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a b s t r a c t

Background: IL-22 is an IL-10-family cytokine that regulates chronic inflammation. We investigated the
role of IL-22 and its receptor, IL-22R1, in the pathophysiology of chronic rhinosinusitis with nasal polyps
(CRSwNP).
Methods: IL-22 and IL-22R1 protein and mRNA expression in NP and in uncinate tissues (UT) from CRS
and non-CRS patients was examined using immunohistochemistry and real-time PCR, respectively.
Dispersed NP and UT cells were cultured with the Staphylococcus aureus exotoxins, staphylococcal
enterotoxin B and alpha-toxin, following which exotoxin-induced IL-22 levels and their association with
clinicopathological factors were analyzed. Effects of IL-22 on MUC1 expression and cytokine release in NP
cells were also determined.
Results: IL-22 and IL-22R1 in NP were mainly expressed in infiltrating inflammatory cells and in epithelial
cells, respectively. IL-22 mRNA levels in NP were significantly higher than those in UTs from non-CRS
patients whereas IL-22R1 levels were conversely lower in NPs. NP cells produced substantial amounts
of IL-22 in response to exotoxins. Exotoxin-induced IL-22 production by NP cells significantly and
negatively correlated with the degree of local eosinophilia and postoperative computed tomography (CT)
score, whereas conversely it positively correlated with the forced expiratory volume in 1s (FEV1)/forced
vital capacity (FVC) ratio. IL-22 significantly enhanced MUC1 mRNA expression in NP cells. IL-22-induced
MUC1 mRNA levels were significantly and positively correlated with IL-22R1 mRNA levels in NPs.
Conclusions: These data suggest that imbalance of IL-22/IL-22R1 signaling regulates the pathogenesis of
CRSwNP, including local eosinophilia, via alteration of MUC1 expression.
Copyright © 2016, Japanese Society of Allergology. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Chronic rhinosinusitis with nasal polyps (CRSwNP) is charac-
terized by mucosal inflammation and remodeling. The condition is
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often associated with asthma and substantially impairs quality of
life due to longstanding symptoms including nasal congestion,
headache, and loss of smell.1,2 While the precise pathogenesis un-
derlying this disease remains poorly understood, imbalances in
expression of local cytokines including IL-5 and TGF-b appear to be
involved.3

IL-22 is an IL-10-family cytokine produced by a variety of cells
that include not only CD4þ T cells of the Th0, Th17 and Th22 linage
but also innate immune cells such as NK cells and type 3 innate
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lymphoid cells.4,5 IL-22 has versatile effects on airway inflam-
mation via binding to the IL-22 receptor, which consists of IL-22R1
and IL-10R2.6 For example, IL-22 promotes the migration of
airway smooth muscle cells and, in skin, IL-22 and TNF-a syner-
gistically promote the production of chemokines including
eotaxin-1 and eotaxin-2 by keratinocytes.7,8 In contrast, IL-22
attenuates IL-25 production by airway epithelial cells and in-
hibits antigen-induced eosinophilic airway inflammation.9 IL-22
also suppresses IFN-g-induced expression of MHC class I, MHC
class II, ICAM-1, RANTES and IP-10 in bronchial epithelial cells
from asthmatic patients.10 Gene delivery of IL-22 suppressed
antigen-induced immune responses and eosinophilic airway
inflammation via an IL-10-associated mechanism in a murine
model of asthma.11 In the intestine, IL-22 enhanced the expression
of mucin genes including MUC1, which is known to display a
regulatory role in mucosal immunity.12,13 In addition, recent re-
ports showed a dual role of IL-22 in airway inflammation in the
mouse.14,15 Thus, IL-22 is required for the onset of allergic
inflammation but functions as a negative regulator of established
allergic inflammation.14 The pro-inflammatory and tissue-
protective roles of IL-22 in bleomycin-induced airway inflamma-
tion are dependent on the presence or absence of IL-17A,
respectively.15

To date, only a few reports have demonstrated an association
between IL-22 and the severity of CRSwNP.16,17 Ramanathan et al.
reported that local mRNA expression of IL-22R1 but not of IL-22
was significantly lower in treatment-recalcitrant CRSwNP
compared to responsive CRSwNP, suggesting that refractoriness of
CRSwNP is associated with decreased expression of mucosal IL-
22R1.16 Endam et al. showed an association between three single
nucleotide polymorphisms in IL-22R1 and severe CRS.17 However,
it remains unclear how IL-22 regulates the pathogenesis of this
condition.

In the present study, we investigated the local production of IL-
22 in NP using a recently developed ex vivo system.18 Local
expression of IL-22 and IL-22R1 was compared among various CRS
phenotypes, and the role of IL-22/IL-22R1 signaling in the patho-
genesis of CRS is discussed. The present findings provide novel
insights into the pathogenesis of chronic eosinophilic airway dis-
eases regulated by IL-22, in addition to providing a basis for the
regulatory effect of IL-22 in airways via induction of MUC1
expression.

Methods

Patients

Sixty-six Japanese patients with CRS were enrolled for the
quantification of IL-22 and IL-22R1 mRNA in sinonasal mucosa.
Briefly, 53 of the 66 CRS patients exhibited NP (CRSwNP). The
remainder of the CRS patients demonstrated no visible NP in the
Table 1
Subjects' characteristics.

Groups Non-CRS CRSsNP

Number 19 13
Sex (male/Female) 6/13 8/5
Age (y) 54.7 ± 19.0 44.0 ± 17.7
Age range (y) 14e81 14e74
Serum IgE (IU/mL) 204 ± 415 283 ± 291
Blood eosinophil count (�102/mL) 1.56 ± 1.24 2.94 ± 2.06
CT grading score (LundeMackay) 0 5.8 ± 3.9
FEV1/FVC ratio (%) 79.9 ± 8.9 81.3 ± 5.3

ATA, aspirin-tolerant asthma; AIA, aspirin-intolerant asthma; CT, computed tomography
Results were shown as a mean ± standard deviation.
middle meatus (CRSsNP: n ¼ 13). The diagnosis of CRSsNP and
CRSwNP was defined using the criteria reported in a European
position paper on rhinosinusitis and nasal polyps.19 In order to
eliminate the effect of macrolides and corticosteroids on the
expression of IL-22 and IL-22R1, patients were excluded when they
received systemic corticosteroids for at least eight weeks prior to
surgery or they received pharmacotherapy for rhinosinusitis, such
as macrolide antibiotics or intranasal glucocorticoids for at least
three weeks prior to surgery. Thirty-seven patients were asthmatic
and had NPs. Of these, 16 patients were considered to exhibit
aspirin sensitivity based on their history of asthma attacks
precipitated by non-steroidal anti-inflammatory drugs (aspirin-
intolerant asthma: AIA). The remainder of the asthmatic patients
were diagnosed as aspirin-tolerant asthma (ATA, n ¼ 21). During
surgery, the NP and uncinate process tissues (UT) were sampled
from patients with CRSwNP and CRSsNP, respectively. In addition,
19 non-CRS patients (e.g. blowout fracture or sphenoidal cyst) with
normal UT at inspection were enrolled as a control. The clinical
characteristics of the patients are presented in Table 1. All patients
provided informed consent prior to their participation, and the
study was pre-approved by the Human Research Committee of the
Okayama University Graduate School of Medicine and Dentistry.

Quantification of IL-22, IL-22R1 and MUC1 mRNA in sinonasal
mucosa

Surgically excised NP and UT tissues were soaked in RNAlater™
RNA stabilization reagent (Qiagen, Hilden, Germany) and were
stored at �30 �C until use. Extraction of total cellular RNA, reverse
transcription to generate cDNA, and real-time quantitative PCR for
IL-22 and IL-22R1 were then performed, as described previously.18

Primers for analysis of GAPDH levels, which were used as an in-
ternal control, were purchased from Toyobo (Osaka, Japan). The
absolute copy number was calculated for each sample, and
samples are reported as copy numbers relative to GAPDH. The se-
quences and product size of the primers used for PCR were as fol-
lows: IL-22, forward 50-GCTGCCTCCTTCTCTTGG-30 and reverse 50-
GTGCGGTTGGTGATATAGG-30 (112 bp); IL-22R1, forward 50-
TCTGCTCCAGCACGTGAAAT-30 and reverse 50-GTCCCTCTCTCCGTAC
GTCT-30 (124 bp); MUC1, forward 50-TTTCCAGCCCGGGATACCTA-30

and reverse 50-AGAGGCTGCTGCCACCATTA-30 (PCR product size;
136 bp).

Immunohistochemistry

Immunohistochemical staining for IL-22 and IL-22R1 was
performed according to a previously described protocol.20 Briefly,
4-mm sections were collected from paraffin-embedded tissue
blocks, deparaffinized and rehydrated. The sections were heated
in sodium citrate buffer (pH 6.5) in a microwave oven for antigen
retrieval and were incubated with primary antibodies including
CRSwNP without asthma CRSwNP with ATA CRSwNP with AIA

16 21 16
11/5 15/6 9/7
41.1 ± 19.6 50.4 ± 16.7 52.3 ± 17.9
13e65 21e77 21e79
243 ± 414 701 ± 1047 249 ± 252
3.40 ± 2.52 7.17 ± 4.68 5.25 ± 3.19
11.7 ± 6.7 18.0 ± 5.4 15.6 ± 6.7
80.4 ± 8.5 71.3 ± 12.9 64.0 ± 12.0

; FEV1, forced expiratory volume in one second per forced vital capacity ratio.
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1:200 diluted rabbit anti-human IL-22 polyclonal antibodies (Gen
Tex, Taipei, Taiwan), 1:200 diluted rabbit anti-human IL-22R1
polyclonal antibodies (Life Span Biosciences, Seattle, WA) or
control serum (Universal Negative Control, Dako Japan, Tokyo,
Japan) at 4 �C overnight. The avidin-biotin-immunoperoxidase
system (VECTASTAIN Elite™, Vector Laboratories, Burlingame,
CA, USA) was used according to the manufacturer's instructions to
detect antibodyeantigen interactions. The nuclei of the sections
were then stained with hematoxylin and the sections were
examined under a light microscope. A double immunostaining
using the anti-IL-22 antibodies with anti-CD4 mAb (4B12), anti-
CD68 (KP1), anti-ECP/EGX (EG2) or control Ab was performed to
Table 2
Subjects' characteristics enrolled in the experiments of cell culture.

Groups CRSsNP CRSwNP w

Number 8 12
Sex (male/Female) 5/3 12/0
Age (y) 52.5 ± 14.9 54.8 ± 13.8
Age range (y) 32e73 26e71
Serum IgE (IU/mL) 257 ± 473 372 ± 658
Blood eosinophil count (�102/mL) 3.10 ± 2.95 2.72 ± 1.33
CT grading score (LundeMackay) 5.5 ± 3.5 15.0 ± 5.5
FEV1/FVC ratio (%) 76.4 ± 13.9 74.1 ± 9.0

ATA, aspirin-tolerant asthma; AIA, aspirin-intolerant asthma; CT, computed tomography
Results were shown as a mean ± standard deviation.

Fig. 1. Immunohistochemical staining of IL-22 (A, B) and IL-22R1 (C, D) in NPs. Sections w
(Universal Negative Control (Rabbit): A, C) after which they were stained using the avidin-
determine whether the IL-22 positive cells were CD4þ T cells,
macrophage or eosinophils in nasal polyps.20

Culture of dispersed nasal polyp cells and uncinate tissue cells

Dispersed nasal polyp cells (DNPCs) and uncinate tissue cells
(DUTCs) were prepared from 22 patients with CRSwNP and 8
patients with CRSsNP, respectively, as described previously.21

Because the difference in the numbers and characteristics of
subjects in each experiment might have affected the results, the
clinical characteristics of the patients enrolled in the experiments
of cell culture are presented in Table 2. Nine and one out of 22
ithout asthma CRSwNP with ATA CRSwNP with AIA

9 1
7/2 1/0
63.7 ± 3.9 42
57e69 42
299 ± 257 62
5.26 ± 3.17 8.83
16.9 ± 4.6 24
64.0 ± 13.1 65.5

; FEV1, forced expiratory volume in one second per forced vital capacity ratio.

ere reacted with rabbit polyclonal antibody against IL-22 (B), IL-22R1 (D) or control
biotin-immunoperoxidase system. Scale bar ¼ 50 mm.



Fig. 2. Relative amounts of IL-22 (A, B) and IL-22R1 (C, D) mRNA in UTs and NPs. The rectangle includes the range from the 25th to 75th percentiles; the horizontal line indicates the
median, and the vertical line indicates the range from the 10th to 90th percentiles. P values were determined by the ManneWhitney's U-test.
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patients with CRSwNP were complicated with ATA and AIA,
respectively. Significant difference was seen between asthmatic
(n ¼ 10) and non-asthmatic (n ¼ 12) patients in FEV1/FVC ratio
(P ¼ 0.030 by ManneWhitney U test) but not CT grading score
(P ¼ 0.275). DNPCs or DUTCs (1 � 106 cells per mL) were stimu-
lated with 1 ng/mL of staphylococcal enterotoxin B (SEB; Toxin
Technology, Sarasota, FL, USA) or alpha-toxin (AT; Sigma, St. Louis,
MO, USA) and were incubated at 37 �C in a 5% CO2 atmosphere.
Alternatively, anti-human IL-22 Ab or control goat IgG (R&D sys-
tems, Minneapolis, MN, USA) at a concentration of 10 mg/mL was
added into the culture of 10 different samples before SEB or AT
stimulation in order to determine whether IL-22 affects exotoxin-
induced IL-5 and IL-13 production. An aliquot of the culture su-
pernatant was collected after 72 h and stored at �80 �C for sub-
sequent cytokine analysis. The total serum IgE levels, blood
eosinophil count and forced expiratory volume in 1s (FEV1)/forced
vital capacity (FVC) ratio was examined for each patient with
CRSwNP before surgery. Computed tomography (CT) examination
was performed to evaluate the radiological severity of sinusitis,
and the severity was graded according to the LundeMackay sys-
tem for each patient.19 Sections from NP were stained with he-
matoxylin/eosin solution, and the average number of eosinophils
per high power field (5 fields at 400� magnification) was then
determined. Additionally, CT examinations were conducted six
months after surgery for 20 of the 22 patients.
Effect of IL-22 on MUC1 expression and cytokine release by DNPCs

DNPCs of each of 18 patients were stimulated with 20 ng/ml
human recombinant IL-22 (R&D Systems) for 72 h. Cells were then
collected and the level of MUC1 mRNA was determined by real-
time quantitative PCR as described above. The level of IL-22R1
mRNA in the respective NPs was also determined. Culture super-
natants were collected from 9 samples and the concentration of
TARC, RANTES, eotaxin, IL-8, IL-18, IL-25 and IL-33 in the super-
natants was determined.

Cytokine measurement

The levels of IL-5, IL-13, TARC, RANTES, eotaxin, IL-8, IL-18, IL-25,
IL-33, and IL-22 were determined using ELISA.18 The levels of IL-5,
IL-8 and eotaxin were measured using Opt™ EIA sets (BD Bio-
sciences), according to the manufacturer's instructions. The levels
of TARC, RANTES, IL-22 and IL-33 were measured using a DuoSet™
ELISA development kit (R&D Systems). IL-25 levels were measured
using a kit from KOMA BIOTEC (Seoul, Korea). IL-13 levels were
measured using paired capture and detection antibodies (BD Bio-
sciences) and recombinant standards (R&D Systems). IL-18 con-
centrations were determined using anti-human IL-18 mAb (I25-2H,
MBL, Nagoya, Japan), biotinylated anti-human IL-18 mAb (159-12B,
MBL) and recombinant human IL-18 (MBL) as the capture antibody,
detection antibody and standard, respectively. The detection limit
was 4 pg/mL for IL-5, 2 pg/mL for IL-13, 4 pg/ml for TARC, 2 pg/ml
for RANTES, 4 pg/ml for eotaxin, 8 pg/ml for IL-8, 2 pg/ml for IL-18,
4 pg/ml for IL-25, 8 pg/ml for IL-33, and 8 pg/mL for IL-22.

Statistical analysis

Values are given as the median value except for the values in
Table 1, 2. The nonparametric ManneWhitney U test was used to



Fig. 3. Correlation between the relative amounts of IL-22 and IL-22R1 mRNA in
sinonasal tissues from the following: >, UT of non-CRS patients; ▽, UT of CRSsNP
patients; △, NP of non-asthmatic patients; ,, NP of ATA patients; B, NP of AIA
patients.

Fig. 4. (A) Effect of S. aureus SEB and AT on IL-22 production by DUTCs and DNPCs. The
rectangle includes the range from the 25th to 75th percentiles; the horizontal line
indicates the median, and the vertical line indicates the range from the 10th to 90th
percentiles. P values were determined by the Wilcoxon's signed-ranks test. (B) Cor-
relation of IL-22 production by DNPCs between SEB and AT stimulation.
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compare data between groups, andWilcoxon's signed rank test was
used to analyze data within each group. A KruskaleWallis test
followed by a Dunn test was used for multiple comparisons. Cor-
relation analyses were performed using Spearman's rank correla-
tion. P-values less than 0.05 were considered statistically
significant. Statistical analyses were performed with SPSS software
(version 11.0, Chicago, IL, USA).

Results

Local expression of IL-22/IL-22R1 in nasal polyps

The expression and distribution of IL-22 and IL-22R1 in the NP
of CRSwNP patients were immunohistochemically examined.
Representative staining showed that the IL-22 protein was
mainly expressed in infiltrating inflammatory cells (n ¼ 25,
Fig. 1A, B). In these cells, double immunohistochemical staining
showed that IL-22 was expressed in CD4þ cells and ECP/EPXþ cell
but not CD68þ cells (data not shown). In contrast, the IL-22R1
protein was mainly expressed in epithelial cells and in some
infiltrating cells (Fig. 1C, D).

Comparison of IL-22/IL-22R1 mRNA levels in nasal polyps and
uncinated tissues

IL-22 and IL-22R1 mRNA levels in the NP of CRSwNP patients
were compared with those in the UT of CRSsNP and non-CRS pa-
tients using real time quantitative-PCR. A KruskaleWallis test
showed that the amounts of both IL-22 (P ¼ 0.002) and IL-22R1
(P < 0.001) mRNA were significantly different among three
groups including UTof non-CRS patients, UTof CRSsNP patients and
NP of CRSwNP patients (Fig. 2A, C). A Dunn test further revealed
that the amounts of IL-22R1mRNAwere significantly lower in UTof
CRSsNP patients (P¼ 0.005) and NP of CRSwNP patients (P < 0.001)
as compared with UT of non-CRS patients.

A KruskaleWallis test further showed that the amounts of both
IL-22 (P ¼ 0.012) and IL-22R1 (P ¼ 0.009) mRNA were significantly
different among three subgroups of NP (non-asthmatic patients,
ATA patients and AIA patients) (Fig. 2B, D). A Dunn test further
revealed that the amounts of IL-22 mRNAwere significantly higher
in NP from AIA patients as compared with NP from non-asthmatic
patients (P ¼ 0.027). Conversely, the amounts of IL-22R1 mRNA
were significantly lower in NP from AIA patients as compared with
NP from non-asthmatic patients (P ¼ 0.014) and ATA patients
(P ¼ 0.019).

As a whole of sinonasal tissues (n ¼ 85), a weak albeit sig-
nificant negative correlation was found between IL-22 and IL-
22R1 mRNA levels (r ¼ �0.223, P ¼ 0.041, Fig. 3). However,
none of each group showed a significant correlation (UT of non-
CRS patients: r ¼ 0.134, P ¼ 0.569; UT of CRSsNP patients:
r ¼ �0.296, P ¼ 0.304; NP of non-asthmatic patients: r ¼ 0.313,
P ¼ 0.227; NP of ATA patients: r ¼ �0.395, P ¼ 0.077; NP of AIA
patients: r ¼ 0.032, P ¼ 0.900).

Production of IL-22 by nasal polyp and uncinated tissue cells in
response to staphylococcal enterotoxin B and alpha-toxin

DNPCs and DUTCs from 22 to 8 patients respectively were
stimulated with or without SEB or AT (1 ng/ml) for 72 h. A
KruskaleWallis test showed that the amounts of IL-22 were
significantly different among 3 groups stimulated with or
without exotoxins in DNPCs (P < 0.001) but not in DUTCs
(P ¼ 0.090). A Dunn test further revealed that a significant pro-
duction of IL-22 was seen in DNPCs in response to SEB (P < 0.001)
and AT (P < 0.001). SEB- and AT-induced IL-22 production by
DNPCs was significantly higher than that by DUTCs (SEB,
P ¼ 0.013; AT, P ¼ 0.037) (Fig. 4A). In addition, IL-22 production
by DNPCs in response to SEB was significantly and positively
correlated with that induced in response to AT (r ¼ 0.927,
P < 0.001, Fig. 4B).
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Pathophysiological significance of exotoxin-induced IL-22
production by nasal polyp cells

We next analyzed the correlation between SEB-induced IL-22 in
DNPCs and the pathophysiological characteristics of the CRSwNP
patients from whom the NP were derived. SEB-induced IL-22 pro-
duction by DNPCs (n ¼ 22) significantly and negatively correlated
with the degree of eosinophilia in NP (r ¼ �0.479, P ¼ 0.028,
Fig. 5A) and conversely positively correlated with the FEV1/FVC
ratio (r ¼ 0.610, P ¼ 0.005, Fig. 5E). Similar significant correlations
were found when the cells were stimulated with AT (r ¼ �0.567,
Fig. 5. Relationship between SEB-induced IL-22 production by DNPCs and pathophysiologica
operative CT score of rhinosinusitis (B), blood eosinophil count (C), serum total IgE levels (
P ¼ 0.009 for the degree of eosinophilia in NP, r ¼ 0.538, P ¼ 0.014
for the FEV1/FVC ratio). In addition, a trend towards an inverse
correlation between SEB-induced IL-22 production and both the
radiological severity of CRS as assessed by the pre-operative CT
score (r ¼ �0.380, P ¼ 0.078, Fig. 5B) and blood eosinophil count
(r ¼ �0.414, P ¼ 0.058, Fig. 5C) was observed. The postoperative CT
score significantly and negatively correlated with SEB-induced IL-
22 production by DNPCs (r ¼ �0.477, P ¼ 0.032, Fig. 5F). This score
also showed a trend toward negative correlation with AT-induced
IL-22 production (r ¼ �0.424, P ¼ 0.056). On the other hand, no
significant correlation was seen between exotoxin-induced IL-22
l characterizations including number of infiltrating eosinophils in nasal polyps (A), pre-
D), FEV1/FVC ratio (E), and post-operative CT core (F).
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production and serum total IgE levels (r¼�0.335, P¼ 0.125 for SEB
(Fig. 5D) and r¼�0.250, P¼ 0.252 for AT). A significant reduction of
IL-22 production in response to SEB (P ¼ 0.004) and AT (P ¼ 0.036)
was seen in DNPCs from asthmatic patients as compared to non-
asthmatic patients. On the other hand, no significant associations
were seen between SEB-induced IL-22 production by DUTCs from
patients with CRSsNP and pre-operative CT score (r ¼ �0.101,
P ¼ 0.776), blood eosinophil counts (r ¼ �0.452, P ¼ 0.231), serum
total IgE levels (r ¼ 310, P ¼ 0.412) or FEV1/FVC ratio (r ¼ �0.357,
P ¼ 0.344). No significant associations were also seen between AT-
induced IL-22 production by DUTCs and pre-operative CT score
(r ¼ �0.113, P ¼ 0.776), blood eosinophil counts (r ¼ �0.381,
P¼ 0.314), serum total IgE levels (r¼�0.381, P¼ 0.314) or FEV1/FVC
ratio (r ¼ �0.238, P ¼ 0.529).

Induction of MUC1 mRNA expression in DNPCs by IL-22

IL-22 is known to induce MUC1 expression in colonic epithelial
cells.12 We therefore sought to determine the effect of IL-22 on
MUC1 mRNA expression in NP. MUC1 mRNA expression was
significantly enhanced in DNPCs following their exposure to 20 ng/
ml of recombinant IL-22 (P¼ 0.048) (Fig. 6A). MUC1mRNA levels in
response to IL-22 were significantly and positively correlated with
IL-22R1 mRNA levels in DNPCs (r ¼ 0.538, P ¼ 0.027), suggesting
that induction of MUC1 in response to IL-22 is dependent on the
Fig. 6. Relationship between IL-22 signaling and MUC1 expression in NPs. (A) Effect of
IL-22 on MUC1 mRNA expression in DNPCs. DNPCs were stimulated with 20 ng/ml of
recombinant IL-22 for 72 h, then the levels of MUC1 mRNA in DNPCs were determined.
P values were determined by the Wilcoxon's signed-ranks test. (B) Correlation of
relative expression of IL-22R1 mRNA in nasal polyps and MUC1 expression in response
to recombinant IL-22 at 20 ng/ml.
levels of IL-22 receptor in NP (Fig. 6B). DNPCs spontaneously pro-
duced TARC, RANTES, IL-8, IL-18 and IL-33 but not eotaxin or IL-25
without stimulation. The addition of IL-22 did not significantly alter
the production of TARC, RANTES, eotaxin, IL-8, IL-18, IL-25 or IL-33
by DNPCs (P > 0.05 for all, Fig. 7).

We found no significant correlations between mRNA levels of
MUC1 and those of IL-22 (r ¼ 0.181, P ¼ 0.191) or IL22R1 (r ¼ 0.097,
P ¼ 0.482) in NP (n ¼ 53). However, a subgroup analysis showed
that a significant positive correlation was found between mRNA
levels of MUC1 and those of IL-22R1 in AIA patients (r ¼ 0.550,
P ¼ 0.033, n ¼ 16). No significant correlation (r ¼ �0.176, P ¼ 0.106)
was found between mRNA levels of MUC1 and IL-22/IL-22R1 ratio
in sinonasal tissues (n ¼ 85). In addition, none of each group
showed a significant correlation (UT of non-CRS patients (n ¼ 19):
r ¼ 0.058, P ¼ 0.806, n ¼ 19; UT of CRSsNP patients (n ¼ 13):
r ¼ �0.346, P ¼ 0.230; NP of non-asthmatic patients (n ¼ 16):
r ¼ 0.349, P ¼ 0.177; NP of ATA patients (n ¼ 21): r ¼ �0.036,
P ¼ 0.871; NP of AIA patients (n ¼ 16): r ¼ �0.200, P ¼ 0.439).

Effect of IL-22 blockade on exotoxin-induced IL-5 and IL-13
production by DNPCs

To determine the role of IL-22 in DNPC production of IL-5 and IL-
13, the effect of blocking IL-22 action by treatment with the anti-
human IL-22 Ab was assayed. Compared to control goat IgG,
treatment with anti-human IL-22 Ab had no effect on either SEB-
induced IL-5 (P ¼ 0.333) or IL-13 (P ¼ 0.575), or on AT-induced
IL-5 (P ¼ 0.721) or IL-13 (P ¼ 0.647) production by DNPCs
(n ¼ 10, Fig. 8A, B). A significant reduction of IL-22 levels (94.3%) in
culture supernatants of SEB-stimulated DNPCs was seen by the
neutralization of anti-IL-22 antibody as compared to the control
goat IgG (n¼ 6, P ¼ 0.028), suggesting the successful neutralization
of this anti-IL-22 antibody (Fig. 8C).

Discussion

In the present study, we characterized the expression of IL-22
and its receptor IL-22R1 in CRSwNP. Evidence is accumulating
regarding the role of IL-22 in the pathogenesis of chronic airway
diseases such as bronchial asthma. However, this is the first report
of characterization of the production of IL-22 following exposure of
NP to Staphylococcus aureus exotoxins, which are candidate toxins
for facilitation of eosinophilic inflammation in airways.21,22

This study is the first demonstration that IL-22 and IL-22R1 are
mainly expressed in infiltrating inflammatory cells and epithelial
cells, respectively, in NP. These results are consistent with previous
findings in other organs.4,5,23 For example, IL-22R1 is expressed in
several epithelial cells including keratinocytes.4,23 Consistent with
its original description as an IL-10-related T cell derived inducible
factor (IL-TIF), IL-22 is known to be produced by lymphoid cells
including CD4þ T cells, NT cells and type 3 innate lymphoid cells.4,5

The present result using double immunostaining suggests that
CD4þ T cells and eosinophils in nasal polyps have potential to
produce IL-22. These results suggest that interaction between in-
flammatory cells and epithelial cells via IL-22 regulates the path-
ogenesis of CRSwNP.

The levels of IL-22 and IL-22R1 mRNA in NP were significantly
higher and lower, respectively, than those in UT from non-CRS
patients. In addition, the NP of asthmatic patients, especially of
patients with AIA, showed high expression of IL-22 mRNA and
conversely low expression of IL-22R1 mRNA. Since the presence
of asthma, especially of AIA, has a negative impact on the patho-
genesis of CRSwNP including on postoperative outcomes, the pre-
sent results suggest that an imbalance in signaling via IL-22 affects
the pathogenesis of CRSwNP.19,24 Our results in terms of IL-22R1



Fig. 7. Effect of IL-22 on epithelial cell-derived cytokine/chemokine production by DNPCs. DNPCs were stimulated with 5 or 20 ng/ml of recombinant IL-22 for 72 h, then the
concentrations of TARC (A), RANTES (B), eotaxin (C), IL-8 (D), IL-25 (E), and IL-33 (F) were determined. P values were determined by the Wilcoxon's signed-ranks test.
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expression are consistent with those of a previous report by Ram-
anthan; however, the expression of IL-22 differed between the two
studies.16 This discrepancy may be due to a difference in the control
tissue used (uncinate tissue mucosa vs. sinonasal mucosal tissue).
The difference in IL-22 mRNA levels in UT between non-CRS pa-
tients and CRS patients may be the differences in the numbers and/
or activating status of infiltrating inflammatory cells.

Superantigenic enterotoxin and non-superantigenic AT, both of
which are major exotoxins released by S. aureus, promote IL-22
production by NP cells. This finding is consistent with that of a
previous report, which showed that both SEB and AT induced IL-22
production in PBMCs and in isolated CD4þ T cells.25 In that report,
the AT-induced IL-22 production by PBMCs was significantly
enhanced in patients with atopic dermatitis as compared with
patients with psoriasis and healthy controls. Our finding that the
SEB and AT-induced IL-22 production by NP cells was significantly
higher than that of UT cells was similar to these previous reports,
and suggests that enhancement of IL-22 production following
exposure to S. aureus exotoxins is induced in inflamed tissues in
CRS. This different response between DNPCs and DUTCs may result
from different cell activation and/or different cell component. Our
preliminary result showed that the proportion (mean ± standard
deviation) of CD4þ, CD8þ, CD19þ, CD68þ and CD117þ, ECP/EPXþ

cells in DUTCs was 4.8 ± 2.3%, 8.7 ± 3.8%, 11.8 ± 13.3%, 4.8 ± 3.6%,



Fig. 8. Effect of IL-22 neutralization on S. aureus exotoxin-induced IL-5 (A) and IL-13 (B) and IL-22 (C) production by nasal polyp cells. DNPCs were stimulated with either SEB or AT
in the presence or absence of anti-human IL-22 mAb or control goat IgG (20 mg/ml) for 72 h. P-values were determined using the Wilcoxon signed-rank test.
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0.8 ± 0.4%, and 0.7 ± 0.7%, respectively (n ¼ 3). As compared with
our previous data on DNPCs (CD4þ cell: 7.8 ± 11.1%, CD8þ cells:
10.9 ± 10.5%, CD79aþ cells: 8.5 ± 6.8%, CD68þ cells: 8.9 ± 8.2%,
CD117þ cells: 8.5 ± 5.3%, ECP/EPXþ cells: 11.7 ± 8.9%), the pre-
liminary result suggests that the proportion of mast cells, eosino-
phils and CD4þ T cells are lower DUTCs as compared with DNPCs.26

One of reasons why there was no significant difference in IL-22
mRNA levels between UT of CRSsNP and NP of CRSwNP whereas IL-
22 production in response to SEB or AT was significantly higher in
DNPCs than DUTCs may be that exotoxins are not the single elicitor
to induce IL-22 production in sinonasal tissues. Other microbes
such as fungi and viruses may also induce IL-22 production in CRS.
For example, Aspergillus-fumigatus induces IL-22 production by
human peripheral blood mononuclear cells.27

A significant inverse correlationwas seen between the degree of
eosinophilia in NP and exotoxin-induced IL-22 production by NP
cells in patients with CRSwNP. In addition, the complication with
asthma had a negative influence on exotoxin-induced IL-22 pro-
duction by NP cells. This is the first report in which IL-22 was
characterized in airways following exposure to S. aureus exotoxins.
To date, the effect of IL-22 on eosinophilic airway inflammation in
humans remains unclear. Pennino et al. recently showed that the
expression of IL-22 in both bronchial mucosa and bronchoalveolar
lavage fluid was higher in asthmatic patients as compared with
healthy controls, and that IL-22 inhibited IFN-g-mediated expres-
sion of MHC class I, MHC class II, ICAM-1, RANTES and IP-10 in
bronchial epithelial cells.10 In amurinemodel of asthma, delivery of
IL-22 suppresses, whereas attenuation of IL-22 enhances eosino-
philic inflammation.9,11 Together with the finding that exotoxin-
induced IL-22 production by DNPCs positively correlated with the
FEV1/FVC ratio whereas negatively correlated with postoperative
CT score, the present results suggest that impairment in the syn-
thesis of IL-22 following exposure to S. aureus exotoxins regulates
the pathophysiology of CRSwNP including eosinophilic
inflammation, lower respiratory function and persistent inflam-
mation after surgery. On the other hand, impairment of IL-22
synthesis after exposure with S. aureus exotoxins is not associated
with the pathophysiology of CRSsNP since no significant correla-
tions were found between exotoxins-induced IL-22 production by
DUTCs and pre-operative CT score, blood eosinophil counts, serum
total IgE levels or FEV1/FVC ratio.

It remains unclear how IL-22 regulates eosinophilic inflamma-
tion. Studies using mouse models of asthma suggest that the
inhibitory effect of IL-22 on eosinophilic airway inflammation is
associated with the suppression of Th2 cytokines such as IL-5 and
IL-13.9e11,28 However, this was not the case in the present study
since treatment with an anti-human IL-22 Ab did not alter
exotoxin-induced IL-5 or IL-13 production by NP cells. IL-22 is
known to regulate the production of other epithelial-derived cy-
tokines or chemokines including CCL17 (TARC), RANTES, IL-8 and
IL-25.9,10,26,29 However, in the present study the addition of re-
combinant IL-22 did not alter the production of these cytokines/
chemokines by DNPCs.

On the other hand, IL-22 did significantly enhance the levels of
MUC1 expression in NP cells. MUC1 is a membrane-tethered mucin
that is located on sinonasal mucosa, and whose expression is
significantly higher in NP as compared with healthy nasal mu-
cosa.30 MUC1 is known to exert an anti-inflammatory effect on
airway inflammation through inhibition of TLR signaling including
the signaling of TLR2, TLR3, TLR4, TLR5, TLR7 and TLR9.31 More
recently, Milara et al. demonstrated that the cytoplasmic tail of
MUC1 participates in the corticosteroid response that mediates GR
alpha nuclear transcription in CRSwNP.32 Our preliminary result
showed that co-culture with unstimulated Beas-2B cells, an airway
epithelial cell line, following treatment of MUC1-specific siRNA
prolonged attached but not floating eosinophil survival (approxi-
mately 9% extension), comparedwith non-slicing siRNA, suggesting
that MUC1 on epithelial cells displays an inhibitory effect on
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eosinophil survival by cell-to-cell contact (unpublished data).
Although IL-22 is known to enhance MUC1 expression in the in-
testine, little is known about the effect of IL-22 onMUC1 expression
in the airway.12 Our results, together with the finding that MUC1
levels in response to IL-22 were significantly and positively corre-
lated with IL-22RA mRNA levels in NP cells, suggest that one of the
anti-inflammatory effects of IL-22 on eosinophilic airway inflam-
mation is mediated by the enhancement of MUC1 expression,
which is dependent on expression of the IL-22 receptor.

In conclusion, we show evidence that, following exposure of NP
cells to S. aureus exotoxins, IL-22 plays a regulatory role in the
pathogenesis of CRSwNP via enhancement of MUC1 expression by
an IL-22 receptor-dependent pathway. The present observations
might provide a basis for novel therapeutic approaches that target
IL-22 and its receptor in the management of airway inflammatory
diseases.
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