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Nano-confined liquid water can transform into low-dimensional ices
whose crystalline structures are dissimilar to any bulk ices and whose
melting point may significantly rise with reducing the pore size,
as revealed by computer simulation and confirmed by experiment.
One of the intriguing, and as yet unresolved, questions concerns
the observation that the liquid water may transform into a low-
dimensional ice either via a first-order phase change or without any
discontinuity in thermodynamic and dynamic properties, which sug-
gests the existence of solid-liquid critical points in this class of nano-
confined systems. Here we explore the phase behavior of a model
of water in carbon nanotubes in the temperature-pressure-diameter
space by molecular-dynamics simulation and provide unambiguous
evidences to support solid-liquid critical phenomena of nanoconfined
water. Solid-liquid first-order phase boundaries are determined by
tracing spontaneous phase separation at various temperatures. All
the boundaries eventually cease to exist at the critical points and
there appear loci of response function maxima, or the Widom lines,
extending to the supercritical region. The finite-size scaling analysis
of the density distribution supports the presence of both first-order
and continuous phase changes between solid and liquid. At around
the Widom line there are microscopic domains of two phases and
continuous solid-liquid phase changes occur in such a way that the
domains of one phase grow and those of the other evanesce as the
thermodynamic state departs from the Widom line.

solid-liquid critical phenomena | water | quasi-one dimension

Abbreviations: MD, molecular dynamics

The possibility of the solid-liquid critical point has been re-
ported by computer simulation studies of various systems

in quasi-one, quasi-two, and three dimensions that exhibit
both continuous and discontinuous changes in thermodynamic
functions and other order parameters [1, 2, 3, 4, 5, 6, 7]. Yet
the idea that a solid-liquid phase boundary never terminates
at the critical point is still commonly accepted as a law of na-
ture, largely because of the famous symmetry argument [8, 9]
together with the lack of experimental observations. Further-
more, critical phenomena in quasi-one-dimensional systems
are often considered impossible from a different point of view,
that is, to begin with, there is no first-order phase transition
in one-dimensional systems as proved for solvable models [10]
or shown by the phenomenological argument [11]. Therefore

a thorough investigation is much needed to support or reject
the possibility of the solid-liquid critical point. We examine
the phase behavior of a model system of water confined in
a quasi-one-dimensional nanopore [1, 12, 13, 14, 15, 16] and
provide evidences to support the existence of first-order phase
transitions and solid-liquid critical points.

Results and Discussions
First, we explore possible solid-liquid critical points of the con-
fined water by calculating isotherms in the “pressure-volume”
plane, where the pressure is actually Pzz a component of pres-
sure tensor along the tube axis, or simply the axial pressure,
and the “volume” is ℓz the length of simulation cell in the ax-
ial direction per molecule. The isotherms are obtained by ex-
tensive canonical ensemble (NV T ) molecular dynamics (MD)
simulations of the TIP4P model of N = 720, 900 and 1080
water molecules encapsulated in model single-walled carbon
nanotubes (see Methods for details). Note that direct cal-
culations of isotherms have provided compelling evidence of
the liquid-liquid phase transition in models of supercooled wa-
ter [17, 18, 19]. Plotted in Fig. 1a,b,d, and e are the isotherms
in the Pzz, ℓz plane at the nanotube diameter D =11.1 Å and
12.5 Å. In any cases examined, the isotherms at low tempera-
tures have a horizontal portion in which Pzz does not change
with ℓz, i.e., dPzz/dℓz = 0. This indicates that the system
undergoes a phase separation under these conditions [20]. (If
the system size in the axial direction is small, a van der Waals
loop will appear [18, 19].) At high temperatures the slope
of the isotherms is always negative, i.e., dPzz/dℓz < 0. A
critical point, if exists, must be located between the highest-
temperature isotherm with dPzz/dℓz = 0 and the lowest-
temperature isotherm without the horizontal portion. In addi-
tion, we can judge whether two phases coexist or not from the
local density profile defined below. Using this approach, we
locate two solid-liquid critical points for water in a nanotube
of D = 11.1 Å at (Tc/K, Pc/GPa) = (265± 5, 0.13± 0.02) and
(325± 5, 2.52± 0.02) and four critical points for D = 12.5 Å at
(Tc/K, Pc/GPa) = (287± 2, 0.12± 0.03), (287± 2, 0.33± 0.04),
(337± 2, 1.49± 0.03) and (345± 5, 5.16± 0.01), as indicated by
red marks in Fig. 1.

Significance

It is commonly believed that the solid-liquid critical point does
not exist, because of the famous symmetry argument and the
lack of experimental observation so far. But recently the in-
triguing possibility of the critical point has been suggested
for strongly confined substances. Here we perform molecu-
lar dynamics simulations of a model system of water confined
in carbon nanotubes and provide unambiguous evidences of
the solid-liquid critical point for water confined in the quasi-
one-dimensional hydrophobic nanopore: macroscopic solid-liquid
phase separation below a critical temperature Tc, diverging heat
capacity and isothermal compressibility at around Tc, and the
loci of response function maxima above Tc. We also give a
molecular-level explanation for how liquid water continuously
freezes to ice in nanopores when it is cooled along a thermody-
namic path avoiding the first-order phase boundary.
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Fig. 1. Simulation results for “pressure-volume” isotherms and phase diagrams of water confined in a quasi-one-dimensional hydrophobic nanopore (a model pore of carbon

nanotube). (a)(b) Pzz -ℓz isotherms and (c) T -Pzz phase diagram at D = 11.1 Å . (d)(e) Pzz -ℓz isotherms and (f) T -Pzz phase diagram at D = 12.5 Å along with

those at D = 12.3 Å and 12.7 Å for Pzz < 2.5 GPa. The first-order phase boundaries (solid lines) in (c) and (f) are determined by the isotherms in (a)(b) and (d)(e),

and those which extend to lower temperatures (dashed lines) ultimately go to the phase boundaries at T = 0 K determined by the pressure-dependent enthalpy H for the

corresponding ices (Fig. S1) and the one extending to lower pressures [another dashed line in (f)] goes to the melting temperature at Pzz = 0.1 MPa [12]. The Widom lines

drawn here are loci of maximum heat capacity c∗p and maximum isothermal compressibility κ∗
T . The color of the Widom lines indicates the relative magnitude of c∗p: the

larger c∗p the darker the green color.

Figure 1c and f show the T -Pzz phase diagram at D = 11.1
Å and 12.5 Å, respectively. The coexistence lines (first-order
phase boundaries) in the diagram are determined from the av-
erage Pzz of the horizontal portion of each isotherm at a given
temperature. The solid-liquid coexistence lines as obtained
this way either start from the low temperature limit, where
they are solid-solid phase boundaries, or branch from a solid-
solid-liquid triple point; but all of them ultimately terminate
at one of the solid-liquid critical points. We identify five ice
phases [square, pentagonal, hexagonal, heptagonal, and octag-
onal ice nanotubes whose structures are specified by the roll-
up vectors (4,0), (5,0), (6,0), (7,0), and (8,0), respectively [12]]
and a liquid phase from the hydrogen-bond structures (Fig. 2),
and we obtain the structure factor of oxygen atoms in the
axial direction, the mean square displacement of molecules,

and the reorientational correlation function (Fig. S2). At
high pressures around 1 GPa and above, in both nanotubes
of D = 11.1 Å and 12.5 Å, the inner space of (6,0), (7,0),
and (8,0) ice nanotubes is filled with water molecules: these
are indicated as “filled” ice in Fig. 1 and shown in Fig. 2.
The additional water molecules intrude these ice nanotubes
at high pressures because otherwise the external n-membered
rings (n = 6, 7, 8) of water molecules would have collapsed
due to strong repulsive force acting on them from the nanotube
wall (Fig. S3).

Figure 1f shows how the phase boundaries shift when the
nanotube diameter D is slightly reduced or enlarged from
12.5 Å (the isotherms in the Pzz, ℓz plane are shown in
Fig. S4). Each ice region in the T -Pzz phase diagram moves
upward (to higher pressure) as D decreases. Reducing D fur-
ther make narrower ice nanotubes, the (5,0) and (4,0) ice

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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phases shown in Fig. 1c, emerge in a low pressure region
under the (6,0) ice phase. The hollow space inside the (6,0)
ice nanotube is empty when D = 12.5 Å, partially filled when
D = 12.3 Å, and fully filled when D = 11.1 Å, which sug-
gests that the empty (6,0) ice can continuously transform into
filled (6,0) ice (Fig. S5). In principle the phase behavior of
water confined to the cylindrical nanopores is characterized
by a three-dimensional phase diagram, e.g., the T -Pzz-D dia-
gram, in which the solid-liquid phase boundaries and the crit-
ical points form surfaces and their edges, respectively, and the
heat capacity and the compressibility maxima, or the Widom
lines [21], also form surfaces extending from the edges.

a

b e

d

c f

Fig. 2. Inherent hydrogen-bond structures of six ices formed in the nanotubes (a)

(4,0) ice obtained from the NPT -MD trajectory at (T /K, Pzz/MPa)=(250, 50),

(b) (5,0) ice at (230, 200) and (c) filled (6,0) ice at (270, 2700) at D = 11.1 Å , and

(d) (6,0) ice at (280, 10), (e) filled (7,0) ice at (280, 800) and (f) filled (8,0) ice at

(280, 5100) at D = 12.5 Å . Top views and the corresponding side views are drawn

abreast. Central water molecules forming a chain in the filled ices are colored red to

distinguish them from the exterior rings.

To confirm spontaneous phase separations and to observe
density fluctuations near the critical points, we use the scaled
local density defined as [17] ρ(z, t) = (∆N(z, t)/∆z) ℓz, where
∆N is the number of molecules in a cylindrical slab of width
∆z centered at z and ℓ−1

z is the average number of molecules
per unit length. Figure 3a–c show the time evolution of ρ(z, t)
of water in the nanotube of D = 12.5 Å obtained by the NV T -
MD simulation at T = 300 K, 290 K and 280 K and at fixed
volume (ℓz = 0.50 Å). Note the density of the system is be-
tween those of liquid water and (6,0) ice. The initial con-
figuration at t = 0 is a randomly generated one. At 300 K,
a temperature above the (6,0) ice-liquid critical point (CP1),
ρ(z, t) is almost uniform anywhere in the nanotube, indicat-
ing that the system is indeed homogeneous. In contrast, at
280 K, a temperature below CP1, multiple nucleation events
of (6,0) ice take place as soon as the NV T -MD run starts
(Fig. 3c) [22]. Then, the embryos of (6,0) ice quickly grow and
merge with each other, reflected in the initial large decrease in
the water-water interaction energy Uww (Fig. 3d), and sponta-
neous ice-water phase separation is completed around t = 2 ns.
After that the two phases remain to coexist with their domain
sizes nearly unchanged. Figure 3e shows typical structure of
a water nanotube at 280 K, which clearly demonstrates the

coexistence of solid and liquid phases. The spontaneous phase
separation observed in the NV T -MD simulation is a direct
evidence of the solid-liquid first-order phase transition.

At 290 K, a temperature close to CP1, two kinds of domains
are distinguishable (Fig. 3b); however, the domain size of (6,0)
ice fluctuates with large amplitudes, which is reflected in large
fluctuations in Uww at 290 K (Fig. 3d). The ice-like domains
have a large variety of sizes but they do not tend to merge,
e.g., see three ice domains at t = 10.5 ns. Instead, the sudden
formation and disappearance of (6,0) ice domains occur inter-
mittently. Even a domain of (6,0) ice as large as 100 Å hardly
persist over 20 ns. That is, freezing and melting seem to pro-
ceed without free energy barriers. These behaviors, clearly
different from those at the higher and lower temperatures,
are characteristic of critical phenomena: See Supplementary
Video 1 showing the large fluctuations of the hydrogen-bond
structure in a trajectory at 290 K. It is also confirmed that
the system exhibits the large fluctuations of the local density
at that temperature even when the trajectory starts from the
solid-liquid coexisting configuration obtained at a lower tem-
perature (Fig. S6).
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Fig. 3. Fluctuations above, near, and below the temperature of the solid-liquid

critical point. (a)-(c) Time evolution of the scaled local density ρ(z, t) for trajectories

at 300 K, 290 K and 280 K obtained from the NV T -MD simulation (N = 900)

with fixed density (ℓz = 0.5 Å) and tube diameter (D = 12.5 Å). The width ∆z
of a bin with which the local density is defined is taken to be 5 Å. The color for

ρ(z, t) < 1 is the same as that for ρ(z, t) = 1. (The raw ρ(z, t) descriptions are

shown in Fig. S7.) (d) Time evolution of the potential energy between water molecules

(Uww). (e) Inherent hydrogen-bond structure at 30 ns of the 280 K trajectory [(c)].
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To verify the presence of the solid-liquid critical point, we
implement the finite-size analysis of the Challa-Landau-Binder
parameter Π ≡ 1 − 〈α4〉/3〈α2〉2 [23, 24, 25] of the density
α = N/πσ2Lz, where σ is the radius at which the potential
energy of nanotube-water interaction is zero (Fig. S8) and Lz

is the length of nanotube. The parameter Π quantifies the
bimodality in the density distribution function Q(α). Mini-
mum of Π along an isobar, denoted as Πmin, approaches 2/3
as N → ∞ when Q(α) in the thermodynamic limit is unimodal
whereas Πmin approaches a value less than 2/3 when Q(α) is
bimodal. We calculate Π along two isobars at D=11.1 Å : the
Pzz = 130 MPa isobar that passes in the vicinity of an ice-
water critical point inferred by the set of isotherms in Fig. 1a
and the 500 MPa isobar that crosses the Widom line identified
by the calculations of the heat capacity and the compressibil-
ity as shown below. For each state at 130 MPa in a range of
T = 250 K and 280 K, Π is calculated from an isothermal-
isobaric (NPT ) MD run of 2 µs or longer for the systems of
N=100, 200 and 300. Such a long MD run is required to ob-
serve phase flipping between solid and liquid phases. For each
state along the 500 MPa isobar in a range of T = 320 K and
350 K, the NPT -MD run of 100 ns is sufficient for the system
of N=100, 200, 300, 400 and 500. The interval of T is set to
2 K near Πmin. Figure 4a and 4b show the change of Q(α)
of the system with N = 300 at selected temperatures along
the two isobars. At 500 MPa the density distribution Q(α)
is unimodal and its center simply moves to a lower density
with increasing temperature whereas at 130 MPa Q(α) be-
comes bimodal or widespread at temperatures between 262 K
and 274 K. Figure 4c shows the finite-size scaling of Πmin. At
500 MPa it approaches 2/3 linearly with 1/N , indicating the
absence of a first-order phase transition in the thermodynamic
limit. At 130 MPa, on the other hand, Πmin approaches a
value clearly smaller than 2/3, proving the presence of a first-
order phase transition. Thus, the finite-size scaling analysis
too supports the solid-liquid critical point of water confined in
the quasi-one-dimensional hydrophobic nanopore.

To investigate the nature of continuous solid-liquid phase
changes, we perform long-time NPT -MD simulations for the
systems of N = 200 at states on isobaric paths along which
continuous phase changes are observed; the production run at
each state is 80 ns. First, we focus on the (configurational part

of) isobaric heat capacity cp obtained from (H2 − H
2
)/kBT 2,

the fluctuations in H defined as U + Pzzπσ2Lz with U the
potential energy of the system. It is confirmed that there is a
maximum heat capacity cp

∗ for each isobaric path (Fig. S9).
Plotted in Fig. 5a, b are H(T ) and cp(T ) at Pzz= 500, 1000,
1500 MPa in the pore of D = 11.1 Å, where the continuous
freezing to (5,0) ice is observed. The lower the pressure Pzz,
the larger the heat capacity maximum c∗p and the lower the
temperature T ∗ of the maximum heat capacity, which is con-
sistent with the maximum slope of H(T ) at T ∗ being steeper
as reducing Pzz. The loci T ∗(Pzz) of the heat capacity max-
ima cp

∗ are plotted in the T -Pzz phase diagram (Fig. 1c, f).
Each locus of cp

∗ is smoothly connected with a locus of the
solid-liquid first-order transitions. An exception is the locus
between (4,0) ice and liquid phases, which extends up to a
lowest pressure examined for D=11.1 Å but would be con-
nected with the first-order boundary in a phase diagram for
smaller D. In one case, two loci of cp

∗ and one first-order
phase boundary seem to meet at a critical point (Fig. 1c);
in the other, endpoints of two first-order boundaries are con-
nected with a locus of the heat capacity maxima (Fig. 1f).
Next, the isothermal compressibility κT ≡ −(∂ℓz/∂Pzz)T /ℓz

in the axial direction is obtained along isotherms in Fig. 1a, b,

d, and e by fitting the third order polynomial function to each
Pzz-ℓz curve, and the loci P ∗

zz(T ) of the maximum isothermal
compressibility κ∗

T are determined. The result is shown in the
T -Pzz phase diagram (Fig. 1c,f). Each locus of the maximum
compressibility is smoothly connected with a first-order phase
boundary, as in the case of c∗p. It is confirmed that the values
of maxima κ∗

T and c∗p increase as the endpoint of the first-order
phase boundary is approached. There are at least three loci
of κ∗

T that coincide with loci of c∗p. Recently, Luo et al. [26]
have shown that near the critical point, in general, the loci of
maximum cp and κT converge into a single line, the Widom
line [21]. Thus, the behaviors of the response function maxima
presented here suggest the existence of the solid-liquid critical
points and the Widom lines. Note that each ice phase [except
(8,0) ice] is enclosed by the coexistence lines and the Widom
lines, or the loci of c∗p and κ∗

T .
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Fig. 4. Finite-size scaling analysis of the Challa-Landau-Binder parameter of

the density distribution function Q(α). (a)(b) Q(α) at selected temperatures for

500 MPa and 130 MPa, respectively. The temperature at which the Q(α) gives a

minimum Π (Πmin) is 336 K at 500 MPa and 264 K at 130 MPa. (c) Finite-size

scaling of Πmin along isobars of 130 MPa and 500 MPa: Πmin vs. 1/N . At

500 MPa, Πmin approaches 2/3+0.0001 (a linear fit to the data of N=200, 300,

400 and 500). At 130 MPa, Πmin approaches 0.660 (a linear fit to the data of

N=200 and 300).

Now we examine how dynamic and structural properties
of water change as it continuously freezes in (5, 0) ice, by
crossing the Widom lines or the loci of c∗p and κ∗

T . Figure 5c
shows temperature dependence of the diffusion coefficient of

water along the tube axis (Dz = limt→∞ |z(t) − z(0)|2/2t).
There are three stages through which the dynamic property
Dz changes: the most rapid change in Dz is observed in the
intermediate range which include the temperature T ∗ of max-
imum heat capacity. For limited ranges at higher or lower T ,
one may find an Arrhenius behavior in Dz, but overall Dz

is non-Arrhenius. The static structure factor S(q) of oxygen
atoms along the z-axis also shows a three-stage variation with
T . The first peak of S(q) appears at around q = 0.35 Å−1 cor-
responding to the lattice spacing of ice nanotubes in the axial

direction. The peak intensity Ŝ(T ) given by integrating the
local spectrum S(q) around the first peak is plotted in Fig. 5d,
which indicates that with increasing T the ordered crystalline
structure disappear continuously, and it happens most rapidly
in the intermediate range of T . That intermediate range co-
incides with the range in which Dz varies most rapidly and cp

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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has a maximum. The temperature range of the intermediate
stage shrinks as the critical point is approached.

How can the crystalline ices gradually transform to liquid
water? Further analysis of the hydrogen-bond structures re-
veals that there is a sort of microscopic phase separation in the
intermediate stage, where microscopic ice-like and liquid-like
domains coexist (Fig. 5e). That is, the continuous melting ob-
served for the nanoconfined water does not mean that there are
homogeneous intermediate structures between an ice crystal
and liquid water; rather, the ice-like and liquid-like domains
in microscopically inhomogeneous states grow and disappear
continuously. The existence of interfaces between ice and liq-
uid water in the intermediate stage means that the associated
interfacial tension is too small to promote macroscopic phase
separation. This in turn indicates that microscopic structures
of liquid water confined in nanopores can be similar to those
of ice under certain conditions [1, 3]. The three-stage trans-
formation found here is different from the dynamic crossover
observed in supercooled water (a sharp change from an Ar-
rhenius to a non-Arrhenius behavior of the diffusion constant
at T ∗) [21]. The behavior found here is rather similar to that
observed in a supercritical Lennard-Jones fluid [27], although
there are some qualitative differences.

There is a famous argument for the non-existence of the
solid-liquid critical point based on the assertion that a partic-
ular symmetry exists or does not exist [9]. The argument
is, however, not unassailable, since, for example, one may
conceive that defects in a solid increase in number continu-
ously upon heating until the whole system is rendered disor-
dered. And this is exactly what we observe for the quasi-one-
dimensional ices. Figure S10 shows the fraction of defects in
pentagonal ice nanotube as a function of T and the density dis-
tributions of water molecules in the cross section of the pore
at four temperatures. The fraction of defects in ice is 1.5 %
at 150 K, and decreases to 0.7 % at 100 K. As the temper-
ature goes up from 150 K to 360 K, the fraction of defects
increases continuously and exceeds 60 %, and the five-fold
symmetry of pentagonal ice nanotube disappears gradually.
In contrast, when a bulk solid is heated, a small number of
defects immediately lead to a collapse of the entire crystalline
structure at a specific temperature [28, 29, 30]. Given the fact
that simulated water and simple liquids may be continuously
transformed to ordered solids in quasi-one-dimensional [1, 4]
and quasi-two-dimensional nanopores [3, 6] while such grad-
ual transformation is not observed for the bulk systems, we
suspect that a decisive factor enabling water and other simple
molecules to exhibit continuous freezing is confinement.

Although the ice nanotubes at sufficiently low tempera-
tures have perfect crystalline structures as observed in our
molecular simulation, there is a possibility that the quasi-one-
dimensional ices are intrinsically polycrystalline solids whose
grain size is larger than a typical cell size of molecular sim-
ulation, say, 10 nm in length. Then there would be no con-
tradiction between the solid-liquid critical phenomena and the
symmetry argument.

Another commonly accepted view which seems to contra-
dict the phase behavior reported here is that there cannot
be phase transitions in one-dimensional systems with short-
range interactions. It is based on either conclusions derived
from exactly solvable models [10], Landau’s phenomenological
argument [11], or van Hove’s theorem [31]. But it is estab-
lished with counterexamples [32, 33, 34, 35, 36, 37] that van
Hove’s theorem is valid for a limited class of one-dimensional
systems [31, 38], and the model system we studied here is
not included in the class. Rather, ours belongs to “almost
one-dimensional” systems, which may well have phase transi-

tions [39]: it has an external field due to the cylindrical wall,
intermolecular interactions in a transverse dimension in addi-
tion to those along the tube axis, and an infinite number of
states for each molecule at given position z.

Among the one-dimensional models the Chui-Weeks model
of interfaces [35] and the Dauxois-Peyrard-Bishop model of
DNA denaturation [36, 37] seem to be most relevant to the
confined water studied here: both have an infinite number
of states for each ‘site’ in a row, assume Hamiltonian with
potentials for each site and for the nearest-neighbor site-site
interaction, and exhibit first-order phase transitions. Here we
consider the model of DNA, as it is physically more similar to
water confined in nanopore, and try to find a correspondence
between the solvable model and the realistic model of con-
fined water, which may help us better understand the observed
solid-liquid phase transition. The model of DNA is a row of
stacked base pairs: the i-th base pair with a stretching yi of
the hydrogen bond has a potential V (yi) and two neighboring
base pairs are coupled by a potential W (yi, yi−1) whose anhar-
monicity may be tuned. With the short-range interaction W
between base pairs the model of DNA exhibits the first-order
melting transition. Water confined in a nanopore takes a form
of stacked clusters of molecules. The potential energy of the
system may be expressed as the sum of the energy V ′(Yi) of the
i-th cluster and the sum of the neighboring cluster-cluster in-
teraction energy W ′(Yi, Yi−1) with Yi the configuration of the
i-th cluster. In the lowest-energy state (n-gonal ice nanotube)
each cluster forms the n-membered ring of H2O and the rings
are stacked to form the n-gonal tube while in a high-energy
state clusters with dangling OH bonds are randomly stacked.
Because of the apparent correspondences between V and V ′

and between W and W ′, the phase transition of confined wa-
ter may well be of first-order. Furthermore, the model of DNA
exhibits both continuous and first-order transitions depending
on the anharmonicity in the potential W [37]. In the model
water the form of the potential function W ′ should change
with the nanotube diameter and the axial pressure. Then, the
variation of W ′ caused by the tube diameter or pressure might
be responsible for the confined water undergoing the first-order
or continuous solid-liquid phase change. As remarked above
there are other confined systems that exhibit both continu-
ous and discontinuous solid-liquid phase transitions [3, 4, 6].
Phase behaviors of these quasi-one- and quasi-two-dimensional
systems, too, may be understood by examining a correspon-
dence with the solvable models [35, 36] or the two dimensional
versions of such models.

To better understand the nature of the phase behavior of
a class of confined fluids that exhibit both continuous and
first-order solid-liquid phase changes and the associated crit-
ical phenomena, there would be several directions to pursue.
In particular we propose two issues to be resolved in connec-
tion with the arguments about the solid-liquid critical point
and the non-existence of phase transitions in one dimension.
First, it is important to examine whether the solid phases, e.g.,
ice nanotubes in the present study, are truly crystalline solids
or intrinsically polycrystals whose grains are not macroscopic.
For this purpose, larger-scale molecular simulations and per-
haps the free energy calculations of a single crystal and poly-
crystals may be required. Second, it is worth examining in de-
tail a correspondence between the solvable models such as the
model of DNA denaturation and the realistic model studied
here. For example, it is interesting to obtain a phase diagram
for the model of DNA by changing the anharmonicity in the
potential W and examine the nature of the crossover between
the first-order and continuous phase changes. Also it may be
worthwhile to attempt to evaluate the effective potential W ′ in
the realistic model and see whether the change in W ′ with the
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nanotube diameter and the pressure qualitatively corresponds
to the change in W in the model of DNA.

Potential applications of the robust solid-liquid critical phe-
nomena in confined water would be to facilitate chemical reac-
tions, control structural changes of biological molecules, and
promote protein crystallization, using critical fluctuations [40]
at desired temperature by choosing a suitable confining geom-
etry and pressure.
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Fig. 5. The temperature (T ) dependence of static and dynamical properties

along the paths of continuous freezing of water into (5,0) ice in the nanotube of

D = 11.1 Å at Pzz = 500, 1000 and 1500 MPa. Shown here are those obtained

from NPT -MD simulations of 200 water molecules. (a) The configurational part of

enthalpy. (b) The isobaric specific heat capacity (cp). The temperature of maximum

heat capacity T ∗ is 332 K for 500 MPa, 380 K for 1000 MPa and 402 K for 1500 MPa

(as indicated by orange marks in a–d). (c) Arrhenius plot of the diffusion coefficient

in the z direction (Dz). (d) The normalized peak intensity Ŝ(T )/Ŝ(T0) of the

static structure factor of oxygen atoms in the z direction. The reference temperature

T0 is 270 K for 500 MPa, 290 K for 1000 MPa and 310 K for 1500 MPa. (e) The

typical inherent hydrogen-bond structure obtained at T ∗ (332 K at 500 MPa). The

islands of the ordered and the disordered structures are clearly seen. The stacked

pentagonal rings, indicated by yellow, represent microscopic domains of the (5,0) ice.

Methods
We perform extensive molecular dynamics simulations in the
canonical ensemble (NV T -MD) and in the isothermal-isobaric
ensemble (NPT -MD) for a model system of water confined in

a smooth cylindrical nanopore (a model of the single-walled
carbon nanotube). A periodic boundary condition is ap-
plied in the axial direction (z-axis). The temperature T and
the internal axial-pressure Pzz (the pressure tensor parallel
to the z-axis) are controlled using modified Nośe-Andersen’s
method [41]. The intermolecular interaction of water is taken
to be the TIP4P model [42]: the melting temperatures of the
model water in carbon nanotubes are in good agreement with
experimental results [12, 43, 44]. The interaction between a
water molecule and the cylindrical wall is described by the
Lennard-Jones potential integrated with respect to the po-
sitions of carbon atoms over the cylindrical surface with an
assumption of uniform distribution of carbon atoms [1]. The
nanotube diameter D is fixed to 11.1, 12.3, 12.5 and 12.7 Å: the
cross-sectional potential energy profiles are shown in Fig. S8.
The diameters 11.1 Å and 12.5 Å are those of the zig-zag (14,0)
and (16,0) single-walled carbon nanotubes, respectively.

In the NV T -MD simulations, the number N of water
molecules is 900 for the nanotubes of length Lz = 310–520 Å
and diameter D = 12.5 Å, N = 1080 for Lz = 312–360 Å and
D = 12.5 Å, N = 900 for all Lz and D = 12.3 Å and 12.7 Å,
and N = 720 for all Lz and D = 11.1 Å. The highest-density
examined in the simulations is ℓz ≡ Lz/N = 0.29, which cor-
responds to Pzz up to 7 GPa. Confined water under such an
ultra-high pressure is hardly realized in experiment; Neverthe-
less, the exploration into high-pressure states gives coherent
understanding of the phase behavior in confined spaces. The
finite-size scaling analysis is implemented by the NPT -MD
simulations of the systems with N=100, 200, 300, 400 and 500.
Other NPT -MD simulations are performed with N = 200 for
most of the thermodynamic states and N = 500 for the states
in which we observe the microscopic phase separation as shown
in Fig. 5e.

Trajectories are generated by the Gear predictor-corrector
method with a time step of 0.5 fs. The equilibration time of
each state point in the NV T -MD simulation is at least 20 ns
and 200 ns or longer at some co-existence conditions. Then,
equilibrium properties are obtained from production runs of
30-90 ns. In the NPT -MD simulation, each simulation time is
100 ns for most cases and extended to a few µs for the finite-
size scaling analysis. The equilibration run of 20 ns or longer
is followed by the production run for analyses. The instanta-
neous configurations are used for the analyses except for the
snapshots. For the latter, we use the inherent structures, i.e.,
structures obtained by applying the constant-volume steepest-
descent method to the instantaneous structures visited by the
trajectories.
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