| 学位論文の要旨            |                     |                                                   |
|--------------------|---------------------|---------------------------------------------------|
| Abstract of Thesis |                     |                                                   |
|                    | 研究科<br>School       | Graduate School of Natural Science and Technology |
|                    | 専 攻<br>Division     | Division of Earth, Life, and Molecular Sciences   |
|                    | 学生番号<br>Student No. | 51424251                                          |
|                    | 氏 名<br>Name         | Lu Zheng (郑 璐)                                    |
|                    |                     |                                                   |

字位論又題目 litle of lhesis(字位論又題目か英語の場合は和訳を付記)

Syntheses and characterisations of new metal-doped iron chalcogenide superconductors 新規な金属ドープ鉄カルコゲナイド超伝導体の合成と評価

## 学位論文の要旨 Abstract of Thesis

A search for new superconductors exhibiting high superconducting transition temperatures ( $T_c$ 's) is one of the most exciting and significant researches. During past 100 years, many superconductors have been reported and the highest  $T_c$  reaches 166 K (fluorinated HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>8+δ</sub> at 23 GPa [1]); very recently, 203 K superconductivity of H<sub>2</sub>S was discovered [2]. Currently, iron based superconductors, iron pnictide and iron chalcogenide, attract much attention because of the discovery of a wide variety of materials exhibiting high  $T_c$ 's.

The iron chalcogenide,  $\beta$ -FeSe, showed the  $T_c$  as high as 8.5 K [3] which has the PbO-type simple structure (called as '11' type). In 2010, the metal doping of  $\beta$ -FeSe with K atom led to the rapid increase in  $T_c$  from 8.5 to 31 K [4]. The subsequent study on metal doping using liquid NH<sub>3</sub> technique resulted in the higher  $T_c$  in metal doped FeSe. The highest  $T_c$  is currently 46 K for (NH<sub>3</sub>)<sub>y</sub>Na<sub>x</sub>FeSe at ambient pressure. Thus, 'intercalation chemistry' can make a strong contribution in synthesising new superconductors of iron chalcogenides.

In this Doctor thesis, the author reported on superconductivity of metal doped FeSe<sub>1-z</sub>Te<sub>z</sub> ( $0 \le z \le 1$ ),  $(NH_3)_yM_xFeSe_{1-z}Te_z$ , synthesised using liquid NH<sub>3</sub> technique. The first purpose of this study is to clarify systematically the chemical and physical properties of  $(NH_3)_yM_xFeSe$ . For this purpose, various  $(NH_3)_yM_xFeSe$  materials were synthesised using the liquid NH<sub>3</sub> technique, and their magnetic and transport properties were investigated in wide pressure and temperature ranges. The structures of  $(NH_3)_yM_xFeSe$  materials prepared in this study were determined using Le Bail fitting and Rietveld refinement for X-ray diffraction (XRD) patterns. The second purpose is to determine the parameters dominating the  $T_c$  in  $(NH_3)_yM_xFeSe$ . Throughout this study, it was found that the  $T_c$  was scaled with the FeSe plane spacing (or

lattice constant, *c*), and the FeSe plane spacing was closely associated with the location of metal atoms. The third purpose of this study is to determine the exact structure of metal doped FeSe. She successfully determined the crystal structure of  $(NH_3)_yCs_{0.4}$ FeSe based on the Rietveld refinement for XRD pattern at low temperature. Furthermore, she reported the behaviour of  $T_c$  of  $(NH_3)_yM_x$ FeSe under high pressure and the isotope effect of  $T_c$  in  $(ND_3)_yM_x$ FeSe's which were prepared with liquid ND<sub>3</sub>.

In chapter 4, the author described syntheses and characterisations of the alkali-metal doped FeSe,  $(NH_3)_yM_{0,4}FeSe$  (M: K, Rb and Cs), prepared using liquid NH<sub>3</sub> technique. The new superconducting materials,  $(NH_3)_yCs_{0,4}FeSe$ , showed the  $T_c$  as high as 31.2 K, which is higher by 3.8 K than the  $T_c$  of non-ammoniated  $Cs_{0,4}FeSe$ . The  $(NH_3)_yK_{0,4}FeSe$  and  $(NH_3)_yRb_{0,4}FeSe$  materials were also synthesised. From the  $T_c - c$  plot prepared based on the data collected from her study and other references [5,6], the correlation between the  $T_c$  and FeSe plane spacing was clarified, suggesting that an increase in Fermi-surface nesting produced the higher  $T_c$ .

In chapter 5, the author described the presence of multiple superconducting phases (low- $T_c$  and high- $T_c$ ) in  $(NH_3)_yNa_xFeSe$ . The  $T_c$  of  $(NH_3)_yNa_xFeSe$  was investigated as a function of x. The low- $T_c$  phase ( $T_c = 32$  K) was found in the low-x range below 0.4, while the high- $T_c$  phase ( $T_c = 45$  K) was observed in the high-x range, showing that the  $T_c$  depends significantly on x. The  $T_c$  changed discontinuously from 32 to 45 K.

The crystal structure (space group) of  $(NH_3)_yNa_xFeSe$  did not change with increasing x up to 1.1, *i.e.*, all  $(NH_3)_yNa_xFeSe's$  (x = 0.1 to 1.1) possessed the space group of *I*4/mmm. The lattice constants, *a* and *c*, for the low- $T_c$  phase ( $T_c = 32.5$  K) were 3.9120(9) and 14.145(8) Å, respectively, while a = 3.8266(7) Å and c = 17.565(9) Å for the high- $T_c$  phase (~46 K). The *c* for the high- $T_c$  phase is larger than that of the low- $T_c$  phase, implying that the  $T_c$  is directly related to the *c*. The author suggested that the sites occupied by metal atoms differed from each other between two phases. Namely, the position of Na atom in  $(NH_3)_yNa_xFeSe$  may change from on-centre (2*a* site) to off-centre sites (4*c* and 2*b* sites) with increasing x. Depending on the variation of location of metal atom, the low- $T_c$  phase may change to the high- $T_c$  phase.

Contrary to  $(NH_3)_yNa_xFeSe$ , the  $T_c - x$  plot showed a dome-like (continuous) behaviour in  $(NH_3)_yLi_xFeSe$ , suggesting that the Li atom in  $(NH_3)_yLi_xFeSe$  occupies the off-centre sites (4*c* and 2*b* sites) over the entire x-range, 0.1 – 1.0. The  $T_c$  was constant within  $\pm 2$  K in  $(NH_3)_yCs_xFeSe$  when varied x from 0.03 to 1.3, suggesting that the Cs atom occupied the 2*a* site (on-centre structure) in all x range of 0.03 to 1.3.

In chapter 6, the author performed the structural analysis by means of the Rietveld refinement for the XRD pattern of (NH<sub>3</sub>)<sub>y</sub>Cs<sub>0.4</sub>FeSe at 30 K. In the Rietveld analysis, two different structure models, on-centre and

off-centre, were examined under the space group of I4/mmm. This analysis finally showed that the Cs occupied the 2a site and the N of NH<sub>3</sub> occupied the 4c site, *i.e.*, on-centre structure. The result supports the scenario that the low- $T_c$  phase changes to the high- $T_c$  phase through the variation of location of Na atom, as described in chapter 5.

In chapter 7, the author reported the pressure dependence of superconductivity of the high- $T_c$  and low- $T_c$  phases of  $(NH_3)_yNa_xFeSe$ , and  $(NH_3)_yLi_xFeSe$ , which was investigated using DC magnetic susceptibility in a pressure range of 0 - 1 GPa. The  $T_c$  decreased monotonously with an increase in pressure up to near 1.0 GPa. The temperature dependence of resistance is also reported for  $(NH_3)_yLi_xFeSe$ . To investigate the isotope effect of  $T_c$ , the metal doped FeSe samples were synthesised using liquid ND<sub>3</sub> instead of NH<sub>3</sub>, and the superconductivity of  $(ND_3)_yM_xFeSe$  (M: Na and Cs) was consistent with that of  $(NH_3)_yM_xFeSe$  (M: Na and Cs), implying that NH<sub>3</sub> does not play an important role in superconductivity.

In chapter 8, the high- $T_c$  phase, (NH<sub>3</sub>)<sub>y</sub>Na<sub>0.5</sub>FeSe<sub>0.5</sub>Te<sub>0.5</sub>, showing the  $T_c$  of 27 K was fully investigated. The NH<sub>3</sub> amount was determined to be in 0.6 – 0.7. The high- $T_c$  phase would be a metastable phase because of the rapid conversion from the high- $T_c$  ( $T_c = 27$  K) to the low- $T_c$  ( $T_c = 20$  K) phase within three days. The comparison of structure and physical properties between these phases is briefly described.

This Doctor thesis reports the systematic study on metal doped FeSe synthesised by using the liquid NH<sub>3</sub> technique. The superconductivity and structures were clarified for various  $(NH_3)_yM_x$ FeSe materials. In particular, the discovery of the relationship between the  $T_c$  and c (or FeSe plane spacing), the finding of multiple superconducting phases and the clarification of origin of two phases are of significance for the advancement of research on FeSe based superconductors. Furthermore, the syntheses of metal doped FeSe using liquid ND<sub>3</sub> and the research of metal doped FeSe<sub>0.5</sub>Te<sub>0.5</sub> are also of significance for the development of high- $T_c$  metal doped chalcogenide superconductors. Part of this Doctor thesis has already been published in refs. 6 and 7, and one paper was submitted to a physics journal.

References:

[1] M. Monteverde et al., Europhys. Lett. 72, 458 (2005).

[2] A.P. Drozdov et al., Nature, doi:10.1038/nature14964.

[3] F.-C. Hu et al., Proc. Natl. Acad. Sci. 105, 14262 (2008).

[4] J. Guo et al., Phys. Rev. B 82, 180520(R) (2010).

[5] T. P. Ying et al., Sci. Rep. 2, 426 (2012).

[6] L. Zheng et al., Phys. Rev. B 88, 094521 (2013).

[7] L. Zheng et al., Sci. Rep. 5, 12774 (2015).