗ / c h a n n e l = ’ $NewChannel ‘ / ’
/ e t c / h o s t a p d / h o s t a p d . con f
$ sudo / e t c / i n i t . d / h o s t a p d r e s t a r t

Here, ‘s’ represents the substitution command and NewChannel does the channel to be assigned
in the hostapd.conf file of the AP.

7.5 Evaluation by Testbed
In this section, we evaluate the elastic WLAN system testbed using the proposed AP configuration
algorithm, using two network scenarios.

7.5.1 Network Scenarios
For evaluations, two network scenarios for the elastic WLAN system testbed, namely, the 3 × 3
scenario and the 5 × 5 scenario, are prepared in our building.

7.5.1.1 3 × 3 Scenario

In this scenario, three Raspberry Pi devices for APs and three Linux PCs for hosts are prepared in
a 7m × 6m room. As shown in Figure 7.3, any AP is located 1m away from its neighbor APs, and
any host is 1m away from its associated AP.
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Figure 7.3: Testbed for 3 × 3 scenario.
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7.5.1.2 5 × 5 Scenario

In this scenario, three rooms separated by walls are used, where two rooms have the size of 7m×6m
and one room has the size of 3.5m × 6m. Five Raspberry Pi devices for APs and five Linux PCs
for hosts are distributed in the rooms as shown in Figure 7.4. Any Linux PC is located very close
to the associated AP where the distance is less than 50cm. Any AP is 4m away from another AP
in the same room. Because the signals from the APs in different rooms become small by the walls.
Thus, the interferences among the APs can be reduced.

Router Server

4m

Host1

Host2

AP1

AP2

Host4

Host3

AP4

AP3

Room D303Room D302Room D301

Host5 AP5

CH 7+11

CH 1+5

CH 1+5

CH 4+8

CH 7+11

Figure 7.4: Testbed for 5 × 5 scenario.

7.5.2 Single Raspberry Pi AP Throughput Measurement
First, the throughput performance of the single Raspberry Pi AP with the associated Linux PC
is measured in the same building for reference, using TCP traffics with iperf [35]. The average
measured throughput is 42 Mbps. It is noted that all the experiments were conducted on weekends
to reduce the interferences from other APs in the same building.

7.5.3 Throughput Results in Testbed
To evaluate the effect of the proposed channel assignment extension in the elastic WLAN system
implementation, throughputs are measured with and without applying it using the elastic WLAN
system testbed. Here, the three bonded channels of 1+5 (channel 1 and channel 5), 4+8, and 7+11
are assigned to the APs by the algorithm, where the channel bonding is adopted for 11n. On the
other hands, without the algorithm, one of the three channels is randomly assigned to each AP.
Any throughput is measured using iperf when all the hosts are communicating in parallel with
the server through their connected APs. Besides, the effect of the AP configuration algorithm is
evaluated with the channel assignment extension.

7.5.3.1 3 × 3 Scenario Result

Table 7.1 shows the throughput results in the testbed for the 3×3 scenario. When the number of ac-
tive APs is not minimized, the overall throughput by the random and algorithm channel assignment
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is 47.56 Mbps and 68.10 Mbps respectively. Then, the number of active APs is minimized to one
by the AP configuration algorithm, and the overall throughput becomes 32.62 Mbps, 34.63 Mbps,
and 33.56 Mbps respectively, when the single bonded channel of 1+5, 4+8, or 7+11 is assigned to
the single AP. Thus, the channel assignment algorithm can improve the throughput performance of
the small testbed when multiple APs are active.

Table 7.1: Throughput comparisons between proposed algorithm and random assignment for 3× 3
scenario.

AP minimization no yes
channel assignment random proposed 1+5 4+8 7+11
# of active APs 3 3 1 1 1
min. host through. 13.2 18.7 9.87 10.21 10.16
overall through. 47.56 68.10 32.62 34.63 33.56

7.5.3.2 5 × 5 Scenario Result

Table 7.2 shows throughput results in the testbed for the 5×5 scenario. When the number of active
APs is not minimized, the overall throughput for the random and proposed channel assignment is
121.11 Mbps and 151.32 Mbps respectively. Then, the number of active APs is minimized to three
by the AP configuration algorithm, and the overall throughput for the random and proposed chan-
nel assignment becomes 92.05 Mbps and 118.84 Mbps respectively. Thus, the proposed channel
assignment algorithm can greatly improve the throughput performance of the larger testbed, while
the active AP configuration algorithm can efficiently reduce the number of active APs with keeping
the throughput performance.

Table 7.2: Throughput comparisons between proposed algorithm and random assignment for 5× 5
scenario.

AP minimization no yes
channel assignment random proposed random proposed
# of active APs 5 5 3 3
min. host through. 19.32 27.2 14.61 19.21
overall through. 121.11 151.32 92.05 118.84

7.6 Summary
In this chapter, we presented the system design of the elastic WLAN system and its implementa-
tion using Raspberry Pi. The implemented elastic WLAN system executes the AP configuration
algorithm to optimize the active APs and host associations based on network traffics. It also op-
timizes the channels of the active APs to minimize the interference in the network. In the next
chapter, we will conclude this dissertation with some future recommendations.
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Chapter 8

Conclusion

In this thesis, we presented the studies of the access-point (AP) configuration algorithm for the
elastic WLAN system, and the design and implementation of the system using Raspberry Pi.

Firstly, we introduced the related wireless network technologies including the IEEE 802.11n
protocol, heterogeneous WLAN devices, the link speed estimation model for IEEE 802.11n pro-
tocol, and Linux tools and commands for WLANs that are used for the implementation of elastic
WLAN system.

Secondly, we introduced the motivation of the elastic WLAN system, the challenges of its
implementation with possible solutions, and the system design and operational flow.

Thirdly, we proposed the AP configuration algorithm for the elastic WLAN system using het-
erogeneous devices. We formulated the AP configuration problem as a combinatorial optimization
problem and proved the NP-completeness of its decision version, and proposed its heuristic algo-
rithm composed of seven phases. The proposed algorithm dynamically optimizes the number of
active APs in the network field based on communication demands. Three types of AP devices,
namely DAPs, VAPs, and MAPs, with their speed differences are considered in this algorithm.
The algorithm can ensure the network performance under the minimum host throughput constraint
and the use of heterogeneous APs.

Fourthly, we presented the channel assignment extension of the AP configuration algorithm.
One channel is assigned to every active AP from the limited number of the non-interfered channels
to minimize the overall interference in the network. Besides, AP associations of hosts are modified
to improve the network performance by averaging the loads among the channels.

Fifthly, we evaluated the effectiveness of the AP configuration algorithm and its extension
through numerical experiments in different network instances using the WIMNET simulator. We
first introduced the WIMNET simulator with the parameters for simulations, and the network
environments and topologies for simulations. They showed the simulation results to verify the
effectiveness of the proposal.

Finally, we introduced the design and the implementation of the elastic WLAN system using
real devices. We adopted Raspberry Pi for the AP and Linux PCs for the hosts. The system uses
several Linux tools and commands to collect the necessary information for the AP configuration
algorithm input, and to automatically change the activation/deactivation of APs and the AP-host
associations according to the algorithm output. Then, we evaluated the practicality and the perfor-
mance of the elastic WLAN system in real networks using the testbed.

In future works, we will study the joint optimization of the AP configuration and the channel
assignment, and improve the link speed estimation model through further extensive measurements
in different conditions and environments. We will also improve the elastic WLAN system to con-
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sider the existence of uncontrollable active APs from neighboring network, to support heteroge-
neous operating system platforms, and investigate the performance evaluations in more practical
scenarios.
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