氏 名 翟 蘊

授 与 し た 学 位 博 士 専 攻 分 野 の 名 称 医 学

学 位 授 与 番 号 博甲第5282号

学位授与の日付 平成28年 3月25日

学 位 授 与 の 要 件 医歯薬学総合研究科生体制御科学専攻 (学位規則第 4 条第 1 項該当)

学位論文題目 Strong Reduction of Low-Density Lipoprotein

Receptor / Apolipoprotein E Expressions by Telmisartan in Cerebral Cortex and Hippocampus of Stroke Resistant Spontaneously Hypertensive Rats (高血圧自然発症ラットのLDL-R/ApoEシステムにおける

テルミサルタンの治療効果)

論 文 審 杳 委 員 教授 淺沼 幹人 教授 西堀 正洋 准教授 佐田 憲映

学 位 論 文 内 容 の 要 旨

Abstract: Telmisartan, an angiotensin receptor blocker, which is called metabo-sartan, is to be a promising drug candidate for preventing cognitive decline or incidence of dementia. We examined effects of telmisartan on cholesterol transport related proteins (ApoE/LDL-R) and cortical neuronal intensity (MAP2) in the brain of spontaneously hypertensive rat stroke resistant (SHR-SR). SHR-SR were divided into the 3 experiment groups including vehicle group, low-dose telmisartan group (0.3 mg/kg/day), and high-dose telmisartan group (3 mg/kg/day). At age 6, 12 and 18 months, immunohistological analysis was performed. We found that both ApoE and LDL-R expression of increased in both cerebral cortex and hippocampus of SHR/Ve throughout ages 6, 12 and 18 months, compared with age-matched normotensive Wistar rats. However, telmisartan dramatically suppressed its expression in both doses. i.e., low dose just for improving metabolic syndrome of SHR-SR without BP lowering, and high dose for improving metabolic syndrome with BP lowering. On the other hand, the decrease of MAP2 positive neuron in SHR/Ve was recovered by telmisartan in both cerebral cortex and hippocampus. These findings suggest that both low- and high-dose telmisartan prevented ApoE/LDL-R activations in SHR-SR, and anti-metabolic effect was regarded as the most important mechanism than an additional BP lowering in this animal model. Telmisartan has a long-term neuroprotective effect against metabolic syndrome, therefore, it could provide a preventative approach in patients with hypertension at risk of Alzheimer's disease.

論文審査結果の要旨

本研究は、脳血管性認知症モデルであるSHR-SRラットを用いて、 β アミロイド沈着の病態形成に関与するlow-density lipoprotein receptor(LDL-R)、apolipoprotein E (Apo E)の大脳皮質、海馬CA1,3領域における発現増加および神経脱落に対する降圧薬angiotensin II type 1 receptor blocker (ARB)のTelmisartan の効果について検討したものである。降圧作用を示さない低用量、降圧作用を示す高用量のいずれにおいても、Telmisartan の連日投与は、大脳皮質、海馬CA1,3領域におけるLDL-R、Apo E の神経細胞での発現増加を抑制し、神経細胞の脱落も抑制することを明らかにした。その神経保護効果のメカニズムの詳細は不明であるが、TelmisartanのPPAR- γ アゴニスト活性が関与している可能性も考えられ、今後の研究が期待される。ARBのTelmisartan がその降圧作用で脳血管性認知症のリスクを軽減するだけでなく、アミロイド病態に関わる因子に作用することで保護効果を発揮する可能性を明らかにしたものとして、価値ある業績であると認める。

よって,本研究者は博士(医学)の学位を得る資格があると認める.