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Abstract

Background: The most distinguishing genetic feature of hepatitis C virus (HCV) is its remarkable diversity and variation. To
understand this feature, we previously performed genetic analysis of HCV in the long-term culture of human hepatoma
HuH-7-derived HCV RNA-replicating cell lines. On the other hand, we newly established HCV RNA-replicating cell lines using
human hepatoma Li23 cells, which were distinct from HuH-7 cells.

Methodology/Principal Findings: Li23-derived HCV RNA-replicating cells were cultured for 4 years. We performed genetic
analysis of HCVs recovered from these cells at 0, 2, and 4 years in culture. Most analysis was performed in two separate parts:
one part covered from the 59-terminus to NS2, which is mostly nonessential for RNA replication, and the other part covered
from NS3 to NS5B, which is essential for RNA replication. Genetic mutations in both regions accumulated in a time-
dependent manner, and the mutation rates in the 59-terminus-NS2 and NS3-NS5B regions were 4.0–9.061023 and 2.7–
4.061023 base substitutions/site/year, respectively. These results suggest that the variation in the NS3-NS5B regions is
affected by the pressure of RNA replication. Several in-frame deletions (3–105 nucleotides) were detected in the structural
regions of HCV RNAs obtained from 2-year or 4-year cultured cells. Phylogenetic tree analyses clearly showed that the
genetic diversity of HCV was expanded in a time-dependent manner. The GC content of HCV RNA was significantly
increased in a time-dependent manner, as previously observed in HuH-7-derived cell systems. This phenomenon was
partially due to the alterations in codon usages for codon optimization in human cells. Furthermore, we demonstrated that
these long-term cultured cells were useful as a source for the selection of HCV clones showing resistance to anti-HCV
agents.

Conclusions/Significance: Long-term cultured HCV RNA-replicating cells are useful for the analysis of evolutionary
dynamics and variations of HCV and for drug-resistance analysis.
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Introduction

Hepatitis C virus (HCV) infection frequently causes chronic

hepatitis, which progresses to liver cirrhosis and hepatocellular

carcinoma. Such persistent infection has now become a serious

health problem, with more than 170 million people worldwide

infected with HCV [1]. HCV is an enveloped positive single-

stranded RNA (9.6 kb) virus belonging to the Flaviviridae family,

and the HCV genome encodes a large polyprotein precursor of

approximately 3000 amino acid (aa) residues. This polyprotein is

cleaved by a combination of host and viral proteases into at least

10 proteins in the following order: core, envelope 1 (E1), E2, p7,

nonstructural protein 2 (NS2), NS3, NS4A, NS4B, NS5A, and

NS5B [2,3].

The initial development of a cell culture-based replicon system

[4] and a genome-length HCV RNA-replicating system [5] using

genotype 1b strains led to rapid progress in investigations into the

mechanisms underlying HCV replication [6,7]. HCV replicon

RNA (approximately 8 kb) is a selectable, bicistronic HCV RNA

with the first cistron, the neomycin phosphotransferase (NeoR)

gene, being translated under control of the HCV internal

ribosome entry site (IRES) and the second cistron, the NS3-

NS5B regions, being translated under control of the encephalo-

myocarditis virus (EMCV) IRES. Genome-length HCV RNA

(approximately 11 kb) possesses the Core-NS5B regions in

substitution for the NS3-5B regions of the replicon in addition

to the replicon structure. It was reported that infectious HCV

particles are not produced in genome-length HCV RNA-

replicating cell systems using genotype 1b strains [6,8]. However,

in 2005, an efficient virus production system using the JFH-1 strain

of genotype 2a was developed using HuH-7-derived cells [9].

Since then, this infectious HCV system became a powerful tool to

study the full viral life cycle [10].
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The most distinguishing feature of the HCV RNA is its

remarkable diversity and variation. To date, six major HCV

genotypes, each having a large number of subtypes, have been

found to show more than a 20% difference at the nucleotide level

compared with any other genotypes [11,12]. An approximately 5–

8% difference at the nucleotide level has been observed within a

single genotype [3]. Furthermore, an approximately 1% difference

at the nucleotide level is also observed among HCV genomes in an

individual [13]. Although genetic analyses of HCV using in vivo

specimens have estimated that the genetic mutation rate of HCV is

1.4–1.961023 base substitutions/site/year [14–16], the potential

variability of HCV is not clear due to the selective pressure of

immune system functions in vivo [17,18].

To define the actual genetic mutation frequency of HCV, we

previously performed genetic analysis of HCV [19,20] using

human hepatoma HuH-7 cell culture-based HCV replicon

systems or genome-length HCV RNA-replication systems. In

studies using the 1B-1 or O strain of genotype 1b, the

accumulation of genetic mutations (mutation rate is 3.0–

4.861023 base substitutions/site/year), the enlargement of genetic

diversity, and an increase in GC contents of HCV RNA were

observed in a time-dependent manner during a 2-year cell culture

[19,20]. These results suggest that the long-term culture of HCV

RNA-replicating cells is useful for understanding the evolutionary

dynamics and variations of HCV. However, HuH-7-derived cells

are the only cell culture system used thus far for robust HCV

replication [6,7]. Therefore, it remains unclear whether our results

obtained from HuH-7-derived HCV RNA-replicating cell culture

systems reflect the general features of HCV’s genetic diversity and

variation. On the other hand, in 2009 we established four new

human hepatoma Li23 cell-derived genome-length HCV RNA (O

strain of genotype 1b; GenBank accession no. AB191333)-

replicating cell lines, OL (polyclonal; a mixture of approximately

200 clones), OL8 (monoclonal), OL11 (monoclonal), and OL14

(monoclonal) [21], and have been culturing them for more than 4

years. Since we demonstrated that the gene expression profile of

Li23 cells was distinct from those in HuH-7 cells [22], and that

anti-HCV targets in Li23-derived cells were distinct from those in

HuH-7-derived cells [23–25], we expected to find distinct HCV

variability and diversity from those observed previously in HuH-7-

derived cells. To clarify this point, we carried out comprehensive

genetic analysis of HCVs obtained from 0-year, 2-year, and 4-year

cultures of OL, OL8, OL11, and OL14 cells, and compared them

with the original ON/C-5B/QR,KE,SR RNA [21].

Here, we report the evolutionary HCV dynamics occurring in

the long-term replication of genome-length HCV RNAs using

Li23-derived cell culture systems.

Materials and Methods

Cell Cultures
The human hepatoma Li23 cell line, which was established and

characterized in 2009, consists of human hepatoma cells from a

Japanese male (age 56) [21]. The Li23 cells were cultured in

modified medium for human immortalized hepatocytes, as

described previously [21,26]. Genome-length HCV RNA-repli-

cating cells (Li23-derived OL, OL8, OL11, and OL14 cells) were

cultured in the medium for the Li23 cells in the presence of

0.3 mg/ml of G418 (Geneticin, Invitrogen, Carlsbad, CA). These

cells were passaged every 7 days for 4 years. HCV RNA-

replicating cells possess the G418-resistant phenotype, because

NeoR as a selective marker was produced by the efficient

replication of HCV RNA. Therefore, when HCV RNA is

excluded from the cells or when its level decreases, the cells are

killed in the presence of G418. In this study, OL, OL8, OL11, and

OL14 cells were renamed OL(0Y), OL8(0Y), OL11(0Y), and

OL14(0Y) cells, respectively, to specify the time at which the cells

were established. These ‘‘0Y’’ cells of passage number 3 were used

in this study. Two-year cultures of OL(0Y), OL8(0Y), OL11(0Y),

and OL14(0Y) cells were designated OL(2Y), OL8(2Y), OL11(2Y),

and OL14(2Y) cells, respectively. Four-year cultures of OL(0Y),

OL8(0Y), OL11(0Y), and OL14(0Y) cells were designated OL(4Y),

OL8(4Y), OL11(4Y), and OL14(4Y) cells, respectively.

Quantification of HCV RNA
Quantitative reverse transcription-polymerase chain reaction

(RT-PCR) analysis for HCV RNA was performed using a real-

time LightCycler PCR (Roche Diagnostics, Basel, Switzerland) as

described previously [21,27]. Experiments were done in triplicate.

Western Blot Analysis
The preparation of cell lysates, sodium dodecyl sulfate-

polyacrylamide gel electrophoresis, and immunoblotting analysis

with a PVDF membrane was performed as described previously

[28]. The antibodies used to examine the expression levels of HCV

proteins were those against NS4A (a generous gift from Dr. A.

Takamizawa, Research Foundation for Microbial Diseases, Osaka

University) and NS5B (a generous gift from Dr. M. Kohara,

Tokyo Metropolitan Institute of Medical Science, Japan). Anti-b-

actin antibody (AC-15; Sigma, St. Louis, MO) was also used to

detect b-actin as an internal control. Immunocomplexes on the

membranes were detected by enhanced chemiluminescence assay

(Western Lightning Plus-ECL; Perkin-Elmer Life Sciences, Bos-

ton, MA).

RT-PCR and Sequencing
To amplify genome-length HCV RNA, RT-PCR was per-

formed separately in two fragments as described previously

[21,27]. Briefly, one fragment covered from the 59-terminus to

NS3, with a final product of approximately 5.1 kb, and the other

fragment covered from NS2 to NS5B, with a final product of

approximately 6.1 kb. These fragments overlapped at the NS2

and NS3 regions and were used for sequence analysis of the HCV

open reading frame (ORF) after cloning into pBR322MC [28].

SuperScript II (Invitrogen, Carlsbad, CA) and KOD-plus DNA

polymerase (Toyobo, Osaka, Japan) were used for RT and PCR,

respectively. Plasmid inserts were sequenced in both the sense and

antisense directions using Big Dye terminator cycle sequencing on

an ABI PRISM 310 genetic analyzer (Applied Biosystems, Foster

City, CA). The nucleotide sequences of each of 10 (OL cell series)

or 3 (OL8, OL11, and OL14 cell series) independent clones

obtained were determined.

Molecular Evolutionary Analysis
Nucleotide and deduced aa sequences of the clones obtained by

RT-PCRs were analyzed by neighbor-joining analysis using the

program GENETYX-MAC (Software Development, Tokyo,

Japan).

Antiviral Assay
To monitor the anti-HCV activity of telaprevir, genome-length

HCV RNA-replicating cells were plated onto 6-well plates (26105

cells for OL(0Y) cells or 86104 for OL(4Y), OL8(4Y), OL11(4Y),

or OL14(4Y) cells per well). After 24 hrs in culture, the cells were

treated with telaprevir (a generous gift from Dr. T. Furihata,

Chiba University, Japan) at 0.2 mM or 0.4 mM for 3 days. After
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treatment, the cells were subjected to quantitative RT-PCR

analysis for HCV RNA.

Statistical Analysis
The significance of differences among groups was assessed using

Student’s t-test. P,0.05 was considered significant.

Results

Efficient replication of genome-length HCV RNA is
maintained in long-term cell culture

To prepare the specimens for the genetic analysis of HCV,

genome-length HCV RNA-replicating OL(0Y), OL8(0Y),

OL11(0Y), and OL14(0Y) cells were cultured for 4 years. Since

we previously demonstrated that the levels of HCV RNAs

increased in all cases after 2 years of constitutive HCV RNA

replication [26], in the present study we examined the levels of

intracellular HCV RNAs after the cell culture of 4 years by

quantitative RT-PCR. The results revealed that the levels of HCV

RNAs in all cases were significantly higher than that of OL(0Y)

cells (Fig. 1). Western blot analysis for HCV NS4A and NS5B also

showed that the expression levels in all cases were higher than that

of OL(0Y) cells. However, the present results were matched with

previous findings regarding a 2 year-culture [26], revealing that

the levels of HCV RNAs of OL8(4Y) and OL11(4Y) cells become

lower than those of OL8(0Y) or (2Y) and OL11(0Y) or (2Y) cells,

respectively. Unlike the results for the OL8 or OL11 series, the

levels of HCV RNAs of OL(4Y) or OL14(4Y) cells were each

maintained throughout cultures of 2 years and 4 years. Overall, we

showed that the HCV RNA levels in all cases were more than

56106 copies/mg of total RNA, indicating that efficient HCV

RNA replication occurred during those 4 years.

We next examined whether infectious HCV particles are

produced from genome-length HCV RNA-replicating cells after

4 years of culture, although it has been reported that infectious

particles were not produced in genome-length HCV RNA-

replicating cell systems [6,8]. To clarify this point, we performed

infection experiments to HCV (JFH-1) susceptible HuH-7-derived

RSc and Li23-derived ORL8 cells [21] using the supernatant of

OL(0Y), OL(4Y), OL8(4Y), OL11(4Y), or OL14(4Y) cells as an

inoculum. At 7 days and 8 days post-infection, we quantified the

Core in the supernatants by enzyme-linked immunosorbent assay

and HCV RNA in the cells by quantitative RT-PCR. The results

(Fig. S1) showed that both Core and HCV RNA were not detected

in our long-term cultured cells, suggesting that the cells produced

no infectious virus particles over time.

Genetic variations of genome-length HCV RNAs during
long-term cell culture

To clarify the genetic variations of HCVs during the period of

cell culture, we carried out sequence analysis of genome-length

HCV RNAs obtained from OL(2Y), OL(4Y), OL8(2Y), OL8(4Y),

OL11(2Y), OL11(4Y), OL14(2Y), and OL14(4Y) cells. The

determined nucleotide sequences of genome-length HCV RNAs

were compared with those of the original ON/C-5B/QR,KE,SR

RNA [21] used for the establishment of the OL(0Y), OL8(0Y),

OL11(0Y), and OL14(0Y) cell lines. To compare the nucleotide

sequences, the data on genome-length HCV RNAs from OL(0Y),

OL8(0Y), OL11(0Y), and OL14(0Y) cells were also used [21].

Most of the sequence analysis was performed in two separate parts:

one part covers from the 59-terminus to NS2, which is mostly

nonessential for RNA replication, and the other part covers from

NS3 to NS5B, which is essential for RNA replication. The results

revealed that the numbers of base substitutions in both regions

Figure 1. Characterization of genome-length HCV RNA-replicating cells after 4 years in culture. (A) Quantitative analysis of intracellular
genome-length HCV RNA. The total RNAs from OL(4Y), OL8(4Y), OL11(4Y), and OL14(4Y) cells used were analyzed. The levels of intracellular genome-
length HCV RNA were quantified by LightCycler PCR. OL(0Y) and Li23 cells were used as a positive and a negative control, respectively. (B) Western
blot analysis. The cellular lysates from the cells used for RT-PCR analysis were also used for comparison. NS4A and NS5B were detected by Western
blot analysis. b-actin was used as a control for the amount of protein loaded per lane.
doi:10.1371/journal.pone.0091156.g001
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increased in a time-dependent manner (Fig. 2A and 2B). The

numbers of deduced aa substitutions in HCV ORFs correlated

well with the numbers of base substitutions of genome-length

HCV RNAs (Fig. 2A and 2B). These base substitutions were

considered mutations that occurred during the intracellular

replication of genome-length HCV RNA. Based on the results

after 2 or 4 years in culture, we calculated the apparent mutation

rates of genome-length HCV RNAs in these cell lines. For this

analysis, genome-length HCV RNA was divided into three parts:

the 59-terminus-EMCV IRES regions (partly essential for RNA

replication), the Core-NS2 regions (nonessential for RNA replica-

tion), and the NS3-NS5B regions (essential for RNA replication).

The results revealed that the mutation rates (base substitutions/

site/year) in the three distinct regions calculated from the data of

the 2-year culture were about the same as the mutation rates

calculated from the data of the 4-year culture (Fig. 3). These results

suggest that genetic variations of HCV have occurred at the same

speed for four years in Li23-derived genome-length HCV RNA

replicating cells. Furthermore, we noticed that the mutation rates

in the NS3-NS5B regions (2.7–4.061023) were lower than those in

the 59-terminus-EMCV IRES regions (4.1–6.961023) and the

Core-NS2 regions (5.3–9.161023) (Fig. 3). Moreover, we exam-

ined the numbers of synonymous (dS) and nonsynonymous (dN)

mutations with transition (Ts) or transversion (Tv) in two divided

regions (Core-NS2 and NS3-NS5B). The results are summarized

in Table 1. The dN/dS ratio in the Core-NS2 and NS3-NS5B

regions were 1.55 to 3.00 and 0.45 to 1.06, respectively. These

values imply the positive selection in Core-NS2 regions and the

purifying (stabilizing) selection in NS3-NS5B regions except

OL11(2Y) and OL8(4Y) cells. Since the dN/dS ratios in NS3-

NS5B regions of OL11(2Y) and OL8(4Y) cells were 1.06 and 1.03,

respectively, we can estimate that neutral selection acted in these

cells. In addition, the Ts/Tv ratios in the Core-NS2 and NS3-5B

regions were 3.50 to 7.21 and 3.58 to 10.08, respectively. These

results showed a tendency similar to that found in a previous study

[20] using HuH-7-derived genome-length HCV RNA-replicating

cells, suggesting that the NS3-NS5B regions, which are essential

for RNA replication, are evolutionally limited. Together these

results indicate that HCV can mutate at the same level in both

HuH-7-derived cells and Li23-derived cells.

Characterization of aa substitutions in HCV ORFs during
long-term cell culture

We next characterized aa substitutions in HCV ORFs that

occurred during 4 years in culture of OL(0Y), OL8(0Y),

OL11(0Y), and OL14(0Y) cells. The conserved aa substitutions

(mutated in all 10 clones sequenced in the cases of OL(2Y) or

OL(4Y) cells and mutated in all 3 clones sequenced in the cases of

OL8(2Y), OL8(4Y), OL11(2Y), OL11(4Y), OL14(2Y), or

OL14(4Y) cells) are summarized in Table 2 (Core-p7 regions)

and Table 3 (NS2-NS5B regions). Among the many aa

substitutions, only 19 were the same as those detected in the 2-

year culture of one of five kinds of HuH-7-derived genome-length

HCV RNA (O strain of genotype 1b)-replicating cell lines [20]

(Tables 2 and 3). In addition, 17 aa were substituted to the type of

Figure 2. Genetic variations occurring in long-term replication of genome-length HCV RNAs. (A) Genetic variations in the 59-terminus-
NS2 regions. The left vertical line indicates the mean numbers of base substitutions detected per cDNA clone, by comparison with ON/C-5B/QR,KE,SR
RNA [21]. The right vertical line indicates the mean numbers of aa substitutions in the Core-NS2 regions deduced per cDNA clone, by comparison
with the original aa sequences deduced from ON/C-5B/QR, KE, SR RNA [21]. (B) Genetic variations in the NS3-NS5B regions. The mean numbers of
base substitutions and aa substitutions are indicated as shown in (A).
doi:10.1371/journal.pone.0091156.g002
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JFH-1 strain (genotype 2a: accession number AB237837) (Tables 2

and 3). We noticed that 12 aa substitutions were commonly

detected in at least two different cell lines (Tables 2 and 3). The

remaining 338 conserved aa substitutions were independently

caused in each of the Li23-derived genome-length HCV RNA-

replicating cell lines (Tables 2 and 3). However, from these results,

we cannot conclude it whether genetic variations of HCV occur in

a cell-line-specific manner or in a random manner.

Genetic deletions were characterized in the first half of
genome-length HCV RNAs during long-term cell culture

Recently, Pacini et al. demonstrated that naturally occurring

HCV subgenomic RNAs, mostly lacking the E1 or E2 region,

were capable of autonomous replication and could be packaged

and secreted in viral particles [29]. In the present cell-based study

also, we detected several conserved deletions within genome-

length HCV RNAs, although a previous study using HuH-7-

derived cell lines did not reveal any conserved deletions [20]. As

shown in Figure 4, all deletions were located in the first half of

genome-length HCV RNA. In OL8(2Y) and OL8(4Y) cells, a

conserved 51 nucleotides (nts) deletion in frame was detected,

resulting in a 17 aa deletion (aa 686–702 in the E2). In OL14(2Y)

and OL14(4Y) cells also, two kinds of conserved 3 nts deletion in

frame were detected, resulting in a 1 aa deletion in each (aa 414 in

the E2 and aa 847 in the NS2). Furthermore, a conserved 105 nts

deletion in frame was observed in OL14(4Y) cells, resulting in a 35

aa deletion (aa 725–746 in the E2 and aa 747–759 in the NS2). In

addition, 26 nts (nt 1248–1273) located between the NeoR gene and

IRES was conservatively deleted in OL11(2Y) and OL11(4Y) cells.

These results suggest that nonessential regions for RNA replication

are deleted during long-term culture of Li23-derived cells.

However, such deletion was not caused in the OL cell series.

Genetic diversity of genome-length HCV RNA arising
during long-term cell culture

Based on the sequence data of all clones obtained after 0-year,

2-year, and 4-year culture, we examined the genetic diversities of

genome-length HCV RNAs by the construction of phylogenetic

trees. The results revealed that the genetic diversities of genome-

length HCV RNAs were clearly expanded at both the nucleotide

(Fig. 5) and aa (Fig. S2) sequence levels in the 59-terminus-NS2

regions and the NS3-NS5B regions, and that the 10 clones derived

from OL cell series and 3 clones derived from each other cell series

were clustered and located at similar genetic distances from the

origin (ON/C-2 or O/3-5B/QR,KE,SR for the nucleotide

sequence level and O/C-2 or O/3-5B/QR,KE,SR for the aa

sequence level [21]) (Fig. 5 and Fig. S2).

We next compared the nucleotide sequences among 10

independent OL(4Y) clones obtained after 4-year cell culture. In

Table 1. Base substitutions occurring in genome-length HCV RNAs during long-term cell culture.

Full-length
HCV RNA
series Ts Tv dN/dS Ts/Tv

dN dS dN dS

C-NS2 NS3-5B C-NS2 NS3-5B C-NS2 NS3-5B C-NS2 NS3-5B C-NS2 NS3-5B C-NS2 NS3-5B

OL(2Y) 21.261.4 11.561.4 9.161.5 29.362.0 3.161.4 9.061.5 1.160.3 0.560.5 2.38 0.69 7.21 4.29

OL8(2Y) 34.364.9 14.361.2 12.362.1 23.76.25 7.760.6 5.761.2 1.760.6 4.360.6 3.00 0.71 5.00 3.80

OL11(2Y) 23.364.0 13.061.0 17.063.6 16.064.0 6.063.6 6.061.7 0.760.6 2.060 1.66 1.06 6.05 3.63

OL14(2Y) 18.761.5 11.061.0 16.362.1 29.364.7 8.760.6 2.762.9 1.360.6 1.361.5 1.55 0.45 3.50 10.08

OL(4Y) 47.463.2 22.161.7 16.462.0 45.162.5 5.160.9 13.161.2 4.060.5 2.360.5 2.57 0.74 7.01 4.36

OL8(4Y) 56.764.2 35.761.2 29.762.5 38.362.3 14.360.6 12.360.6 1.360.6 8.360.6 2.29 1.03 5.51 3.58

OL11(4Y) 66.764.9 26.360.6 30.065.6 42.063.6 16.362.9 6.761.5 4.360.6 6.763.2 2.42 0.68 4.68 5.13

OL14(4Y) 34.361.5 23.761.2 27.363.5 47.362.9 10.361.2 5.060 1.360.6 3.761.5 1.56 0.56 5.29 8.19

Base substitutions were counted by comparison with the sequence of genome-length HCV RNA (ON/C-5B/QR,KE,SE [20]).
Average numbers of base substitutions per cDNA clone are shown.
Ts: Transition; Tv: Transversion; dN: Nonsynonymous; dS: Synonymous.
doi:10.1371/journal.pone.0091156.t001

Figure 3. Mutation rates of genome-length HCV RNAs in long-
term cell culture. The mutation rates of three regions (59-terminus-
EMCV-IRES, Core-NS2, and NS3-NS5B) of genome-length HCV RNAs (OL,
OL8, OL11, and OL14) were calculated using the sequence data
obtained from 2- or 4-year cell culture. The vertical line indicates the
means of the mutation rates calculated using the nucleotide sequences
of 10 clones (OL) or 3 clones (OL8, OL11, or OL14) of genome-length
HCV RNAs, by comparison with the original sequence (ON/C-5B/
QR,KE,SR RNA) [21].
doi:10.1371/journal.pone.0091156.g003
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the 59-terminus-NS2 regions and the NS3-NS5B regions derived

from OL(4Y) cells, 0.38–1.28% and 0.22–0.56% differences in

nucleotide sequences were observed, respectively. These results

suggest that the quasispecies nature of genome-length HCV RNA

was acquired steadily over long-term intracellular RNA replica-

tion.

Classification of mutations occurred in genome-length
HCV RNAs during long-term cell culture

We next examined the mutation patterns occurring in genome-

length HCV RNAs. The results revealed that U to C and A to G

transition mutations were the most and second-most frequent

mutations in total, although three cases (OL8(2Y), OL8(4Y), and

OL14(4Y)) showed the opposite result (Table 4). High frequencies

of U to C and A to G mutations were also observed in a previous

study using HuH-7-derived HCV replicon- or genome-length

HCV RNA-replicating cell lines [19,20]. The rarest mutation was

C to G transversion in 2-year and 4-year cultures (Table 4). This

result was the same as in a previous report using HuH-7-derived

cell systems [20]. Since the frequency of U to C and A to G

mutations was two or three times higher than that of C to U and G

to A mutations, the GC content of HCV RNA increased

significantly in a time-dependent manner in both the 59-

terminus-NS2 regions (Fig. 6A) and the NS3-NS5B regions

(Fig. 6B). The increase in GC content of HCV RNA was observed

in all Li23-derived cells after 2-year or 4-year culture. In the 59-

terminus-NS2 regions of HCV RNA, a remarkable (more than

1%) increase in GC content was found after the 4-year culture of

all the cells except OL14(0Y) cells (Fig. 6A).

The time-dependent increase in the GC content of the HCV

RNA may gradually change to an energetically stable form during

Table 2. Conservative aa substitutions occurring during long-term replication of genome-length HCV RNAs (I).

OL OL8 OL11 OL14

Region

Core V46A T52A K10Ra,b T11S (I30T) S53P K10Ra,b K12Nb

(1,191) L133Fb G146R Q20R V31A T125S L133S K23M E54G

N163D L185S W76R E89Vb M134T L139Pb S56P I65V

L91P N118I A150T N163Ta,b A180V

E159V N163Ta,b

P170A

E1 Y201H Y214C C207Y V230A D206G V240L V203I C226Rb

(192,383) D218T L246P C281Y V284A A241T S251Ga S251Ga Y276H

F271S I287N L286P F293L S283P V284G L308S A343Vc

Y298Hc C306S S294L V313Ab C304R M318Va A380S

W320R L332P (M318V)a M323L V365A L377F

L359F T329A L338F

Q342R V344G

A351P S363P

W368R F378L

E2 R386C I414T R386H N395D S408P R424G I411V I414D

(384,746) S450P M456T K410E N417D L427P (G436E) S419R I422T

E464Ac N532G N428D (I462V) F447L (S449P) R483G D520G

N556S K596E I462A D481E S449L F465L K562E T563M

R614G M631T Y507Hb G523S (Q467H) V514G C564W T680Sc

E650G L692P L537Pb N548Sc E533G C569R D698G V699A

V710A L721Pa T561S E591G N577Tc (L603M) D725–746

S668P I674Tb V609I D610G

D686–702 V709A Y611C W616R

W736R N623S S663G

F679L V710I

V712A L721Pa

V731A

p7 E749K G764S S767P (L797I) N750D L766F (L748P) D747–759

(747,809) L769P L799P F771L I778V

aConservative aa substitutions detected in at least two of four cell line series.
bConservative aa substitutions detected in HuH-7-derived cell line series (O, OA, OB, OD, or OE) used in the previous study [20].
cConservative aa substitutions that became the same aa as the JFH-1 strain.
Conservative aa substitutions detected after 2-year and 4-year cultures are shown by bold letters.
Conservative aa substitutions detected only after 2-year culture are shown within parentheses.
doi:10.1371/journal.pone.0091156.t002
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RNA replication. We assumed that the increase in GC content is

due to an increase in G- and C-ending codons, except for AGG

and UUG codons, for efficient expression in human cells, so-called

codon optimization [30], and we examined this possibility. The

results in the NS3-NS5B regions revealed the time-dependent

increase of G- and C-ending codons, except for AGG and UUG

codons, in all four cell series (Table 5). However, this phenomenon

was not remarkable in the Core-NS2 regions (Table 5). These

results suggest that codon usage in the NS3-NS5B regions adapts

to efficient translation in the human cells in a time-dependent

manner. Further long-term cell cultures will clarify this point.

Usefulness of long-term cultured genome-length HCV
RNA-replicating cells as a source of resistant HCV for anti-
HCV agents

As described above, we demonstrated that genetic mutations

and the diversity of HCV RNA expanded during long-term

culture of genome-length HCV RNA-replicating cells. From these

results, we assumed that these HCV populations that mimic the

state of long-term persistent infection become the source of

resistant HCV for anti-HCV agents. To clarify this point, we

examined the effect of telaprevir, an inhibitor of HCV NS3-4A

protease, which is the first directly acting antiviral reagent to be

used for the treatment of HCV genotype 1, using 4-year cultured

cell lines [31]. To know the effective concentration area, we first

evaluated the anti-HCV activity of telaprevir using our previously

developed HCV reporter assay systems (HuH-7-derived OR6 [27]

and Li23-derived ORL8 [21]). The results revealed that 50%

effective concentration (EC50) values were 0.17 mM and 0.14 mM

in the OR6 and ORL8 assay systems, respectively, indicating that

telaprevir exhibited strong anti-HCV activities in our HCV cell

culture systems (data not shown). In reference to these EC50

values, we next examined the anti-HCV activity of telaprevir at

0.2 and 0.4 mM for 3 days on OL(4Y), OL8(4Y), OL11(4Y), and

OL14(4Y) cells. OL(0Y) cells were also used as a control.

Telaprevir at 0.2 and 0.4 mM inhibited approximately 60% and

Table 3. Conservative aa substitutions occurring during long-term replication of genome-length HCV RNAs (II).

OL OL8 OL11 OL14

Region

NS2 Y835H F886Lb M814I I824V W845R V853A F823S W844R

(810,1026) L892S L849F R852G D871G T877A Q847H Y848D

A855T Q903Ra,c I885T (P898L) Q903Ra,c I983T

K927R E1019G Q903Ra,c V913A

L924S

NS3 V1081A E1202A P1122S V1415I S1173L M1205V M1268V P1290H

(1027,1657) T1280A (I1412V) D1581G R1596K

F1501Yc Q1606R A1647Tc

F1644L

NS4A Q1703R

(1658,1711)

NS4B S1827Tc V1880Ab I1769V Q1804R A1743V S1827A

(1712,1972) P1908L L1956M Q1955R V1906A

NS5A L2003F H2057R R1978K D1979E K2050R F2099Yc L2125Vc D2220Ga

(1973,2419) S2246P I2252S K1998R S2079Y T2217I I2274V F2281La,c D2292Ea,b

T2278A F2281La,c K2212Rc D2220Ga K2277R S2283Pa F2352L S2355T

S2283Pa D2292Ea,b E2263G E2265V K2320Ra T2336Sc S2373P D2374N

K2320Ra S2338P V2270A K2280D T2351A F2352S A2382V G2396R

S2355P P2369H Y2293H D2305N W2405Ra,b S2401N W2405Ra,b

S2384P M2388T S2342Pb L2347R C2418Rb

G2403R S2409R F2352V T2364A

D2377Gb S2380T

D2381G S2387Pb

W2405Ra,b S2406A

E2410K

NS5B K2470R D2771Nc S2975Gc I3004V K2493R T2549A A2444T H2539R

(2420,3010) L2853I Q2933R K2689R Q2728R V2918I

V3000A

aConservative aa substitutions detected in at least two of four cell line series.
bConservative aa substitutions detected in HuH-7-derived cell line series (O, OA, OB, OD, or OE) used in the previous study [20].
cConservative aa substitutions that became the same aa as JFH-1strain.
Conservative aa substitutions detected after 2-year and 4-year cultures are shown by bold letters.
Conservative aa substitutions detected only after 2-year culture are shown in parentheses.
doi:10.1371/journal.pone.0091156.t003

Evolutionary Dynamics and Variations of HCV

PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e91156



80%, respectively, of HCV RNA replication on OL(0Y) cells, as

expected from the results of the reporter assay, and that the anti-

HCV activities of telaprevir on OL(4Y), OL11(4Y), and OL14(4Y)

cells were similar to that on OL(0Y) cells (Fig. 7A). Unexpectedly,

however, HCV RNA replication on OL8(4Y) cells was highly

sensitive to telaprevir. Approximately 97% of HCV RNA

replication was inhibited by 0.2 mM of telaprevir (Fig. 7A). These

results suggest that HCV mutations that occur during long-term

cell culture do not control the anti-HCV activity of telaprevir.

Next we examined the possibility that long-term cultured cells can

become the source of telaprevir-resistant HCV. First, OL(0Y) and

OL(4Y) cells were treated with or without 0.4 mM of telaprevir (3

times at 6-day intervals) and 0.8 mM of telaprevir (3 times at 6-day

intervals) in the presence of G418. The growth of the cells treated

with telaprevir first slowed but then recovered. In this stage, we

checked the anti-HCV activity of telaprevir at 0.2 mM for 3 days

on telaprevir-treated OL(0Y) and OL(4Y) cells (designated

OL(0Y)T and OL(4Y)T cells, respectively) with untreated

OL(0Y) and OL(4Y) cells. The results clearly indicated that

OL(0Y)T and OL(4Y)T cells completely converted telaprevir-

sensitive phenotypes into telaprevir-resistant phenotypes (Fig. 7B).

It is noteworthy that telaprevir-resistant OL(4Y)T cells were

provided without a decrease in the level of HCV RNA replication.

These results suggest that long-term cultured OL(4Y) cells may

easily convert the phenotypes against anti-HCV drugs such as

telaprevir.

Discussion

In the present study, using Li23-derived cells unlike HuH-7, we

characterized the genetic evolution and dynamics of HCV in the

long-term culture of four kinds of genome-length HCV RNA-

replicating cells, and demonstrated that genetic mutations of HCV

accumulated and the genetic diversity of HCV expanded in a

time-dependent manner. The GC content of HCV RNA was also

significantly increased in a time-dependent manner. These

phenomena, including the increased mutation rates, were consis-

tent with those observed in the previous study using HuH-7-

derived cell culture systems [19,20]. However, we detected several

in-frame deletions in the structural regions, suggesting that the

environment maintaining RNA genomic stability differs between

Li23 and HuH-7 cells. Furthermore, we observed for the first time

that GC content in nonstructural regions increased for codon

optimization in human cells. Moreover, we demonstrated that the

long-term cultured genome-length HCV RNA-replicating cells

were useful as a library source for the isolation or characterization

of resistant HCVs against anti-HCV agents.

Using Li23-derived cell culture systems, we observed that the

mutation rates of HCV RNAs were 4.0–9.061023 and 2.7–

4.061023 base substitutions/site/year in 59-terminus-NS2 regions

and NS3-NS5B regions, respectively. These values were 2.1–6.4

times and 1.4–2.9 times higher than those (1.4–1.961023 base

substitutions/site/year) previously obtained in chimpanzees

[15,16] and in a patient [14] with chronic hepatitis C. Since we

previously found that the mutation rates of genome-length HCV

RNAs were 4.4–7.461023 and 2.5–3.761023 base/substitutions/

site/year in 59-terminus-NS2 regions and NS3-NS5B regions,

respectively, using HuH-7-derived cell culture systems [21], most

of the mutation rates were proved not to change, regardless of the

cell type. Since the selective pressures of the humoral immune

responses [17] targeting the envelope proteins and cellular

immune responses [18] targeting all HCV proteins function in

vivo, the mutation rates obtained using the cell culture systems

without the immunological pressure would be reasonable values as

a potential mutation rate of HCV in RNA replication.

Thus far, many studies using the HCV replicon system,

including the whole-virus system of JFH-1 strain HCV, have

clarified the aa positions that are essential for the efficient HCV

reproduction [32–34]. On the basis of those reports, we made lists

of functional aas in HCV genotype 1 (partly genotype 2a) (Tables

S1 and S2) and then checked whether the position of each

Figure 4. Genetic deletions occurred in the first half of genome-length HCV RNAs during the long-term cell culture. The conservative
deleted portions in the genome-length HCV RNAs derived from OL8(2Y), OL8(4Y), OL11(2Y), OL11(4Y), OL14(2Y), or OL14(4Y) cells were shown by
boxes. The original sequence was from ON/C-5B/QR,KE,SR RNA [21].
doi:10.1371/journal.pone.0091156.g004
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functional aa was the same as the position of the aa substitution

detected in this study. This investigation revealed that most of the

functional aas were conserved during the 4-year culture of

genome-length HCV RNA-replicating cells, suggesting that the

basic HCV RNA replication mechanism does not change during

long-term cell culture. However, as we observed several aa

substitutions in the Core from OL11 series, the function of the

Core may be lost in long-term-cultured OL11 cells, although the

Core is not essential for RNA replication.

Although our report is the only one to conduct genetic variation

and diversity analyses of HCV during the long-term HCV RNA

replication of genotype 1b in cell culture, several similar reports

use long-term HCV RNA (JFH-1 strain of genotype 2a)-

replicating HuH-7-derived cells [35–41]. In those studies, many

adaptive mutations were found as the result of long-term persistent

HCV reproduction. Although it is a bit complicated to decide the

corresponding aa positions exactly, as the O strain and JFH-1

strain belong to different genotypes, we examined whether the

substituted aas detected in this study were found in those adaptive

mutations obtained from reports using the JFH-1 strain. We

noticed that only I414T substituted between 2- and 4-year cultures

of OL cells was the same aa substitution as the JFH-1 strain (Table

S3). It is unlikely that this substitution functions as an adaptive

mutation for RNA replication because the HCV RNA level

decreased between 2- and 4-year cultures (Fig. 1 and [26]). It is

also unlikely that this substitution increases virus production

because virus particles were not produced from the cells cultured

for 2 or 4 years (Fig. S1). However, we can exclude the possibility

that other aa substitutions detected at the corresponding positions

to the JFH-1 strain are adaptive mutations.

In our previous study using HuH-7-derived cell culture systems,

we noticed that none of the aa substitutions were detected in the

N-terminal half (242 aa of aa 1976 to 2217) of the NS5A after 2-

year cultures, suggesting that this region would be the most critical

for maintaining RNA replication. However, we detected many aa

substitutions in this region in all Li23-derived cell lines after 2-year

or 4-year cultures (Table 3). These were the following aa

substitutions: L2003F and H2057R in OL series; R1978K,

D1979E, K1998R, S2079Y, and K2212R in OL8 series;

K2050R, F2099Y, and T2217I in OL11 series; L2125V in

OL14 series. These results suggest that the N-terminal half of

NS5A also possesses further variability to allow a better

environment for HCV RNA reproduction. Another interesting

feature we noticed is that several aa substitutions were spontane-

ously detected in the interferon (IFN) sensitivity determining

region (ISDR) [42] (aa 2209–2248) and in the IFN/Ribavirin

(RBV) resistance-determining region (IRRDR) [43] (aa 2334–

2379) of NS5A in the cells without IFN or RBV treatment. In

Figure 5. Phylogenetic trees of genome-length HCV RNA populations obtained in long-term cell culture. The phylogenetic trees are
depicted on the basis of nucleotide sequences of all cDNA clones obtained by 0-year, 2-year, and 4-year cultures of OL, OL8, OL11, and OL14 cells. (A)
The 59-terminus-NS2 regions of genome-length HCV RNA. ON/C-2 indicates the original sequences of the 59-terminus-NS2 regions of ON/C-5B/
QR,KE,SR RNA [21]. (B) The NS3-NS5B regions of genome-length HCV RNA. O/3-5B/QR,KE,SR indicates the original sequences of the NS3-NS5B regions
of ON/C-5B/QR,KE,SR RNA [21].
doi:10.1371/journal.pone.0091156.g005
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Figure 6. Increased GC content of genome-length HCV RNAs occurring in long-term RNA replication. The GC content of cDNA clones
obtained by 0-year, 2-year, and 4-year culture of OL, OL8, OL11, and OL14 cells was calculated. The values indicate the means of 10 clones (OL) or 3
clones (OL8, OL11, or OL14). (A) The 59-terminus-NS2 regions. (B) The NS3-NS5B regions.
doi:10.1371/journal.pone.0091156.g006

Table 4. Base substitution patterns occurred in genome-length HCV RNAs during the long-term cell culture.

Average numbers of base substitutions per cDNA clone

Base Sum
HuH-7-
derived

substitution OL OL OL8 OL8 OL11 OL11 OL14 OL14 OL,OL14 OL,OL14 O, OA, OB,
OD&OE

pattern (2Y) (4Y) (2Y) (4Y) (2Y) (4Y) (2Y) (4Y) (2Y) (4Y) (2Y)*

Transition

U RC 46.0 79.9 38.7 69.3 31.0 74.7 32.7 51.0 37.166.8 68.7612.6 32.163.5

A RG 25.0 39.4 39.3 77.0 26.0 71.3 29.3 57.7 29.966.5 61.4616.7 30.566.2

C RU 13.3 22.7 14.7 27.0 15.3 32.7 16.3 29.7 14.961.3 28.064.2 11.362.2

G RA 8.7 15.5 10.7 20.0 10.3 19.0 11.7 24.3 10.461.3 19.763.6 10.564.0

Transversion

C RA 6.1 9.1 9.0 9.7 1.3 6.3 4.0 3.3 5.163.3 7.162.9 1.761.1

U RG 2.2 6.5 1.0 6.0 2.7 7.0 1.0 6.7 1.760.9 6.660.4 2.561.3

A RU 1.4 1.8 4.7 13.0 2.3 8.0 2.7 2.7 2.861.4 6.465.2 2.261.4

U RA 1.8 3.5 3.3 4.3 5.7 10.0 1.7 5.7 3.161.9 5.962.9 2.861.3

A RC 3.9 5.7 3.0 3.7 1.0 4.7 3.0 4.3 2.761.2 4.660.8 3.960.8

G RU 1.2 2.2 1.3 2.3 1.3 4.3 3.3 3.3 1.861.0 3.061.0 1.960.6

G RC 3.3 4.1 1.0 1.7 1.3 2.3 1.0 1.0 1.761.1 2.361.3 2.461.6

C RG 0.2 3.4 1.0 1.3 1.0 0.0 0.7 2.0 0.760.4 1.761.4 1.561.3

Base substitutions were counted by the comparison with the sequence of genome-length HCV RNA (ON/C-5B/QR,KE,SR [20]).
*Data from the previous study [20].
doi:10.1371/journal.pone.0091156.t004
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ISDR, K2212R (OL8 series), T2217I (OL11 series), D2220G

(OL8 and OL14 series), and S2246P (OL series) were detected.

Furthermore, in IRRDR, T2336S (OL11 series), S2338P (OL

series), S2342P (OL8 series), L2347R (OL8 series), T2351A (OL11

series), F2352V (OL8 series), F2352S (OL11 series), F2352L

(OL14 series), S2355P (OL series), S2355T (OL14 series), T2364A

(OL8 series), P2369H (OL series), S2373P (OL14 series), D2374N

(OL14 series), and D2377G (OL8 series) were detected (Table 3).

These aa substitutions except for D2220G also appeared in a

seemingly random manner, although aa 2352 and 2355 were hot

spots for aa substitutions in the Li23-derived cell culture system

but not in the HuH-7-derived cell culture system [20]. These

results suggest that the sensitivity to IFN or RBV might change

during long-term cell culture, although it has not yet been proved

that variations in ISDR or IRRDR may change the sensitivity to

IFN or RBV.

When we explored this possibility, we newly noticed that

L2003F (L31F in NS5A) was detected as a conservative aa in

Table 5. Contribution degrees of the G- and C-ending codons except AGG and UUG codons in the GC content increase during 2-
year or 4-year cell cultures.

C-NS2

OL OL8 OL11 OL14

2Y culture 9.3*/24.0** (39%) 7.3/27.7 (26%) 4.3/20.6 (21%) 3.0/17.4 (17%)

4Y culture 9.8/38.1 (26%) 6.7/49.8 (13%) 17.7/54.7 (32%) 5.0/24.3 (21%)

NS3-5B

OL OL8 OL11 OL14

2Y culture 2.1/9.0 (23%) 4.0/12.7 (31%) 0/7.9 (0%) 3.3/6.7 (49%)

4Y culture 12.5/29.9 (42%) 13.7/32.0 (43%) 6.7/25.8 (24%) 16.0/18.0 (89%)

*The increased numbers of G- and C-ending codons except AGG and UUG codons per cDNA clone.
**The increased numbers of G and C per cDNA clone.
doi:10.1371/journal.pone.0091156.t005

Figure 7. Sensitivity to telaprevir of the 4-year cultured genome-length HCV RNA-replicating cells. (A) Telaprevir sensitivities on
genome-length HCV RNA replication in OL(4Y), OL8(4Y), OL11(4Y), and OL14(4Y) cells. OL(0Y) cells were used as a control. The cells were treated with
telaprevir for 72 h, and then the levels of intracellular genome-length HCV RNA were quantified by LightCycler PCR. (B) Telaprevir-treated OL(0Y) and
OL(4Y) cells (designated as OL(0Y)T and OL(4Y)T, respectively) became telaprevir-resistant easily. Telaprevir treatment and quantitative RT-PCR were
preformed as shown in (A).
doi:10.1371/journal.pone.0091156.g007
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OL(2Y) and OL(4Y) cells. F in aa 2003 has been reported as an aa

showing low-level resistance to daclatasvir (BMS-790052), an

NS5A inhibitor that will soon serve as a clinical cure [44].

Furthermore, V1081A (V55A in NS3) was also detected as a

conservative aa in OL(4Y) cells. A in aa 1081 has been reported as

an aa showing low-level resistance to boceprevir, an NS3-4A

serine protease inhibitor that was approved as a new direct-acting

antiviral drug [45]. These facts indicate that clones resistant to

anti-HCV agents emerge naturally without treatment. Since

V1081A and L2003F were detected in all HCV clones derived

from OL(4Y) cells, these aa substitutions may possess some

advantage for cell proliferation. Furthermore, as a minor

population, a larger number of resistant HCV clones may emerge

from such a long-term cell culture. Although neither daclatasvir

nor boceprevir was available in this study, we demonstrated that

telaprevir-treated OL(4Y) cells completely and easily converted a

telaprevir-sensitive phenotype into a telaprevir-resistant phenotype

without a decrease in the level of HCV RNA replication,

suggesting that telaprevir-resistant HCV clones rapidly became

dominant populations in the telaprevir-treated OL(4Y) cells.

As well as V1081A and L2003F, we noticed for the first time

that D2292E (D320E in NS5A) appeared in OL(2Y), OL(4Y),

OL14(2Y), and OL14(4Y) cells as a conservative aa substitution,

although our previous study using HuH-7-derived cells detected

D2292E as a conservative aa substitution after 2-year cultures of

genome-length HCV RNA-replicating OB and OE cells [20]. It

has been reported that D2292E is an aa substitution that causes

resistance to cyclosporine (CsA) and other cyclophilin inhibitors,

including NIM811 and DEB025 [46,47]. These facts also indicate

that the HCV species possessing D2292E substitution can become

the main species naturally in cultured cells without CsA or other

treatments.

This study demonstrated that a single genome-length HCV

RNA could exhibit a remarkable diversity after 4 years in cell

culture with RNA replication. Our results, together with previous

results, suggest that such diversity of HCV obtained by long-term

cell culture may be useful not only for understanding the genetic

variations and diversity of HCV but also for the examination of

the resistant spectrum of anti-HCV agents.

Supporting Information

Figure S1 No infectious virus production from long-
term cultured genome-length HCV RNA-replicating
cells. HCV infection to RSc (16104) and ORL8c (56103) cells

was performed using the supernatant (each 1 ml after filtering

through a 0.20-mm filter [Kurabo, Osaka, Japan]) of OL(0Y),

OL(4Y), OL8(4Y), OL11(4Y), or OL14(4Y) cells as an inoculum,

as described previously [23]. As a positive control, HCV JFH-1

virus was used for the infection at a multiplicity of infection of 0.1

or 1.0. At 7 days and 8 days, (A) the levels of Core in the

supernatant after filtering through a 0.20-mm filter were quantified

by enzyme-linked immunosorbent assay (Mitsubishi Kagaku Bio-

Clinical Laboratories, Tokyo, Japan) and (B) the levels of

intracellular HCV RNA were quantified by LightCycler PCR,

as described previously [21,27].

(TIF)

Figure S2 Phylogenetic trees of deduced aa in ORF of
genome-length HCV RNA populations obtained in long-
term cell culture. The phylogenetic trees are depicted on the

basis of aa sequences deduced from all cDNA clones obtained by

0-year, 2-year, and 4-year cultures of OL, OL8, OL11, and OL14

cells. (A) The Core-NS2 regions in ORF of genome-length HCV

RNA. O/C-2 indicates the original aa sequences of the Core-NS2

regions in ORF of ON/C-5B/QR,KE,SR RNA [21]. (B) The

NS3-NS5B regions in ORF of genome-length HCV RNA. O/3-

5B/QR,KE,SR indicates the original aa sequences of the NS3-

NS5B regions in ORF of ON/C-5B/QR,KE,SR RNA [21].

(TIF)

Table S1 Comparative list of functional aas in HCV
genotype 1 and aa substitutions detected in this study
(I).

(DOC)

Table S2 Comparative list of functional aas in HCV
genotype 1 and aa substitutions detected in this study
(II).

(DOC)

Table S3 Hereditary aa substitutions detected in per-
sistent HCV JFH-1 (genotype 2a) infection; comparison
with aa substitutions detected in this study.

(DOC)
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