
T he recording of electrical brain activity as an elec-
troencephalogram (EEG) is a direct representa-

tion of the function of the central nervous system,  par-
ticularly of the cerebral cortex.  An EEG is recorded as 
the sum of extracellular potentials (field potentials) 
generated by currents emanating from each individual 
neuron.  It is currently believed that the origin of EEG is 
excitatory or inhibitory post-synaptic potentials (PSPs),  
and that EEG signals are almost exclusively contributed 
to by excitatory (mostly pyramidal) neurons which have 
open dipolar fields,  in contrast to inhibitory neurons 
with closed fields [1].

With the development of digital EEG recording and 

analysis techniques,  the available EEG frequency bands 
have been greatly expanded from the traditional delta,  
theta,  alpha,  and beta bands (1-3 , 4-7 , 8-13,  and 
13-40 Hz,  respectively) to include high frequencies 
(gamma,  ripple,  and fast ripple bands: 40-80 Hz,  
80-200 Hz,  and 200 / 250-500 / 600 Hz,  respectively) as 
well as low frequencies (sub-delta and infra-slow 
bands: 0.1-1 Hz and < 0.1 Hz,  respectively) [2].  The 
infra-slow activities are also called direct current (DC) 
shifts,  and it has been suggested that glia cells might 
contribute to the generation of DC shifts [3].

Regarding the generation of high-frequency oscilla-
tions (HFOs) in the ripple and fast ripple bands,  the 
contribution of bursts of action potentials (population 
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spikes) was demonstrated in animal studies as well as 
computerized simulation studies [4-8].  Very-HFOs 
(> 1000 Hz) were reported in patients with neocortical 
epilepsy [9].  Although electroencephalography is a 
well-established technique,  its neuroscientific signifi-
cance has been greatly enhanced through the novel 
development of methodologies,  and electroencepha-
lography has thus emerged as a considerably expanded 
analytic technique in recent years.

We herein review the recent development of EEG 
studies of high-frequency activity,  as this activity pro-
vides unprecedented information regarding brain func-
tion,  particularly of epileptogenicity.

Epileptogenicity and High-Frequency  
EEG Activity

Initially,  HFOs were recorded using only microelec-
trodes with a surface area less than 1 / 1,000 of that of an 
ordinary clinical intracranial macroelectrode.  In 2006,  
however,  the detection of HFOs using clinical intracra-
nial macroelectrodes was reported [10],  and clinical 
studies of HFOs have rapidly accelerated since that time 
[4 , 11-14].  Most importantly,  good outcomes of epi-
lepsy surgery were significantly more closely related to 
the resection of HFO-generating cortical areas than to 
the removal of areas generating epileptic discharges (i.e.,  
spikes) or the removal of the seizure onset zone (SOZ) 
[15].

Further reports supported the possibility of a close 
relationship between HFOs and epileptogenicity in both 
adult and pediatric patients,  and thus the presence of 
epileptic HFOs is suggested to be a surrogate biomarker 
of epileptogenicity [16-18].  A meta-analysis of 11 pub-
lished studies that examined the relationship between 
the resection of HFO-generating areas to postsurgical 
outcomes (data on ripples and fast ripples in 10 and 
seven studies,  respectively) [19] revealed that the resec-
tion ratio (i.e.,  the ratio between the number of chan-
nels on which HFOs were detected and,  among these 
channels,  the number of channels that were inside the 
resected area) for both ripples and fast ripples is higher 
in postsurgically seizure-free patients than in non-sei-
zure-free patients.

Techniques for detecting HFOs include various 
types of low-cut frequency filters that reduce EEG activ-
ity slower than a given cut-off frequency,  and a 
time-frequency analysis that visualizes time-varying 
spectral patterns of EEG activity.  We developed a 

sophisticated time-frequency analysis that detects sta-
tistically significant spectral changes related to spikes 
compared to the background activity (Figs. 1 , 2) [20].  
Using this technique,  we observed a spike-associated 
increase and post-spike depression of high-frequency 
EEG activity in the SOZ,  and these differences were 
more marked in mesial temporal discharges than in 
neocortical discharges [21].  However,  when we com-
pared the degree of the relationship to the SOZ between 
morphologically identified HFOs and spectrally 
detected high-frequency activity,  the identification of 
distinct HFOs was shown to be more useful than spec-
tral changes [22].

Epileptic HFOs have characteristics different from 
those of spikes,  the traditional biomarker of epilepto-
genicity [23].  HFOs are thought to be specific to corti-
cal areas of seizure generation and not to the substrate 
of pathological tissue in lesional epilepsy [14].  When 
antiepileptic medication is reduced,  HFOs increase in 
number,  reflecting the epileptogenic potential of the 
tissue,  whereas spikes do not show such changes [24].  
Although spikes increase in the SOZ after a recurrence 
of seizures,  HFOs do not.  However,  a few seconds 
prior to a seizure,  the rate of HFOs increases whereas 
that of spikes does not [25].  HFOs and spikes are prob-
ably not completely independent of each other as they 
often co-occur [26],  and spikes with HFOs may be 
more strongly related to epileptogenicity compared to 
spikes without HFOs [23].

Regarding the relationship between HFOs and the 
types of pathology,  patients with focal cortical dysplasia 
(FCD) type 2 were reported to have significantly more 
seizures and higher rates of HFOs compared to patients 
with FCD type 1,  suggesting that the HFO rate may 
reflect the disease activity of a lesion [27].  HFOs rates 
have also been shown to vary depending on different 
pathologies,  and are higher in FCD (particularly within 
the borders of MRI-visible dysplastic lesions),  mesial 
temporal sclerosis,  and nodular heterotopia than in 
atrophy,  polymicrogyria,  and tuberous sclerosis [28].

For the presurgical evaluation of patients with 
intractable epilepsy,  interictal [18F] fluorodeoxyglu-
cose-positron emission tomography (FDG-PET) is often 
used to detect the hypometabolic brain region as a can-
didate epileptogenic lesion.  In an investigation of the 
relationship between such hypometabolism and intra-
cranially recorded ictal HFOs,  a significant correlation 
was found in cases of temporal lobe epilepsy,  but low-
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Fig. 2　 Time-frequency power spectra and statis-
tical spectra of spike-and-slow-wave complexes from 
a left temporal neocortical region that was outside of 
the SOZ.  The arrangement is similar to that of Fig. 1.  
An increase in the power of fast activity is observed 
only up to approx.  100 Hz.  Post-spike depression of 
fast activity was not observed.  Cited with permis-
sion from ref.  [20] (Clin Neurophysiol (2009) 120:  
1070-1077).

Fig. 1　 Time-frequency power spectra and statis-
tical spectra of spike-and-slow-wave complexes 
recorded from the seizure onset zone (SOZ) in the 
left hippocampus.  Ordered from top to bot-
tom: overlaid EEG traces including spikes,  average 
power spectrum,  t-spectrum without control,  and 
t-spectrum controlled by the false discovery rate 
(FDR).  The power of fast activity significantly 
increased in association with spikes and transiently 
decreased after the spikes.  Cited with permission 
from ref.  [20] (Clin Neurophysiol (2009) 120: 1070-
1077).



er-frequency activity did not show a similar correlation 
[29].

The generation of HFOs varies depending on sleep 
stages.  It was reported that HFOs are suppressed during 
rapid eye movement (REM) sleep compared to non-
REM (NREM) sleep,  and that HFOs near the epilepto-
genic zone are less suppressed during REM than are 
HFOs in the non-epileptogenic cortex [30].  In a com-
parison of epileptic discharges and HFOs between pha-
sic REM sleep and tonic REM sleep,  interictal epileptic 
discharges and HFOs were less frequent during phasic 
REM sleep; however,  physiologic ripples were found to 
be more abundant during phasic REM sleep in contrast 
to epileptic ripples,  suggesting a possible reflection of 
REM-related memory consolidation and dreaming 
[31].

It is still difficult to use the detection of HFOs as a 
clinical tool to determine the epileptogenic cortical area 
that should be surgically resected,  because the identifi-
cation of HFOs relies on the visual interpretation of 
EEG traces by experienced electroencephalographers,  
and the identification can thus be very time-consuming.  
The development of methodologies to automatically 
detect HFOs is progressing [32-35].  In the above-men-
tioned meta-analysis regarding the relationship of the 
resection of HFO-generating areas to postsurgical out-
comes,  the results of an automated detection of HFOs 
were found to be comparable to those of visual detec-
tion [19].

Case Report

We present the case of a representative female 
patient in order to illustrate the observation of HFOs.  
She was 19 years old at the time of surgery but had 
experienced intractable focal dyscognitive seizures (also 
known as complex partial seizures) that were character-
ized by 1-min episodes of a combination of an anxious 
feeling (aura) and subsequent motion arrest and unre-
sponsiveness that had occurred since she was 7 years 
old.  She had also experienced acute disseminated 
encephalomyelitis at the age of 2 years.  MRI disclosed 
pathological findings in bilateral mesial temporal struc-
tures: sclerosis in the left hippocampus and a cystic 
lesion at the right hippocampus (Fig. 3A).  Interictal 
EEG showed interictal epileptic discharges over the left 
temporal region.

Seizure monitoring was performed with intracranial 

electrodes including depth electrodes targeting the 
bilateral hippocampi.  The ictal EEGs demonstrated 
seizure activity originating from the left hippocampus 
(bipolar EEGs from the left [LH1-2] and right [RH1-2] 
hippocampi in Fig. 3B).  Temporally expanded and fil-
tered EEG data showed HFOs in association with sei-
zure discharges in LH1-2 but not in RH1-2 (Fig. 3C).  
Corresponding panels from the time-frequency analysis 
indicated a high-frequency spectral spot (blob) in the 
left hippocampal data but not in the right (Fig. 3D).

The detected HFOs were valuable for the identifica-
tion of the epileptogenic focus,  and a left selective 
amygdalohippocampectomy was performed.  The 
patient is now 23 years old and has been seizure-free for 
3 years.

Higher Brain Functions and Physiological  
High-frequency EEG Activity

Initially,  fast ripples and ripples were considered 
epileptic / pathological and physiological,  respectively,  
with clearly distinct clinical meanings [4].  However,  
the reality is not that simple.  It is now known that 
physiological fast ripples are recorded from eloquent 
areas such as the visual cortex,  and physiological HFOs 
are thought to be involved in higher brain functions 
such as memory,  language,  and calculation [36-38].  
The differentiation between epileptic and physiological 
HFOs is critically important in epilepsy surgery because 
the brain regions generating epileptic HFOs can be 
resected whereas regions generating physiological 
HFOs should not be touched.

Pathological HFOs were described as having higher 
mean spectral amplitudes,  longer mean durations,  and 
lower mean frequencies compared to HFOs that were 
physiologically induced by visual or motor tasks [39].  
Another study suggested that ripples co-occurring with 
sleep spindles should be considered models of physio-
logical ripples and that such spindle-related ripples had 
lower amplitude features than epileptic ripples did [40].  
Many more studies may be required to further clarify 
the differentiation between pathological / epileptic and 
physiological HFOs.

Inter-regional High-frequency Connectivity

Connectivity (or functional correlations) between 
brain regions have been investigated with respect to 
high-frequency intracranial EEG data,  in the hope of 
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detecting the node of the epileptic network that should 
be resected [41].  It was reported that prominent diver-
gence and convergence of high-frequency activity prop-
agation were identified at sites in the ictal onset zone 
[42].  In extra-temporal lobe epilepsy,  strong HFO 
coherence indicating waveform similarity was observed 
in a consistent and spatially focused channel cluster 
during seizures,  and cortical regions possessing strong 
ictal HFO coherence coincided with regions exhibiting 
high ictal HFO intensity,  which indicated epileptoge-
nicity [43].

In an investigation of the relationship between brain 

areas showing fast ripples and baseline functional con-
nectivity within EEG networks — especially in the 
high-frequency bands — functional integration was 
observed in the fast ripple-band network of channels 
covering presumed epileptogenic tissue [44].  Based on 
these findings,  it was suggested that the use of baseline 
high-frequency network parameters might contribute to 
the intra-operative recognition of epileptogenic tissue 
without the need to wait for the occurrence of epileptic 
events [44].
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Fig. 3　 MRI and the ictal invasive EEG data of a representative case,  a 19-year-old woman.  A,  A coronal fluid-attenuated inversion 
recovery (FLAIR) MRI image showing a sclerosis in the left hippocampus (red arrow) and a cystic lesion in the right (blue arrow); B,  The 
ictal depth EEG recorded from the left (LH1-2) and right (RH1-2) hippocampi.  The part indicated by the red rectangle was temporally 
expanded and filtered to disclose HFOs in LH1-2 as shown in panel C (green arrow; low-cut frequency filters at 1.5,  80,  and 200 Hz in the 
green,  blue,  and red traces,  respectively).  The results of the corresponding time-frequency analysis are shown in panel D with a high-fre-
quency spectral spot at about 400 Hz in LH1-2 (yellow arrow).



Noninvasive Recording of High-frequency  
EEG Activity

The noninvasive detection of HFOs is a technical 
challenge,  but such detections provide substantial ben-
efits in the evaluation of epileptogenicity.  We have 
demonstrated that ripple and gamma oscillations,  col-
lectively termed fast oscillations (FOs),  are recordable 
over the scalp,  particularly in pediatric patients [45-52] 
(Fig. 4); this has been confirmed by other researchers 
[53-57].

Compared to interictal epileptic discharges,  FOs 
were found to be less sensitive but more specific and 
accurate for identifying the SOZ [54].  A functional 
MRI study revealed that scalp interictal epileptic dis-
charges,  when frequently accompanied by HFOs in the 
ripple but not in the gamma band,  are associated with 
larger cortical metabolic responses and with thalamic 
involvement lateralized to the side of cortical ripples 
[55].  In patients with focal epilepsy with bilaterally 
synchronous discharges,  the hemisphere of clinical lat-
eralization and the ripple-dominant hemisphere were 
completely concordant [57].

Regarding the relationship between scalp FOs and 
cortical HFOs,  simultaneous scalp and intracranial 
EEG recording demonstrated that scalp FOs directly 
correspond to cortical HFOs and that surprisingly small 
cortical areas generate FOs seen on the scalp [58].  A 
simulation study showed that FOs can be detected on 
the scalp with cortical generators of only 1cm2 because 
the background activity is so small in fast-frequency 
bands [59].  It was suggested that even fast ripples may 
be detected over the scalp [60].

It was also reported that FOs with frequencies of 
40-160 Hz are detectable by magnetoencephalography 
(MEG) with lower detection sensitivity but higher spec-
ificity than scalp EEG [61].  The MEG beamform-
er-based virtual sensor technique may be useful for 
identifying HFOs [62].

HFOs/FOs in Pediatric Epilepsies

Intracranial HFOs play an important role as the sur-
rogate biomarker of epileptogenicity in the surgical 
treatment of intractable pediatric epilepsies,  such as 
epileptic spasms or infantile spasms [63 , 64] and epi-

196 Kobayashi et al. Acta Med.  Okayama　Vol.  71,  No.  3

Fig. 4　 Ripple oscillations in the 
scalp EEG recorded from a child with 
L a ndau -K l e f f n e r  s y n d r ome .  
Representative spikes (arrowhead) 
are associated with ripple oscillation,  
which was largely invariant irrespec-
tive of the low-cut frequency (LCF) of 
either 60 or 120 Hz.  (EEG traces fil-
tered at 0.5,  60,  and 120 Hz are 
shown in green,  blue,  and red,  
respectively.) The EEG was recorded 
during non-REM sleep and therefore 
did not include muscle activity or eye 
movements.  EEG data are presented 
in a referential montage (top: O1 
with reference to the average EEG of 
bilateral earlobes,  indicated as 
O1-Aav).  Note that spike-related rip-
ples with at least four consecutive 
oscillations are clearly observed.  
Each panel of time-frequency spectra 
shows a corresponding discrete blob 
(arrow) with a frequency at around 
130 Hz.  Cited with permission from 
ref.  [73] (Prog Neurobiol (2012) 98:  
265-278).



lepsy associated with tuberous sclerosis complex [65].
Scalp FOs are especially detectable in childhood.  In 

West syndrome (a representative form of infantile epi-
leptic encephalopathy),  FOs are particularly abundant 
and stormy in interictal hypsarrhythmia and the ictal 
EEGs of epileptic spasms,  at an amount approx.  
100 times that in adult patients [51] (Fig. 5).  It was 
reported that the ictal scalp FOs of spasms showed a 
strong association with neuroimaging abnormalities 
presumed to be the epileptogenic zone in infants with 
symptomatic West syndrome [66].  In an animal model 
of infantile spasms,  high-frequency activity with fre-
quencies up to 900 Hz was observed in the ictal cortical 
EEGs of spasm-like seizures,  which reinforces the rela-
tionship between the cortical generation of HFOs and 
spasms [67].

In two children with surgically treated epilepsy,  
HFOs were noninvasively detected using both scalp 
EEG and MEG,  and correspondence was reported 
between the HFO source estimated from these data and 
the results of invasive recordings [68].

With respect to idiopathic focal epilepsies in child-
hood,  we reported that epileptogenicity is more closely 

related to FOs (particularly ripples) associated with 
functional spikes represented by rolandic spikes than 
with spikes themselves,  a traditional biomarker of epi-
leptogenicity [49].  The detection of scalp FOs in rela-
tion to rolandic spikes has been reconfirmed by other 
researchers [56],  and a strong link between the sources 
of functional spikes and the presence or absence of 
associated FOs is indicated [52].

Idiopathic focal epilepsies in childhood occasionally 
worsen (e.g.,  development into epileptic encephalopa-
thy with continuous spike-and-wave during sleep 
[CSWS]),  and we demonstrated an intense generation 
of scalp ripples associated with CSWS as the first-ever 
report on the observation of FOs over the scalp [48].  
Ripples were also detected from the sleep EEG pattern 
of CSWS in patients with atypical benign partial epi-
lepsy [69].

Relationship between Epileptic DC Shifts and  
HFOs in Broadband EEG

EEGs can now be recorded to cover a broad-fre-
quency band that includes DC shifts as well as high-fre-
quency activity.  There is a close association between 
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Fig. 5　 Representative fast oscillations (FOs) during hypsarrhythmia recorded from an infant with West syndrome.  EEG traces in a bipo-
lar derivation (P4-O2) are low-cut filtered at 0.5 Hz (green traces),  40 Hz (blue),  and 80 Hz (red).  FOs are observed in association with 
spikes that were recorded before treatment with adrenocorticotropic hormone (ACTH).  FOs are observed in filtered traces (blue arrows) and 
correspond to spectral blobs in the time-frequency analysis (yellow arrows).  Cited with permission from ref.  [51] (Ann Neurol (2015) 
77: 58-67).



HFOs and DC shifts,  and both types of epileptic abnor-
malities have a restricted cortical area of generation in 
intracranial EEG data.  Regarding their temporal rela-
tionship,  ictal DC shifts were reported to precede HFOs 
in one study [3] and to be closely preceded or followed 
by HFOs in another study [70].  In a study of mesial 
temporal lobe epilepsy,  it was noted that the onset and 
the spatial distribution of ictal conventional stereo-elec-
troencephalography,  ictal DC shifts,  and ictal HFOs 
did not overlap,  suggesting that they reflect different 
cellular or network dynamics [71].

The relationship between slow waves and FOs is also 
important in the scalp EEG data of pediatric epilepsy.  
In West syndrome,  the ictal EEG pattern of epileptic 
spasms in traditional scalp EEG is a high-amplitude 
slow wave,  and FOs are stormily generated in associa-
tion with epileptic spasms,  as mentioned above.  An 
investigation of the temporal relationship between the 
two ictal EEG patterns was performed to demonstrate 
that FOs clustered at the positive peaks of the ictal slow 
waves,  and the results indicated that active neuronal 
firing related to FOs underlies the generation of epilep-
tic spasms and their ictal slow waves [72].

Conclusions and Future Development

Digital EEG data include much more information 
with respect to brain function than traditional analogue 
EEG data do,  and should therefore be fully utilized as 
broadband EEG data extending from DC shifts to 
HFOs.  Broadband EEG is an indispensable tool for the 
investigation of brain physiology and pathophysiology,  
particularly epilepsy.
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