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1. Introduction 

Recently, researchers of the various fields where the spatial analysis is needed 

have demonstrated more interest in spatial statistics. Spatial data, also termed 

random field data consist of observations measured at known specific locations or 

within specific regions. Because there are innumerable situations in which data are 

collected at various locations in space, application fields of spatial statistics are 

extensive. For example, the application fields include geology, soil science, image 

processing, epidemiology, crop science, forestry, astronomy, atmospheric science, and 

environmental science. Many studies have been carried out in these fields. A 

representative example of how to use geostatistics in environmental problems is given 

by Journel (1984). Istok and Cooper (1988) demonstrated how to predict ground 

contaminant concentrations using geostatistics, and Myers (1989) implemented it to 

assess the movement of a multi-pollutant plume. Furthermore, Webster (1985) 

investigated soil characteristics and Piazza et al. (1981) analyzed gene frequencies. 

Geostatistics emerged in the early 1980s as a hybrid discipline of mining 

engineering, geology, mathematics, and statistics. Its strength over more classical 

approaches to ore-reserve estimation is that it recognizes spatial variability at both the 

large scale and the small scale, or in statistical parlance it models both spatial trend 

and spatial correlation. Watson (1972) compares the two approaches and points out 

that most geological problem have a small-scale variation, typically exhibiting strong 

positive correlation between data at nearby spatial locations. One of the most 

important problems in geostatistics is to predict the ore grade in a mining block from 

observed samples. Matheron (1963) has called this process of prediction kriging 

(Cressie, 1993). 

An important problem in geostatistical data is to predict the unobserved value 

)( 0sz  based on the information for n  observations )( sz , n ,  ,1  . It can be 

achieved in three stages of (1) estimation of the variogram, (2) fitting the theoretical 

variogram models to the sample variogram, and (3) predicting the value at a specified 

location using the fitted variogram model (kriging). It is very important to detect 
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influential observations that could affect the result of analysis when geostatistical 

data set is analyzed. Observed variables often contain outliers that have unusually 

large or small values when compared with others in a data set. Moreover, because 

variogram modeling is significantly affected by outliers, methods to detect and clean 

outliers from data sets are critical for proper variogram modeling.  

On the one hand, these influential of outliers might give rise to the wrong result 

of kriging that is one of the major purposes in analyzing the geostatistical data. On 

account of these, the problem of detecting influential observations is embossed as a 

subject of interest in spatial statistics and many studies for this field have been 

progressing for sensitivity functions. Therefore, this thesis also put emphasis on the 

method to detect influential observations in the geostatistical statistics. For this 

purpose, sample influence functions (SIF) are derived as a tool to detect influential 

observations in stage above assuming that the underlying process of the observed 

geostatistical data is second-order stationary. Through the studies of the simulation 

and the real numerical example, we show the performance of the proposed method 

based on the sample influence functions.  

We conduct a simulation study to demonstrate our procedure. For simplicity, we 

assume that the underlying process of the observed geostatistical data is stationary 

and isotropic. In all data analyses, we used the environment of R.  

We describe the general geostatistical statistics approach in Chapter 2. This 

chapter consists of the contents as 1) types of spatial data, 2) spatial prediction, 3) 

estimation of the variogram, 4) fitting the theoretical variogram models to the sample 

variogram, and 5) predicting the value at a specified location using the fitted 

variogram model (kriging). In Chapter 3, here we address the problem of fitting a 

theoretical variogram model to various variogram estimators. In this chapter, we 

propose a method for choosing the optimal number of lags based on leave-one-out 

cross-validation (LOOCV) and the Akaike information criterion (AIC). Moreover, we 

compare the fitting a theoretical variogram model based on ordinary least square 

method with those based on maximum likelihood estimation. Chapter 4 deals with 

influence analysis for observations in the geostatistical analysis above. In this chapter, 
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we propose a procedure to detect outliers for geostatistical data analysis. Here, to 

detect outliers, we use the sample influence function (SIF) for the Akaike information 

criterion (AIC) and the maximum likelihood method. We present the simulation 

results to show the performance of our proposed procedure. In Chapter 5, by applying 

our approach to an empirical example with rainfall data in Chugoku district, Japan, 

we show the performance and usefulness of our proposed method. Finally, we give our 

concluding remarks in Chapter 6. 
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2. Outline of Spatial Statistics 

2.1 Introduction  

This chapter provides some introductory materials on spatial data analysis 

including some definitions and an overview of the basic ideas for spatial statistics. 

 

2.2 Types of Spatial Data  

Spatial data consist of observations or measurements measured at specific 

locations or within specific regions. In addition to values for various attributes of 

interest, spatial data sets also include the locations or relative positions of the data 

values. Locations may be point or region. For example, point referenced data are 

observations recorded at specific fixed locations and might be referenced by latitude 

and longitude. Areal referenced data are observations specific to a region. (Kaluzny et 

al., 1996) 

Spatial data are largely classified into three types (Cressie, 1993); geostatistical 

data, lattice data, and spatial point patterns. Geostatistical data are measurements 

taken at fixed locations. The locations are generally continuous. Example of 

continuous geostatistical data include mineral concentrations measured at test sites 

within a mine, rainfall recorded at weather stations, concentrations of pollutants at 

monitoring stations, and soil permeabilities at sampling locations within a watershed. 

An example of discrete geostatistical data is cont data, such as the number of scallops 

at a series of fixed sampling sites along the coast. Lattice data are observations 

associated with spatial regions, where the regions can be regularly or irregularly 

spaced. The spatial regions can be any spatial collection, and are not limited to a grid. 

Generally, neighborhood information for the spatial regions is available. An example of 

regular lattice data is information obtained by remote sensing from satellites, and an 

example of irregular lattice data is cancer rates corresponding to county in a state. And 

spatial point patterns consist of a finite number of locations observed in a spatial 

region. Identification of spatial randomness, clustering, or regularity is often the first 

analysis performed when looking at point patterns. Examples of point pattern data 
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include locations of a species of tree in a forested region, and locations of earthquake 

epicenters. (Kaluzny et al., 1996) 

In this paper, we focus on geostatistical data among three spatial data types that 

are dealt with in spatial statistics.  

  

2.3 Spatial Prediction  

Spatial data can be considered to be a realization of a stochastic process )(sZ , i.e., 

},:)({ dDZ Rss    

where s  indicates a location in D  and d
R )3 ,2 ,1  ( d  is a d -dimensional Euclidean 

space. The basic form of spatial data is expressed as ),( ii sz , ni ,,1 , where iz  is the 

th-i  observation of a phenomenon of interest at location is . 

Assume that this process satisfies the hypothesis of intrinsic stationarity: 

,, allfor       ),(2)(2))()(( )(

,, allfor       ,)()())(),(( )(

, allfor       ,))(( )(

DZZVarc

DCCZZCovb

DZEa

jijiji

jijiji
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

sshssss

sssshss

ss





   

where )(2 h  is the variogram, and )(hC  is the covariance for pairs of points separated 

by Euclidean distance (the covariogram). In this paper, we suppose that )(ˆ2 h  is a 

variogram estimator for a given lag h , based on a sample )}(,),({ 1 nZZ ss   of the 

spatial process; let khh ,,1   be the vector lags defined by hhh /ii  , ki ,,1 , where 

Kk 1 , and K  is the maximum possible distance between data in the direction h

(Genton, 1998). 

 

2.3.1  Estimation of the Variogram 

We measure the variability of a regionalized variable )(sz  at different scales by 

computing the dissimilarity between pairs of data values, )( iz s  and )( jz s  say, located 

at points is  and js  in a saptial domain D . The measure for the dissimilarity of two 

values, labeled 
ij , is 
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2

))()(( 2
ji

ij

zz ss 
 , 

i.e. half of the square of the difference between the two values.  

We let the dissimilarity   depend on the spacing and on the orientation of the 

point pair described by the vector h , 

2))()((
2

1
)( ii zz shsh  , 

Using all sample pairs in a data set (up to a distance of half the diameter of the 

region), a plot of the dissimilarities   against the spatial separation h  is produced 

which is called the variogram cloud. A schematic example is given on Figure 2.1. 

 

 

Figure 2.1: Plot of the dissimilarities   against the spatial separation h  of 

sample pairs; a variogram cloud. 
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The first step in geostatistical data analysis is estimating the variogram )(h  

using the observed data. When we assume the variogram to be isotropic, we can 

calculate an estimator for the variogram, called the sample variogram (Matheron, 

1962), using 

,))()((
2

1
          

))()((
2

1
)(ˆ

)(

2

)(

2









h

h

shs

ssh

N
ii

k

N
ji

k

k

zz
N

zz
N



                      (2.1) 

where    njiN jiji ,,1 , ;:) ,(  hssssh  and kN  is the number of the distinct pairs 

in )(hN . )( iz s  and )( jz s  are the data values at spatial locations is  and js , 

respectively.  

In this formulation, h  represents a distance measure with only magnitude. 

When the variogram is isotropic, we can compute the directional sample variogram 

using the same formula by replacing h  with vector h . In practice, to calculate the 

variogram values using Eq. (2.1), we first select the lag distances h , then calculate the 

variogram values by regarding pairs with distance within lagh  tolerance as the 

pairs in )(hN . The lag tolerance, which establishes distance bins for the lag 

increments, accommodates for unevenly spaced observations. The lag increment 

defines the distances at which the variogram is calculated, and the number of lags in 

conjunction with the size of the lag increment will define the total distance over which 

the variogram is being calculated. To estimate the variogram, we next have to choose 

the lag increment or the number of lags.  

More formally, if kN  denotes the set of distance pairs, ) ,( ji ss , in bin k , (with the 

size (number of pairs) in kN  denoted by kN ), and if the distance between each such 

pair is denoted by jiij ssh   , then the lag distance, kh , for bin k  is defined to be 

ij
N

k

k kjiN
  hh ss ) ,(

1
. 

 

  



8 

 

2.3.2  Fitting Theoretical Variogram Models to Sample 

Variogram 

The next stage in geostatistical data analysis is fitting a model that gives the best 

dependence (auto-correlation structure) in the underlying stochastic process. Most 

variogram models contain three parameters which are sill, range, and nugget (or 

nugget effect). These parameters are depicted on the generic variogram shown in 

Figure 2.2 and are defined as follows. 

 

 

Figure 2.2: A generic variogram showing the sill, and range parameters along 

with a nugget effect. 

 

Sill is a variogram threshold for lag distances. Range is the lag distance at which 

the variogram reaches the sill value. The nugget represents the variability at distances 

smaller than the typical sample spacing, including the measurement error. Thus far, 

several variogram models have been proposed according to their forms; for example, 

Gaussian, exponential, and spherical models as bounded variogram models, and power, 

linear and nugget effect models as unbounded variogram models (Figure 2.3). The 

selected model influences the prediction of the unknown values, particularly when the 

shape of the curve near the origin differs significantly. The steeper the curve near the 



9 

 

origin, the more influence the closest neighbors will have on the prediction. Each 

model is designed to fit different types of phenomena more accurately. These models 

are defined as follows: 

 

Gaussian model is  

 
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Exponential model is 
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Spherical model is 
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Power model is 

 
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Linear model is 

 

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
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Nugget effect model is 
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Figure 2.3: Theoretical variogram models. 
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2.3.3  Kriging 

Kriging is a linear interpolation method that allows predictions of unknown 

values in a random function from observations at known locations (Figure 2.4). There 

are a few type of kriging for spatial prediction problems in spatial statistics, including 

simple kriging, ordinary kriging, and universal kriging. In our simulation, we perform 

only ordinary kriging, which is often associated with the best linear unbiased 

estimator (BLUE). Ordinary kriging is based on a random function model of spatial 

correlation for calculating a weighted linear combination of available samples to 

predict a nearby unsampled location. Weights are chosen to ensure zero average error 

for the model and to minimize the model's error variance (Isaaks and Srivastava, 1989). 

Ordinary kriging (Matheron, 1971; Journel and Huijbregts, 1978) refers to spatial 

prediction under the following two assumptions. First, the model assumption is as 

follows:  

 , ,    ),()( Rsss   DZ   

where   is unknown.  

The second is the predictor assumption: 
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This minimization with respect to the Lagrange parameter forces the constraint to be 

obeyed: 
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In this case, the system of equations for the kriging weights is 
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where      is the covariance function for the residual component of the variable.  

Once the kriging weights (and Lagrange parameter) are obtained, the error variance of 

the ordinary kriging is given by 
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Figure 2.4: The estimation of a value at a point 0s  using information at point s ,

n,,1 . 
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The flow of geostatistical data analysis, from estimating variograms to kriging, is 

expressed in Figure 2.5. 

 

Figure 2.5: Flowchart for geostatistical data analysis. 

 

 



14 

 

3. Variogram Model Fitting 

3.1 Introduction 

In geostatistical data analysis, methods by variogram parameters are based on 

the fitting of a sample variogram calculated from the data to a theoretical variogram 

model. Until recently, the most common methods of fitting variogram models to sample 

variograms were by eye or by least squares. The advantage of the ordinary least 

square method is the applicability for the analysis without specifying the parameters 

for distributions. In addition, its method also has the benefit of the computation cost 

for large amounts of geostatistical data. However, when we use the method in 

geostatistical data analyses, we have to estimate indirectly the variogram parameters 

by dividing the group for lag. Variogram estimation is strongly influenced by number 

of lags k , which serves as a smoothing parameter. This means that k  could 

significantly influence the least square estimator and kriging predictor. However, 

there is no established rule for selecting the number of lags when estimating 

variograms.  

The selection of a proper k  value is important, so few studies have been done in 

this regard. Kim et al. (2013b, 2014b) proposed a method for selecting the optimal 

number for the estimator using LOOCV and AIC in the geostatistical data analysis. 

Lamorey and Jacobson (1995) says the sensitivity of the variogram fit to small changes 

in the lag increment is used to evaluate if there are enough data to define accurately 

the sample variogram. Choi et al. (2010) proposed a method for finding the optimal lag 

using the predicted residual sum of square (PRESS). Hong and Kim (2004) proposed 

the selection of k  in nonparametric variogram estimation in the sense of minimizing 

the limit of mean integrated squared error (MISE) under infill asymptotics and 

mixed-increasing domain asymptotics. In this research they have shown that under 

infill asymptotics small value of k  given best results even for large number of sample 

size. In this chapter, we propose a method for choosing the optimal number of lags 

based on leave-one-out cross-validation (LOOCV) and the Akaike information criterion 

(AIC). Moreover, besides the ordinary least square method, we generally use 

variogram models based on maximum likelihood estimation. We compare the 
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estimated parameters of the variogram models based on the ordinary least square 

method with those based on maximum likelihood estimation. 

 

3.2 Least Squares Method 

In many cases, variogram parameters are often estimated by using the approach 

of ordinary least squares. Cressie (1985) introduced three mathematical techniques for 

fitting the parameter values; ordinary least squares (OLS), weighted least squares 

(WLS), and generalized least squares (GLS). 

The method of OLS is purely a numerical procedure that has an attractive 

geometric interpretation. The WLS method of variogram model fitting can be 

implemented through any number of nonlinear estimation algorithms. Model fitting by 

GLS requires calculating the variances of the estimates of the sample variogram at 

each lag and covariances between them, which is very complicated. 

 

3.2.1  Ordinary Least Squares 

The method of ordinary least square specifies θ  that is estimated by minimizing 

     ,;ˆ
2

1





K

k
k

o
k

o hh θ                            (3.1) 

for some direction k . Here k  is the number of lags. Eventually, an ordinary least 

square estimator of θ  is obtained. Although Eq. (3.1) has geometric appeal, it does not 

contain the information for the distributional variation and covariation of the generic 

estimator o̂ . In Figure 3.1, we represent the sample variogram for each the number 

of lags at same dataset by the ordinary least squares. We can see that the shape and 

parameter estimation is influenced by number of lags. 
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Figure 3.1: Sample variogram for number of lags by the ordinary least squares. 

 

 

3.2.2  Optimal Number of Lags 

In general, the variogram is estimated with a method of moment estimator 

(Matheron, 1962), and the lag increment or number of lags must be chosen as it is 

being estimated. In practical simulation analysis, a data analyst estimates the 

variogram using several different numbers of lags, and then selects the best number of 

lags value among them. This method is subjective and can sometimes result in 

preposterous variogram estimation values. This section proposes a method for 

choosing the optimal number of lags when estimating variograms based on the given 

geostatistical data.  
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Since in any finite sample there will generally be at most one pair that are 

separated by a given distance h , one must necessarily aggregate point pairs ),( ji ss  

with similar distances and hence estimate ）（h  at only a small number of 

representative distances for each aggregate. The simplest way to do so is to partition 

distances into intervals, called bins, and take the average distance, h , in each bin k  

to be the appropriate representative distances, called lag distances, as shown in 

following Figure 3.2.  

 

 

Figure 3.2: Lag distance and bins. 

 

 

This set of estimates at each lag distance is designated as the sample variogram. 

An schematic example of sample variogram construction is given in Figure 3.3. The 

vertical lines separate the bins, as shown for bins k  and 1k . The red dot in the 

middle of these points denotes the pair of average values,  kk ̂,h , representing all 

points in that bin. Hence the sample variogram consists of all these average points, one 

for each bin of points. 
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Figure 3.3: Sample variogram. 

 

To determine the size of each bin, the most common approach is to make all bins 

the same size, in order to insure a uniform approximation of lag distances within each 

bin. Therefore, distances are subdivided into a number of intervals called lags as 

illustrated in the following Figure 3.4. The lag intervals are defined in the sample 

variogram dialog by entering a total number of lags, a unit lag separation distance, 

and a lag tolerance. 

 

Figure 3.4: Lag separation. 
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The selection of lag size has significant effects on the sample variogram. For 

example, if the lag size is too large, short-range autocorrelation may be masked. If the 

lag size is too small, there may be many empty bins, and sample sizes within the bins 

will be too small to determine the bins representative averages. However, if the data 

are acquired using an irregular or random sampling scheme, a suitable lag size 

selection is not at all straightforward.  

There is an implicit tradeoff here between approximation of lag distances and the 

number of point pairs used to estimate the variogram at each lag distance. Journel and 

Huijbregts (1978) suggest the following two practical rules in choosing the lag 

increment and number of lags: (i) the sample variogram should only be considered for 

distances h  for which the number of pairs is greater than 30, and (ii) the distance of 

reliability for a sample variogram is 2/Dh , where D  is the maximum distance over 

the field of data. However, in practice, these rules are ambiguous when choosing the 

number of lags or the lag increment. In this section, we rules on the number of lags 

denoted by symbol k  because the above two rules are mutually reciprocal. Our main 

interest thus becomes finding the optimal number of lags among possible k  values. 

 

3.2.2.1 Optimal Number of Lags for Leave-One-Out Cross-Validation 

We carried out a simulation study to select of the optimal number of lags. In this 

section, we consider the exponential and spherical models, which each contain three 

parameters (sill, range, and nugget), and we restrict the scope of the number of lags to 

be from 2 to 20 when selecting the optimal k . 

As mentioned above, the simulation data are fixed in the two models and their 

three parameters, and the generated datasets (with sample sizes of 100, 200, and 300) 

include positions as well as the data values. When a theoretical variogram model is 

fitted to the number of lags k  from 2 to 20, the optimal k  can be selected on the basis 

of leave-one-out cross-validation (LOOCV).  

The LOOCV (Devijver and Kittler, 1982) values in Eq. (3.2), are calculated as 

follows. The LOOCV uses a single observation from the original sample as the 

validation data, and the remaining observations as the training data. This is repeated 

such that each observation in the sample is used once as the validation data: 
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2

1

)(ˆ)(
1




n

i
ii sZsZ

n
                            (3.2) 

where )( isZ  and )(ˆ isZ   represent the observed and predicted values, respectively. 

The selection of the optimal k  can be explained as below.   

 

Step 1. For a fixed lag k   202  k , estimate the variogram using 1n   

observations excepting the i -th one and obtain the predicted value )(ˆ isZ    

at the i -th location based on the estimated variogram.  

Step 2. For every i  ),,1( ni  , calculate )(ˆ)( ii sZsZ   based on the Step 1 from 1 

to n  ( n 100, 200 and 300). 

Step 3. For the fixed lag k   202  k , calculate the LOOCV value 

 
2

1
1 )(ˆ)(  n

i iin
sZsZ . 

Step 4. Calculate the LOOCV for every k   202  k , and select the optimal k   

which minimizes the LOOCV.  

 

The LOOCV results for given numbers of lags is presented in Tables 3.1 and 3.2. 

From Tables 3.1 and 3.2, we can see that the LOOCV value becomes smaller as the 

number of lags increased. 
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Table 3.1: Results of using LOOCV for choosing the optimal number of lags  

(Exponential model). 

 

Number 

of lags 

Sample size 

100 200 300 

2 1.0801 1.0188 0.9065 

3 1.0193 0.993 0.9105 

4 0.897 0.8377 0.7439 

5 0.7079 0.6566 0.7001 

6 0.6611 0.601 0.4275 

7 0.6497 0.572 0.4102 

8 0.6322 0.5529 0.3983 

9 0.6297 0.539 0.3892 

10 0.6174 0.5322 0.3829 

11 0.6113 0.508 0.3777 

12 0.6107 0.5024 0.3733 

13 0.6097 0.4972 0.3698 

14 0.6062 0.4928 0.3672 

15 0.6064 0.4867 0.3652 

16 0.6044 0.4883 0.3629 

17 0.6043 0.4851 0.3622 

18 0.6043 0.4838 0.3618 

19 0.6041 0.4821 0.3614 

20 0.604 0.4819 0.3607 
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Table 3.2: Results of using LOOCV for choosing the optimal number of lags  

(Spherical model). 

 

Number 

of lags 

Sample size 

100 200 300 

2 2.3746 1.7157 1.7523 

3 2.2646 1.5523 1.4381 

4 2.1245 1.3444 1.1612 

5 1.9845 1.1996 1.0182 

6 1.9038 1.1152 0.7815 

7 1.8287 1.0637 0.7447 

8 1.806 1.0291 0.7147 

9 1.7799 0.9971 0.6954 

10 1.7733 0.978 0.6815 

11 1.4172 0.7637 0.5648 

12 1.4109 0.7489 0.5521 

13 1.3893 0.739 0.5435 

14 1.4171 0.7361 0.5383 

15 1.3775 0.7329 0.5324 

16 1.3841 0.7234 0.5257 

17 1.3824 0.72 0.5229 

18 1.3724 0.7145 0.521 

19 1.3581 0.7158 0.5203 

20 1.3511 0.712 0.5181 

 

 

 



23 

 

3.2.2.2 Optimal Number of Lags for Akaike Information Criterion 

A satisfactory compromise between goodness of fit and complexity of the model 

can be achieved based on the Akaike information criterion (AIC). For a given set of 

data, the variable part of the AIC is estimated by 

pRn 2ˆln2Â   

where n  is the number of sample points on the variogram, R̂  is the value of R  

which maximizes the likelihood ( R  is a vector of m  parameters of covariogram model), 

and p  is the number of parameters in the variogram model. The model to choose is 

the one for which Â  is least. 

Similarly, when applying the AIC, the simulation data are fixed in the two models 

and their three parameters, and the generated datasets (with sample sizes of 100, 200, 

and 300) include positions and the data values. When a theoretical variogram model is 

fitted to the number of lags k  from 2 to 20, the optimal number of lags k  can be 

selected on the basis of the AIC. The optimal k  is defined to be the value that 

minimizes AIC. The selection of the optimal k  can be explained as below.   

 

Step 1. Calculate the R̂  with the given data Z  and parameters of covariogram  

model R . 

Step 2. Calculate the AIC for variogram model for every lag k   202  k . 

Step 3. Select the optimal k  which minimizes the AIC.  

 

From Table 3.3, for the sample size of 100 in the exponential variogram model, the 

minimum AIC value is achieved at k  = 5; for sample sizes of 200 and 300, the 

minimum AIC values are achieved at k  = 7. In addition, from Table 3.4, for the 

sample size of 100 in the spherical variogram model, the minimum value of AIC is 

achieved at k  = 5; for sample sizes of 200 and 300, the minimum values of AIC are 

achieved at k  = 6 and k  = 7, respectively. 
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Table 3.3: Results of applying the AIC for choosing the optimal number of lags 

(Exponential model). 

 

Number 

of lags  

Sample size 

100 200 300 

2 871.93 1504.93 2148.32 

3 867.5 1479.62 2108.39 

4 865.26 1476.76 2100.05 

5 865.13 1475.28 2094.52 

6 866.57 1474.24 2094.13 

7 868.43 1473.09 2092.02 

8 868.83 1475.09 2092.87 

9 870.19 1477.29 2093.34 

10 871.16 1477.72 2093.41 

11 874.27 1479.66 2093.56 

12 875.17 1481.74 2095.99 

13 875.76 1482.48 2096.34 

14 877.4 1483.9 2098.17 

15 878.95 1483.82 2099.03 

16 881.18 1485.92 2101.32 

17 881.78 1488.6 2102.84 

18 882.28 1489.51 2104.42 

19 882.47 1490.4 2105.34 

20 887.59 1491.95 2107.46 
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Table 3.4: Results of applying the AIC for choosing the optimal number of lags  

(Spherical model). 

 

Number 

of lags  

Sample size 

100 200 300 

2 871.79 1500.28 2152.07 

3 862.63 1474.49 2110.97 

4 860.67 1470.3 2094.99 

5 859.89 1469.23 2096.2 

6 861.22 1468.11 2095.4 

7 862.79 1468.42 2092.13 

8 864.56 1468.15 2093.3 

9 865.9 1470.65 2096.14 

10 866.52 1472.52 2095.69 

11 868.29 1471.98 2097.3 

12 869.97 1474.22 2098.08 

13 871.39 1476.4 2099.62 

14 872.74 1476.99 2099.43 

15 874.47 1478.59 2102.89 

16 874.3 1480.46 2102.77 

17 878.09 1481.32 2105.35 

18 878.13 1482.73 2105.4 

19 879.42 1484.28 2107.99 

20 880.95 1486.11 2109.07 
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3.3 Maximum Likelihood Method 

Estimation procedures that rely crucially on the Gaussian assumption are 

maximum likelihood (ML) and restricted maximum likelihood (REML) estimation of θ  

in 

     Θθθ   ;  ;  2  2:2 P ,                         (3.3) 

where P  is parametric subset of valid variograms. 

The problem with ML estimation is that the estimators of θ  are biased, often 

prohibitively so in small to moderate samples (Matheron, 1971; Mardia and Marshall, 

1984). Maximum likelihood estimation for a model of the spatial covariance of a 

random variable was proposed by Kitanidis (1983, 1987) for geostatistical purposes. 

The simple case when the data Z  are in fact independent multivariate Gaussian, 

 IσXGau 2 ,β , yields just one small scale variogram parameter 2σ . The ML estimator 

is,    n
i i nXZσ 1

22 /)ˆ)((ˆ βs  where β̂  is the ordinary least squares estimator of the 1q  

vector β . It is well known that 2σ̂  is biased and that 2ˆ))/(( σqnn   is unbiased; the 

bias-correction factor ))/(( qnn   can be appreciable when q  is large relative to n  

(Cressie, 1993). Suppose that the data Z  are multivariate Gaussian   θΣβ  ,XGau , 

where X  is an qn matrix of rank nq  , and that the nn  matrix 

       ji ZZ ssθ  ,cov  depends on θ  through Eq. (3.3). Then the negative loglikelihood 

is  

        , 
2

1
log

2

1
2log

2
)( 1

βZθΣβZθΣθβ, XX
n

L 


    

and the maximum likelihood estimators β̂  and θ̂  satisfy 

   ΘθRβθβ,θ,β
q   ,:)(infˆˆˆ LLL . 

The restricted maximum likelihood method is a particular form of maximum 

likelihood estimation which is based on all the information target data, but instead 

uses a likelihood function calculated from a transformed set of data. In the case of a 

one-dimensional with equally spaced data, Kitanidis (1983) proposed the approach 

based on the likelihood function by the data              nZnZZZZZ 1,,32 ,21 W .   
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Equivalently, minimize 

          , 
2

1
log

2

1
2log

2

1
)(

1
βWθΣβWθΣθβ, XAAAXAAA

n
Lw







   

where  ijaA   is an   nn 1  matrix whose elements are 















. elsewhere   ,0  

, 1,,1,1for    ,1

, 1,,1,for    ,1   

njji

njji

aij 



 

In this section, we present a simulation study to validate the proposed estimation 

method. We compare the estimated parameters of the variogram models based on the 

ordinary least square method with those based on maximum likelihood estimation. As 

calculated above, we selected the number of lags based on LOOCV when estimating 

variogram based on ordinary least square method. The ),,1( nii z  observation with 

the specified parameter the ),( ji ss  positions can be generated using the function „grf ‟ in 

spatial module geoR of R. The approach of parameter estimation can be explained as 

below.  

 

Step 1. Fix the three models and the values of parameters (sill = 2, range = 2, and  

nugget = 0.1), and generate datasets (100, 200, and 300) including positions 

as well as data values.  

Step 2. Estimate parameters in two ways (OLS and ML). 

Step 3. Predict the prediction point by using kriging. 

Step 4. Compare the predicted values with observed values. 
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The procedure is repeated 30 times. The simulation results for Gaussian, 

exponential, and spherical models, obtained by the above procedures are presented in 

Table 3.5 to Table 3.10. Table 3.5, Table 3.7, and Table 3.9 show the parameters for the 

ordinary least squares (OLS) and the maximum likelihood (ML) estimation method, 

respectively. Table 3.6, Table 3.8, and Table 3.10 show the results in terms of the 

leave-one-out cross-validation for the ordinary least squares and the maximum 

likelihood estimation method, when we used the evaluation measures were used in Eq. 

(3.2). From Table 3.5 to Table 3.10, the parameter estimation methods based on 

maximum likelihood estimation gave a better performance than OLS method from the 

point of view of LOOCV. 

Table 3.5: Parameters for the OLS and the ML estimation method ( 100n ). 

Estimation 

 method 
Models 

Parameters 

Nugget Sill Range 

ordinary least 

 squares 

(OLS) 

Gaussian 0.627  0.748  1.183  

Exponential 0.628  0.753  0.747  

Spherical 0.692  0.734  1.013  

maximum  

likelihood 

(ML) 

Gaussian 0.179  1.283  1.180  

Exponential 0.000  1.448  1.356  

Spherical 0.021  1.299  2.364  

Table 3.6: LOOCV for the OLS and the ML estimation method ( 100n ). 

Estimation method Models LOOCV 

ordinary least 

 squares (OLS) 

Gaussian 0.881  

Exponential 0.999  

Spherical 1.032  

maximum  

likelihood (ML) 

Gaussian 0.574  

Exponential 0.586  

Spherical 0.566  
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Table 3.7: Parameters for the OLS and the ML estimation method ( 200n ). 

Estimation 

 method 
Models 

Parameters 

Nugget Sill Range 

ordinary least 

 squares 

(OLS) 

Gaussian 0.666  1.342  1.122  

Exponential 0.612  1.618  1.631  

Spherical 0.613  1.161  1.034  

maximum  

likelihood 

(ML) 

Gaussian 0.222  1.158  3.780  

Exponential 0.000  1.590  4.787  

Spherical 0.027  1.595  2.880 

 

Table 3.8: LOOCV for the OLS and the ML estimation method ( 200n ). 

Estimation method Models LOOCV 

ordinary least 

 squares (OLS) 

Gaussian 0.634  

Exponential 0.494  

Spherical 0.728  

maximum  

likelihood (ML) 

Gaussian 0.402  

Exponential 0.387  

Spherical 0.398  

 

Table 3.9: Parameters for the OLS and the ML estimation method ( 300n ). 

Estimation 

 method 
Models 

Parameters 

Nugget Sill Range 

ordinary least 

squares (OLS) 

Gaussian 0.567  1.440  1.194  

Exponential 0.474  2.016  1.852  

Spherical 0.468  1.208  1.024  

maximum  

likelihood 

(ML) 

Gaussian 0.255  0.865  3.269  

Exponential 0.022  1.622  4.901  

Spherical 0.026  1.534  2.805  



30 

 

Table 3.10: LOOCV for the OLS and the ML estimation method ( 300n ). 

Estimation method Models LOOCV 

ordinary least 

 squares (OLS) 

Gaussian 0.581  

Exponential 0.375  

Spherical 0.518  

maximum  

likelihood (ML) 

Gaussian 0.324  

Exponential 0.326  

Spherical 0.324  
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4. Geostatistical Data Analysis with Outlier Detection 

4.1 Introduction 

Many researchers have used the variogram method to reduce the effect of outliers 

in spatial data analysis. Different approaches have been proposed to detect outliers. It 

is known that estimating the variogram after replacing outliers is more efficient. Nirel 

et al. (1998) proposed a method for removing spatial data, in which outliers are first 

detected and then replaced by values calculated from the remaining data. Two 

different methods (distributional inference method and deletion method) for detection 

of spatial outliers were proposed by Yoo and Um (1999). Sensitivity analysis, based on 

the influence functions for auto-and cross-variogram, was proposed by Choi et al. 

(2000). Kim and Jung (2005) proposed the outlier detection method in multivariate 

regression. Based on the sign of the influence function, Hayashi et al. (2013) proposed 

a new framework of statistical sensitivity analysis for linear discriminant analysis. 

Kim et al. (2013a, 2014a) focused on an estimation approach based on maximum 

likelihood method, and detected outliers with the sample influence function. On the 

other hand, geostatistical data analysis is sensitive to outliers. Figures 4.1 and 4.2 

show the geostatistical data analysis based on the presence of outliers. We can see that 

the shape and parameter estimation are influenced by outliers. Moreover, this 

variogram cloud (Figure 4.1, Top) plot shows the bias and trend. 

On the other hand, the maximum likelihood method based on the likelihood 

method is sensitive to outliers, and the parameters estimated by this method are 

affected by them. In this chapter, to achieve a stable analysis in variogram models 

based on the maximum likelihood method, we propose a procedure for stable 

geostatistical data analysis. Here, we detect outliers on the target dataset for 

geostatistical analysis with the sample influence function (SIF) for the Akaike 

information criterion (AIC) and the maximum likelihood method, and estimate the 

parameters by deleting them. We conduct a simulation study to demonstrate our 

procedure. For simplicity, we assume that the underlying process of the observed 

geostatistical data is stationary and isotropic.  
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Figure 4.1: Outliers in geostatistical data; variogram cloud (Top), sample variogram 

(Center), fitting the theoretical variogram model (Bottom). 
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Figure 4.2: Non-outliers in geostatistical data; variogram cloud (Top), sample 

variogram (Center), fitting the theoretical variogram model (Bottom). 
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4.2 Sample Influence Functions for the Maximum Likelihood 

with the Akaike Information Criteria 

Studies on detecting influential observations in spatial statistics have actively 

progressed in recent years. Gunst and Hartfield (1997) suggest influence function to 

quantify the effects of influential data values on the sample and robust variogram 

estimators. The influence function (IF) is a representative function for detecting 

outliers, introduced by Hampel (1974). From the definition of influence functions 

(Hampel, 1974; Hampel et al., 1986; Tanaka, 1994), the theoretical influence function 

(TIF) is given by 

,
)]())1(([

lim));((
)(

0 






FF
ZTIF

Z 




s
s  

where )(sZ  is the cdf of a unit point mass at )(sZ  and )(F   is a parameter which 

is expressed as a functional of the cumulative distribution function (cdf) F  of random 

variables )(sZ . The TIF  for   is the derivative of the function ))1(()( )(sZF    

with respect to   evaluated at 0 . The empirical influence function (EIF) is 

obtained by replacing cdf F̂  for F  in the definition of the TIF . The EIF  at the 

),,1)(()( niZZ i  ss  is given by  

　.
)]ˆ()ˆ)1(([

lim)ˆ);((
)(

0 






FF
ZEIF iZ
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
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

s
s  

The sample influence function (SIF), which is obtained by omitting “lim” and setting 

)1/(1  n  in EIF , is expressed as  

),ˆˆ)(1()ˆ);(( )(   ii nZSIF s  

where the subscript )(i  means the omission of the i -th individual.  

The maximum likelihood method based on likelihood function is sensitive to 

outliers. And the goodness of fit can be achieved based on the maximum likelihood. A 

satisfactory compromise between goodness of fit and complexity of the model can be 
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achieved based on the AIC . Then, in this study, we use the SIF  for the maximum 

likelihood method (Section 3.3) and the AIC .  

The SIF  for the maximum likelihood method is calculated as follows: 

    , ˆˆˆ; LL
t

tn
LDeSIF De 







 
  (4.1) 

where  DeL̂  is the maximized log-likelihood L̂  in the case of deleting De . Here, n  is 

the number of all the target data. t  is the number of the data that belong to De . De  

means the subset of target observations to be evaluated. AIC  penalizes minus twice 

log-likelihood by twice the number of parameters (Akaike, 1974). For a given set of 

data the variable part of the AIC  is estimated by 

,2ˆ2: pLAIC   

where AIC  is the value of the Akaike Information Criteria, L̂  is the maximized 

log-likelihood and p  is the number of parameters in the model. The model with 

minimum AIC  value is chosen as the best model to fit the data. In AIC , the 

compromise takes place between the maximized log-likelihood, i.e., L̂2  (the lack of 

fit component) and p , the number of free parameters estimated within the model (the 

penalty component) which is a measure of complexity or the compensation for the bias 

in the lack of fit when the maximum likelihood estimators are used. 

The SIF  for the AIC  is calculated as follows: 

      . ; AICAIC
t

tn
AICDeSIF De 







 
  (4.2) 

By using  LDeSIF ˆ; , we can evaluate the influence of each observation for the 

fitting of all observed data through variogram models. On the other hand, with 

 AICDeSIF ; , we can assess the influence of each observation for the prediction on 

variogram estimations.  
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Figure 4.3: Explanation for the SIF  statistic. 

 

 

In general, the model with minimum AIC  value is chosen as the best model to fit the 

data. In case of the difference between " AIC  for the complete data (include the outlier) 

and deleting thDe -  observation (exclude the outlier)" is relatively large. The outlier is 

defined to be the largest absolute SIF . We can see that the st1 observation is an outlier 

from Figure 4.3.  
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4.3 Simulation Study 

In this section, we present a simulation study to validate the proposed outlier 

detection method. We considered the Gaussian, exponential, and spherical models, 

which each model contains three parameters (sill, range, and nugget). We present 

results for the cases of including 1, 3, and 5 outliers. For each setting, we generate 

100n  samples. We generated artificial outliers based on range of 3  (Figure 4.4). 

The approach of outlier detection can be explained as below. 

 

Step 1. Fix the three models (Gaussian, exponential, and spherical) and  

parameters (sill = 7, range = 2, and nugget = 1), and generate datasets  

including positions as well as data values.  

Step 2. Generate outliers in the generated datasets. 

Step 3. Calculate all possible combination subsets De s based on all data. 

Step 4. For each De , calculate   LL
t

tn
De

ˆˆ 






 
  and   AICAIC

t

tn
De 







 
 . 

Step 5. Detect outliers based on the magnitude of   LL
t

tn
De

ˆˆ 






 
  and  

  AICAIC
t

tn
De 







 
 . 

 

The procedure is repeated 30 times. The simulation results for Gaussian, 

exponential, and spherical models, obtained by the above procedures are presented in 

Table 4.1 to Table 4.12.  LDeSIF ˆ;  and  AICDeSIF ;  are SIF s for the maximized 

log-likelihood and AIC , respectively. Table 4.1 to Table 4.6 show the results of a single 

influential observation, respectively, when we used the evaluation measures were used 

in (4.1) and (4.2). 

Table 4.7 to Table 4.12 shows the results in terms of the influence of multiple 

influential observations (in the case of 3 and 5 outliers). We can see that there is a 

substantial difference between the SIF  in the case of containing outliers and that of 

containing non-outliers. 
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Figure 4.4: A geostatistical data set. Objects are located in the X − Y plane. The height 

of each vertical line segment represents the attribute value of each object. 
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Table 4.1: Results for  LDeSIF ˆ;  in the case of the outlier and non-outlier (Gaussian model). 

 

1 Outlier 3 Outliers 5 Outliers 

 LDeSIF ˆ;   LDeSIF ˆ;   LDeSIF ˆ;  

Outlier -1550.246  

-1103.709  

  

-992.690  

  

-945.047  

-947.016  

-805.913  

-767.517  

-737.669  

-723.356  

Non 

Outlier 

-207.660  -256.078  -246.994  

-204.465  -249.797  -238.029  

-196.926  -246.656  -236.382  

-155.034  -241.240  -230.085  

-191.329  -236.297  -226.869  

-197.667  -231.916  -222.665  

-194.580  -230.395  -221.569  

-138.446  -225.595  -217.950  

-176.744  -221.406  -215.449  

-173.056  -218.423  -212.358  

︙ ︙ ︙ 

-148.318  -251.791  -248.093  

-199.806  -259.146  -253.726  

-194.838  -263.678  -258.384  

-211.521  -268.644  -265.113  

-217.929  -277.112  -269.639  

-216.369  -282.477  -274.323  

-236.823  -294.675  -283.874  

-253.822  -313.781  -301.404  

-267.097  -330.142  -315.696  

-266.085  -366.129  -354.280  
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Table 4.2: Results for  AICDeSIF ;  in the case of the outlier and non-outlier (Gaussian model). 

 

1 Outlier 3 Outliers 5 Outliers 

 AICDeSIF ;   AICDeSIF ;   AICDeSIF ;  

Outlier 3100.492  

2207.419  

  

1985.381  

  

1890.096  

1894.032  

1611.827  

1535.034  

1475.339  

1446.712  

Non 

Outlier 

415.318  512.156  493.990  

408.931  499.597  476.058  

393.852  493.310  472.765  

310.070  482.481  460.171  

382.658  472.594  453.739  

395.335  463.828  445.331  

389.160  460.789  443.140  

276.895  451.191  435.902  

353.488  442.811  430.899  

346.113  436.848  424.715  

︙ ︙ ︙ 

296.638  503.581  496.185  

399.614  518.291  507.450  

389.677  527.355  516.770  

423.044  537.288  530.227  

435.860  554.224  539.280  

432.739  564.953  548.645  

473.646  589.350  567.747  

507.644  627.561  602.809  

534.194  660.283  631.392  

532.170  732.260  708.561  
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Table 4.3: Results for  LDeSIF ˆ;  in the case of the outlier and non-outlier (Exponential model). 

 

1 Outlier 3 Outliers 5 Outliers 

 LDeSIF ˆ;   LDeSIF ˆ;   LDeSIF ˆ;  

Outlier -2327.431  

-1101.638  

  

-1129.866  

  

-887.597  

-798.507  

-692.876  

-723.429  

-726.259  

-671.705  

Non 

Outlier 

-573.663  -205.343  -225.909  

-578.364  -210.023  -216.817  

-574.626  -216.416  -235.635  

-562.442  -195.917  -201.167  

-572.470  -198.438  -207.059  

-570.208  -201.062  -229.982  

-589.079  -225.658  -231.092  

-569.979  -202.715  -206.217  

-570.123  -207.545  -240.823  

-562.781  -196.253  -204.780  

︙ ︙ ︙ 

-561.072  -193.451  -193.804  

-568.189  -194.224  -197.526  

-565.110  -199.571  -198.020  

-572.212  -200.049  -200.824  

-566.273  -197.374  -197.240  

-591.722  -208.614  -213.802  

-595.709  -221.195  -216.391  

-602.550  -220.079  -224.521  

-633.645  -247.609  -241.396  

-704.408  -303.931  -276.661  
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Table 4.4: Results for  AICDeSIF ;  in the case of the outlier and non-outlier (Exponential model). 

 

1 Outlier 3 Outliers 5 Outliers 

 AICDeSIF ;   AICDeSIF ;   AICDeSIF ;  

Outlier 4654.860  

2203.275  

  

2259.731  

  

1775.194  

1597.015  

1385.754  

1446.858  

1452.522  

1343.413  

Non 

Outlier 

1147.324  410.682  451.819  

1156.727  420.046  433.635  

1149.251  432.828  471.273  

1124.883  391.831  402.334  

1144.939  396.876  414.120  

1140.414  402.123  459.965  

1178.158  451.316  462.189  

1139.958  405.428  412.435  

1140.245  415.089  481.648  

1125.562  392.504  409.561  

︙ ︙ ︙ 

1122.143  386.898  387.610  

1136.377  388.445  395.055  

1130.218  399.143  396.042  

1144.422  400.097  401.651  

1132.543  394.745  394.483  

1183.441  417.225  427.607  

1191.415  442.389  432.783  

1205.098  440.158  449.045  

1267.289  495.216  482.794  

1408.814  607.861  553.323  
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Table 4.5: Results for  LDeSIF ˆ;  in the case of the outlier and non-outlier (Spherical model). 

 

1 Outlier 3 Outliers 5 Outliers 

 LDeSIF ˆ;   LDeSIF ˆ;   LDeSIF ˆ;  

Outlier -1958.926  

-1040.371  

  

-982.605  

  

-1039.146  

-876.300  

-745.267  

-720.075  

-626.589  

-693.806  

Non 

Outlier 

-209.252  -263.882  -265.525  

-222.505  -222.999  -252.489  

-212.984  -224.582  -238.484  

-215.135  -272.985  -223.680  

-201.808  -214.853  -255.451  

-202.845  -234.939  -219.861  

-212.050  -224.854  -279.177  

-209.727  -210.315  -231.191  

-198.865  -205.723  -236.865  

-195.021  -211.764  -255.030  

︙ ︙ ︙ 

-191.960  -204.348  -197.839  

-197.245  -208.816  -202.360  

-200.160  -200.005  -213.463  

-205.149  -199.508  -219.184  

-198.632  -212.202  -206.626  

-213.813  -217.874  -216.825  

-228.823  -221.583  -231.347  

-225.182  -222.956  -227.483  

-260.644  -250.771  -247.148  

-305.593  -288.540  -282.782  
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Table 4.6: Results for  AICDeSIF ;  in the case of the outlier and non-outlier (Spherical model). 

 

1 Outlier 3 Outliers 5 Outliers 

 AICDeSIF ;   AICDeSIF ;   AICDeSIF ;  

Outlier 3917.853  

2080.743  

  

1965.211  

  

2078.291  

1752.602  

1490.537  

1440.151  

1253.179  

1387.613  

Non 

Outlier 

418.504  527.763  531.050  

445.012  445.998  504.979  

425.968  449.164  476.967  

430.271  545.969  447.360  

403.613  429.705  510.906  

405.690  469.878  439.722  

424.100  449.707  558.353  

419.456  420.629  462.383  

397.731  411.446  473.731  

390.041  423.529  510.062  

︙ ︙ ︙ 

383.921  408.697  395.680  

394.490  417.634  404.722  

400.319  400.010  426.927  

410.297  399.016  438.368  

397.262  424.405  413.255  

427.626  435.745  433.650  

457.645  443.169  462.695  

450.366  445.912  454.968  

521.288  501.541  494.296  

611.185  577.080  565.564  
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Gaussian model 

Table 4.7: SIF s in the case of the evaluation of multiple influential observations.  

case of 3 outliers  LDeSIF ˆ;   AICDeSIF ;  

{1, 2} -3095.229  6190.458  

{1, 3} -3081.245  6162.490  

{2, 3} -2964.817  5939.981  

{1, 2, 3} -3309.833  6635.346  
   

Table 4.8: SIF s in the case of the evaluation of multiple influential observations. 

case of 5 outliers  LDeSIF ˆ;   AICDeSIF ;  

{1, 2} -599.506 1199.012 

{1, 3} -584.876 1169.752 

{1, 4} -549.517 1099.034 

{1, 5} -642.737 1285.475 

{2, 3} -627.181 1254.363 

{2, 4} -612.377 1224.756 

{2, 5} -510.083 1020.168 

{3, 4} -453.429 906.860 

{3, 5} -507.128 1014.257 

{4, 5} -320.269 640.539 

{1, 2, 3} -739.811 1479.624 

{1, 2, 4} -737.631 1475.264 

{1, 2, 5} -771.211 1542.425 

{2, 3, 4} -721.406 1442.812 

{2, 3, 5} -763.303 1526.606 

︙ ︙ ︙ 

{1, 2, 3, 4} -830.237 1660.475 

{1, 2, 3, 5} -792.444 1584.890 

{1, 2, 4, 5} -780.469 1560.939 

{1, 3, 4, 5} -793.228 1586.457 

{2, 3, 4, 5} -805.083 1610.167 

{1, 2, 3, 4, 5} -888.203  1776.407  
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Exponential model 

Table 4.9: SIF s in the case of the evaluation of multiple influential observations. 

case of 3 outliers  LDeSIF ˆ;   AICDeSIF ;  

{1, 2} -1262.089  2524.177  

{1, 3} -1147.409  2294.817  

{2, 3} -1110.905  2221.809  

{1, 2, 3} -1414.418  2828.834  
  

Table 4.10: SIF s in the case of the evaluation of multiple influential observations. 

case of 5 outliers  LDeSIF ˆ;   AICDeSIF ;  

{1, 2} -819.641 1639.283 

{1, 3} -804.195 1608.391 

{1, 4} -813.437 1626.875 

{1, 5} -790.238 1580.477 

{2, 3} -792.844 1585.689 

{2, 4} -776.822 1553.643 

{2, 5} -775.938 1551.877 

{3, 4} -733.646 1467.292 

{3, 5} -729.219 1458.440 

{4, 5} -730.569 1461.138 

{1, 2, 3} -905.583 1811.167 

{1, 2, 4} -896.455 1792.910 

{1, 2, 5} -879.090 1758.180 

{2, 3, 4} -871.668 1743.335 

{2, 3, 5} -851.052 1702.104 

︙ ︙ ︙ 

{1, 2, 3, 4} -988.596 1977.193 

{1, 2, 3, 5} -962.909 1925.817 

{1, 2, 4, 5} -974.337 1948.674 

{1, 3, 4, 5} -924.012 1848.024 

{2, 3, 4, 5} -923.020 1846.040 

{1, 2, 3, 4, 5} -1128.507 2257.013 
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Spherical model 

Table 4.11: SIF s in the case of the evaluation of multiple influential observations. 

case of 3 outliers  LDeSIF ˆ;   AICDeSIF ;  

{1, 2} -1177.918  2355.836  

{1, 3} -1165.855  2331.711  

{2, 3} -1136.960  2273.921  

{1, 2, 3} -1403.828  2807.656  
    

Table 4.12: SIF s in the case of the evaluation of multiple influential observations. 

case of 5 outliers  LDeSIF ˆ;   AICDeSIF ;  

{1, 2} -832.872  1665.744  

{1, 3} -793.049  1586.098  

{1, 4} -784.540  1569.081  

{1, 5} -819.103  1638.207  

{2, 3} -806.339  1612.680  

{2, 4} -780.239  1560.479  

{2, 5} -796.703  1593.406  

{3, 4} -800.198  1600.397  

{3, 5} -808.757  1617.515  

{4, 5} -794.171  1588.342  

{1, 2, 3} -899.321  1798.644  

{1, 2, 4} -882.913  1765.827  

{1, 2, 5} -906.797  1813.594  

{2, 3, 4} -862.908  1725.816  

{2, 3, 5} -867.170  1734.340  

︙ ︙ ︙ 

{1, 2, 3, 4} -998.206  1996.411  

{1, 2, 3, 5} -991.303  1982.605  

{1, 2, 4, 5} -971.552  1943.104  

{1, 3, 4, 5} -958.872  1917.744  

{2, 3, 4, 5} -942.635  1885.271  

{1, 2, 3, 4, 5} -1141.654  2283.309  
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5. Real Data Analysis with Outlier Detection 

5.1 Introduction 

In this chapter, we apply the proposed method to real data based on the sample 

influence functions. These sample influence functions are derived for the geostatistical 

data analysis. A real numerical example is analyzed to show the validity or usefulness 

of the proposed sample influence functions. 

 

5.2 Rainfall Data Analysis with Outlier Detection 

5.2.1  Data 

We applied the proposed method to real data. We focused on the daily maximum 

rainfall data from January 2010 to December 2012. We used a public dataset from the 

Japan Meteorological Agency website. In this chapter, we particularly considered 119 

areas of Chugoku, Japan for data selection. The data contained 119 daily maximum 

rainfall observations collected by latitude and longitude planar coordinates (see 

Figures 5.1, 5.2 and Table 5.1). 

 

Figure 5.1: Map of Japan (Chugoku) showing 119 rainfall recording locations. 
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Figure 5.2: Plot of Japan (Chugoku) showing 119 rainfall recording locations. 

 

Table 5.1: Daily maximum rainfall for the 119 areas of the Japan (Chugoku). 

NO. Station Latitude Longitude 
Daily maximum  

rainfall (mm) 

1 Imaoka 35.098 134.325 126.5 

2 Kuse 35.068 133.753 170 

3 Tsuyama 35.063 134.008 132.5 

4 Niimi 34.943 133.518 144.5 

5 Akaiwa 34.918 134.082 170.5 

6 Jinyama 34.828 133.523 249.5 

7 Fukuwatari  34.867 133.903 150 

︙ ︙ ︙ ︙ ︙ 

113 Iwakuni 34.155 132.178 123.5 

114 Yanai 33.958 132.113 109 

115 Rakanzan 34.350 132.063 145.5 

116 Wada 34.148 131.735 176 

117 Shinobu 34.303 131.577 201.5 

118 Kano  34.225 131.815 160.5 

119 Higashiatsu 34.118 131.182 207.5 
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5.2.2  Variogram Estimation  

The resulting squared-differences variogram cloud is shown in Figure 5.3. Table 

5.2 shows the values of variogram parameters in Gaussian, exponential, and spherical 

model for daily maximum rainfall data. 

       
Figure 5.3: Variogram cloud for daily maximum rainfall data (119 areas).  

 

A variogram cloud is the distribution of the variance between all pairs of point at 

all possible distances h . The variogram cloud is a diagnostic tool that can be used in 

conjunction with boxplots to look for potential outliers or trends, and to assess 

variability with increasing distance (Kaluzny et al., 1996). This variogram cloud plot 

(Figure 5.3) and four plots (Figure 5.4) show the bias of the rainfall data. Therefore, 

with this plot, we can detect the potential outliers.  
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Figure 5.4: Plot for daily maximum rainfall data (119 areas); the observation locations 

assign different colors to data in different quartiles (Top left), the data 

against the Y coordinates (Top right), the data against the X coordinates 

(Bottom left), the histogram of the observation values (Bottom right). 

 

 

Table 5.2: Variogram parameters for daily maximum rainfall data (119 areas).  

Models 

Parameters 
Gaussian  Exponential  Spherical  

Nugget 0.051 0.041 0.043 

Sill 0.091 0.129 0.099 

Range 0.842 1.181 1.762 
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5.2.3  Outlier Detection Using the Sample Influence Functions 

Table 5.3 and Table 5.4 shows the influence of a single large influential 

observation for the maximized log-likelihood and AIC  calculated from observed data 

based on SIF , respectively. From Table 5.3 and Table 5.4, we could regard the 

 ,57, 39, 32 ,12 ththndth and st81  observations as potential outliers. Table 5.5 and Table 5.6 

shows the results in terms of the influence of multiple influential observations on the 

five observations (the  ,57, 39, 32 ,12 ththndth and st81  observations).   

Table 5.3:  LDeSIF ˆ;  statistic for large influential data. 

NO. 
  Models 

Station  

Gaussian Exponential Spherical 

 LDeSIF ˆ;   LDeSIF ˆ;   LDeSIF ˆ;  

12 Mushiake -332.23 -278.76 -369.79 

32 Daisen -1385.35 -1667.31 -1667.13 

39 Ebi -269.83 -404.26 -425.4 

57 Hakuta -284.51 -351.49 -386.38 

81 Kurahashi -147.55 -207.22 -246.18 

 

Table 5.4:  AICDeSIF ;  statistic for large influential data. 

NO. 
Models 

Station 

Gaussian Exponential Spherical 

 AICDeSIF ;   AICDeSIF ;   AICDeSIF ;  

12 Mushiake 664.47 557.52 739.58 

32 Daisen 2770.69 3334.62 3334.26 

39 Ebi 539.66 808.51 850.8 

57 Hakuta 569.02 702.98 772.75 

81 Kurahashi 295.1 414.44 492.36 
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Table 5.5:  LDeSIF ˆ;  in the case of the evaluation of multiple influential observations. 

Models  

Subset of De  

Gaussian Exponential Spherical 

 LDeSIF ˆ;   LDeSIF ˆ;   LDeSIF ˆ;  

{32, 39} -782.11 -905.4 -916.59 

{32, 57} -1116.24 -1167.59 -1164.04 

{32, 12} -939.84 -1028.93 -1050.51 

{32, 81} -859.33 -1032.22 -1010.73 

{39, 57} -282.35 -370.41 -369.34 

{39, 12} -321.14 -362.78 -399.2 

{39, 81} -258.32 -348.34 -342.56 

{57, 12} -328.73 -326.18 -367.08 

{57, 81} -270.04 -295.37 -305.08 

{12, 81} -297.22 -251.34 -294.21 

{32, 39, 57} -760.87 -800.06 -805 

{32, 39, 12} -686.74 -736.11 -761.96 

{32, 39, 81} -633.27 -737.89 -733.68 

{32, 57, 12} -896.12 -926.76 -944.48 

{32, 57, 81} -835.08 -950.93 -927.26 

{32, 12, 81} -733.8 -835.57 -831.77 

{39, 57, 12} -316.32 -361.76 -379.37 

{39, 57, 81} -267 -365.97 -343.81 

{39, 12, 81} -302.17 -349.33 -362.82 

{57, 12, 81} -310.44 -304.28 -326.97 

{32, 39, 57, 12} -687.08 -711.87 -732.95 

{32, 39, 57, 81} -657.65 -728.79 -729.19 

{32, 39, 12, 81} -614.71 -665.97 -686.27 

{32, 57, 12, 81} -768.75 -843.12 -851.34 

{39, 57, 12, 81} -317.05 -371.41 -378.48 

{32, 39, 57, 12, 81} -618.88 -687.69 -694.49 
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Table 5.6:  AICDeSIF ;  in the case of the evaluation of multiple influential observations. 

Models  

Subset of De  

Gaussian Exponential Spherical 

 AICDeSIF ;   AICDeSIF ;   AICDeSIF ;  

{32, 39} 1564.23 1810.8 1833.18 

{32, 57} 2232.49 2335.19 2328.08 

{32, 12} 1879.67 2057.87 2101.01 

{32, 81} 1718.67 2064.44 2021.47 

{39, 57} 564.7 740.83 738.68 

{39, 12} 642.28 725.56 798.4 

{39, 81} 516.64 696.68 685.12 

{57, 12} 657.47 652.36 734.16 

{57, 81} 540.08 590.74 610.16 

{12, 81} 594.44 502.67 588.42 

{32, 39, 57} 1521.75 1600.13 1610 

{32, 39, 12} 1373.48 1472.22 1523.93 

{32, 39, 81} 1266.54 1475.77 1467.36 

{32, 57, 12} 1792.24 1853.52 1888.97 

{32, 57, 81} 1670.16 1901.86 1854.51 

{32, 12, 81} 1467.6 1671.15 1663.53 

{39, 57, 12} 632.64 723.52 758.75 

{39, 57, 81} 534.01 731.94 687.63 

{39, 12, 81} 604.34 698.66 725.64 

{57, 12, 81} 620.88 608.55 653.94 

{32, 39, 57, 12} 1374.17 1423.74 1465.91 

{32, 39, 57, 81} 1285.28 1457.57 1437.45 

{32, 39, 12, 81} 1199.39 1331.94 1351.6 

{32, 57, 12, 81} 1507.47 1686.24 1681.75 

{39, 57, 12, 81} 604.07 742.83 736.03 

{32, 39, 57, 12, 81} 1237.75 1375.38 1388.98 
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5.2.4  Variogram Estimation and Outlier  

Based on the value of the SIF s in Table 5.3 to Table 5.6, we can see that the nd32  

observation corresponds to a large influential outlier. We show the variogram cloud 

with four plots by removing the nd32  observation that is an outlier (see Figures 5.5, 

5.6).  

 

 

Figure 5.5: Variogram cloud for daily maximum rainfall data (118 areas).  
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Figure 5.6: Plot for daily maximum rainfall data (118 areas); the observation locations 

assign different colors to data in different quartiles (Top left), the data 

against the Y coordinates (Top right), the data against the X coordinates 

(Bottom left), the histogram of the observation values (Bottom right). 
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When we deleted the nd32  observation for the target dataset, we got results of the 

variogram parameters in the three models as Table 5.7. 

 

Table 5.7: Variogram parameters for daily maximum rainfall data (118 areas). 

Models 

Parameters 
Gaussian  Exponential  Spherical  

Nugget 0.045 0.039 0.038 

Sill 0.081 0.127 0.087 

Range 0.906 1.551 1.854 

 

5.2.5  Results of Kriging 

We carried out a kriging to investigate the influence of the outliers. To perform 

the comparison of the kriging prediction before the deletion of the nd32  observation 

and that of the kriging after deletion of the observation, we used the mean squared 

errors (MSE). 

,)ˆ(
1

1

2*




n

i
ii ZZ

n
MSE  

where *ˆ
iZ  and iZ  represent the predicted and observed values, respectively. 

The results of the three comparisons are shown in Table 5.8. Based on these 

results, we removed the nd32  observation and enhanced the performance of the 

prediction in terms of the kriging method from the point of view of MSE . 

 

Table 5.8: Results of MSE  for kriging.  

Areas 

Models 

Before removed  

outliers (119 areas) 

After removed  

outliers (118 areas) 

Gaussian 0.0508 0.0492 

Exponential 0.0525 0.0487 

Spherical 0.0508 0.0462 
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6. Conclusions 

The variogram plays a central role when analyzing spatial data. A valid 

variogram model must first be selected, and the parameters of the model estimated 

before kriging (spatial prediction) is performed. In this paper, we focused on the 

number of lag and the outlier detection. 

The firstly, we examined the performance of a variogram estimator in spatial 

models, focusing on a piecewise constant estimator for an isotropic variogram. We 

proposed a method for selecting the optimal number for the estimator using 

leave-one-out cross-validation (LOOCV) and Akaike information criterion (AIC) in the 

geostatistical data analysis. The usefulness of the proposed method was illustrated 

through a simulation study. Moreover, we compared the estimated parameters of the 

variogram models based on ordinary least square method with that based on maximum 

likelihood estimation.  

Each estimation method, we investigated prediction performance with 

exponential and spherical models. As a result, the parameter estimation methods 

based on maximum likelihood estimation gave a better performance than ordinary 

least square method from the point of view of leave-one-out cross-validation (LOOCV). 

In the future, we have to apply our method for finding the optimal number of lag to 

many real geostatistical data analysis. 

Secondly, we focused on an outlier detection approach based on the maximum 

likelihood method and the Akaike information criterion (AIC) with the sample 

influence functions (SIF). In the simulation study, we artificially generated a few of 

large influential data as outliers (single and multiple influential observations). Under 

this condition, we could detect outliers based on our proposed procedure. Moreover, in 

the case study of the daily maximum rainfall data, we could also detect outliers 

through our method.  

In both studies, by comparing the value of mean squared errors (MSE) before 

deleting outliers with that of mean squared errors (MSE) after deleting outliers, we 

investigated the performance of the prediction in Gaussian, exponential, and spherical 
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models. We then gave the zero weight to the detected outliers and confirmed that the 

performance of the prediction on the kriging method was improved from the point of 

view of mean squared errors (MSE). Through a simulation study and case study, we 

were able to confirm the usefulness of our proposed method. In the future, to validate 

the performance of our method in details, we will have to perform additional 

simulation studies. Also, we need to apply our approach for detecting outliers to other 

real geostatistical data analyses. 
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Appendix  

A.  Data 

: Daily maximum rainfall for the 119 areas of the Japan (Chugoku district). 

NO. Station Latitude Longitude 
Daily maximum  

rainfall (mm) 

1 Imaoka 35.098  134.325  126.5 

2 Kuse 35.068  133.753  170 

3 Tsuyama 35.063  134.008  132.5 

4 Niimi 34.943  133.518  144.5 

5 Akaiwa 34.918  134.082  170.5 

6 Jinyama 34.828  133.523  249.5 

7 Fukuwatari  34.867  133.903  150 

8 Wake  34.815  134.183  119 

9 Saya 34.685  133.445  171.5 

10 Yakage 34.617  133.618  174.5 

11 Okayama 34.660  133.917  187 

12 Mushiake 34.682  134.207  260.5 

13 Kurashiki 34.590  133.768  183.5 

14 Tamano 34.487  133.950  127.5 

15 Kasaoka 34.502  133.495  122 

16 Shimoazae 34.965  133.628  183 

17 Takaha 34.792  133.610  179.5 

18 Nagi 35.112  134.170  115.5 

19 Kaminagata 35.297  133.725  204.5 

20 Chiya 35.103  133.435  156.5 

21 Onbara 35.300  133.987  266 

22 Nichioji 34.757  133.855  164 

23 Tomi 35.178  133.805  216 

24 Kibichuo 34.817  133.705  207.5 
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25 Asahinishi 34.962  133.812  157 

26 Sakai  35.543  133.235  92.5 

27 Aoya 35.520  133.997  163 

28 Tottori  35.487  134.238  126 

29 Iwai  35.558  134.360  225.5 

30 Yonago 35.433  133.338  119.5 

31 Kurayoshi 35.473  133.838  195 

32 Daisen 35.388  133.537  524 

33 Chizu 35.263  134.240  244.5 

34 Sekigane 35.378  133.757  234 

35 Wakasa 35.333  134.405  191 

36 Shiotsu 35.523  133.567  135 

37 Chaya 35.187  133.230  126 

38 Saji 35.328  134.113  284.5 

39 Ebi 35.288  133.483  105.5 

40 Shikano 35.413  134.017  316 

41 Koyama 35.530  134.165  112 

42 Kashima 35.520  133.022  93.5 

43 Hikawa 35.413  132.890  104.5 

44 Matsue 35.457  133.065  92 

45 Daito 35.318  132.965  86.5 

46 Ota 35.190  132.497  104 

47 Kakeya 35.197  132.815  115.5 

48 Yokota 35.173  133.103  113.5 

49 Kawamoto 34.977  132.492  103 

50 Hamada 34.897  132.070  114 

51 Misumi  34.788  131.958  102 

52 Masuda 34.677  131.843  113 

53 Tsuwano 34.462  131.770  157 

54 Sada 35.222  132.723  126.5 

55 Sakurae 34.953  132.333  139.5 

56 Mizuho 34.853  132.530  90.5 
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57 Hakuta 35.350  133.273  241 

58 Haza 34.780  132.197  102.5 

59 Hikimi 34.572  132.017  138.5 

60 Izumo 35.332  132.730  104 

61 Akana 35.002  132.712  113 

62 Yasaka 34.777  132.108  114 

63 Fukumitsu 35.070  132.333  87 

64 Takatsu 34.675  131.790  96.5 

65 Yoshika 34.392  131.893  155.5 

66 Dogoyama 35.057  133.188  191 

67 Miyoshi 34.812  132.850  123.5 

68 Shobara 34.860  133.023  134.5 

69 Oasa 34.768  132.463  110 

70 Kake 34.610  132.320  132 

71 Joge 34.693  133.117  91 

72 Uchiguroyama 34.597  132.177  171.5 

73 Sera 34.583  133.050  114 

74 Higashihiroshima 34.417  132.700  99.5 

75 Fukuyama 34.447  133.247  75.5 

76 Hiroshima 34.398  132.462  123.5 

77 Takehara 34.330  132.982  80.5 

78 Ikuchishima  34.278  133.123  83.5 

79 Otake  34.222  132.220  131 

80 Kure 34.240  132.550  109.5 

81 Kurahashi 34.550  132.293  86.5 

82 Takano 35.033  132.902  117.5 

83 Dongcheng 34.895  133.277  129 

84 Koda  34.695  132.760  137 

85 Miiri 34.545  132.530  135.5 

86 Fuchu 34.562  133.232  75.5 

87 Shiwa 34.498  132.660  124.5 

88 Odomari 34.698  132.312  153 
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89 Yawata 34.708  132.173  139 

90 Yuki  34.763  133.278  146.5 

91 Hatsukaichitsuda 34.365  132.190  140 

92 Hongo 34.435  132.918  122.5 

93 Saekiyuki 34.498  132.290  155.5 

94 Tsushimi 34.647  132.440  184.5 

95 Kimita 34.928  132.830  102 

96 Midori 34.722  132.655  111 

97 Asuka 34.567  132.838  110.5 

98 Kuresikamagari 34.165  132.748  81.5 

99 Susa 34.615  131.623  107 

100 Hagi 34.410  131.405  155 

101 Tokusa 34.398  131.725  179.5 

102 Akiyoshidai 34.235  131.307  234 

103 Hirose  34.262  131.952  145 

104 Toyota  34.187  131.073  196 

105 Yamaguchi 34.160  131.455  171 

106 Hofu 34.040  131.533  141.5 

107 Kudamatsu 34.020  131.873  145.5 

108 Shimonoseki 33.948  130.925  174 

109 Ube 33.930  131.278  157 

110 Agenosho  33.903  132.293  117 

111 Kuga 34.095  132.075  142 

112 Yuya 34.370  131.055  158.5 

113 Iwakuni 34.155  132.178  123.5 

114 Yanai 33.958  132.113  109 

115 Rakanzan 34.350  132.063  145.5 

116 Wada 34.148  131.735  176 

117 Shinobu 34.303  131.577  201.5 

118 Kano  34.225  131.815  160.5 

119 Higashiatsu 34.118  131.182  207.5 
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B.  Results of the SIF statistic. 

B.1  Sample influence function for the maximum likelihood method. 

NO. Station 
Gaussian Exponential Spherical 

 LDeSIF ˆ;   LDeSIF ˆ;   LDeSIF ˆ;  

1 Imaoka -16.40  -19.57  -37.44  

2 Kuse 31.01  47.84  -0.50  

3 Tsuyama -69.88  -22.34  -33.62  

4 Niimi 16.77  13.12  19.16  

5 Akaiwa 53.07  40.48  48.87  

6 Jinyama -144.59  -128.32  -137.01  

7 Fukuwatari  22.49  40.62  -9.20  

8 Wake  -49.32  -75.95  -79.18  

9 Saya 10.64  23.48  -22.09  

10 Yakage 25.63  41.44  35.24  

11 Okayama 32.41  32.52  32.83  

12 Mushiake -332.23  -278.76  -369.79  

13 Kurashiki 22.15  31.55  27.54  

14 Tamano -6.51  -12.06  -5.50  

15 Kasaoka 48.44  42.17  45.09  

16 Shimoazae 54.68  52.90  53.56  

17 Takaha 49.10  55.76  55.26  

18 Nagi -135.26  -110.66  -132.14  

19 Kaminagata 54.14  53.67  54.13  

20 Chiya 44.41  49.58  49.82  

21 Onbara -43.35  -9.94  -16.71  

22 Nichioji 52.35  52.55  52.74  

23 Tomi 49.82  39.44  41.76  

24 Kibichuo 22.28  24.34  22.22  

25 Asahinishi 18.47  42.63  36.11  

26 Sakai  -61.65  -58.46  -68.03  
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27 Aoya 17.25  20.41  16.86  

28 Tottori  -89.42  -71.21  -86.23  

29 Iwai  -71.62  -89.37  -157.32  

30 Yonago 6.85  -10.88  -5.01  

31 Kurayoshi 51.45  50.10  50.94  

32 Daisen -1385.35  -1667.31  -1667.13  

33 Chizu -81.69  -64.66  -117.31  

34 Sekigane 29.64  35.51  31.60  

35 Wakasa 16.72  32.74  -25.91  

36 Shiotsu -29.28  -71.65  -54.25  

37 Chaya 39.14  33.37  37.04  

38 Saji -140.74  -93.42  -139.03  

39 Ebi -269.83  -404.26  -425.40  

40 Shikano -205.73  -181.48  -182.42  

41 Koyama -238.06  -183.80  -209.12  

42 Kashima 29.69  34.34  31.04  

43 Hikawa 51.08  51.07  52.19  

44 Matsue 8.74  21.81  14.48  

45 Daito -10.17  -10.28  -13.11  

46 Ota 49.51  45.85  48.32  

47 Kakeya 48.57  51.91  51.77  

48 Yokota 40.82  36.49  34.24  

49 Kawamoto 43.39  49.24  4.72  

50 Hamada 50.52  49.65  50.96  

51 Misumi  31.69  31.82  24.37  

52 Masuda 41.97  51.67  46.42  

53 Tsuwano 46.62  48.88  50.27  

54 Sada 13.30  27.08  21.78  

55 Sakurae 5.07  -15.55  -11.60  

56 Mizuho -26.51  -8.67  -8.10  

57 Hakuta -284.51  -351.49  -386.38  

58 Haza 24.50  15.37  21.65  
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59 Hikimi 53.24  50.82  52.25  

60 Izumo 50.04  48.29  50.24  

61 Akana 54.32  51.89  52.98  

62 Yasaka 51.66  53.31  7.32  

63 Fukumitsu -8.91  -19.15  -5.47  

64 Takatsu -26.25  -7.55  -25.47  

65 Yoshika 50.37  51.15  51.16  

66 Dogoyama -66.94  -83.66  -76.00  

67 Miyoshi 49.66  49.38  49.82  

68 Shobara 40.60  38.27  39.60  

69 Oasa 42.86  43.16  -1.89  

70 Kake 55.27  58.03  56.90  

71 Joge -10.49  -4.55  -11.23  

72 Uchiguroyama -21.40  -24.63  -64.61  

73 Sera 48.33  40.37  45.27  

74 Higashihiroshima 44.95  37.99  41.64  

75 Fukuyama -65.96  -37.47  -49.66  

76 Hiroshima 54.13  51.80  52.74  

77 Takehara 26.81  11.21  14.48  

78 Ikuchishima  37.89  29.59  32.02  

79 Otake  53.44  53.30  53.49  

80 Kure 50.45  47.63  49.47  

81 Kurahashi -147.55  -207.22  -246.18  

82 Takano 54.04  52.46  53.32  

83 Dongcheng 43.47  37.17  36.88  

84 Koda  20.88  22.69  21.16  

85 Miiri 44.29  48.13  44.96  

86 Fuchu -118.33  -77.95  -94.43  

87 Shiwa 46.21  48.60  45.09  

88 Odomari 15.83  20.41  -24.29  

89 Yawata 43.31  46.18  44.01  

90 Yuki  42.77  36.11  39.35  
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91 Hatsukaichitsuda 54.26  52.44  52.65  

92 Hongo -0.16  5.31  3.22  

93 Saekiyuki 28.15  13.42  15.15  

94 Tsushimi -104.41  -107.22  -111.42  

95 Kimita 36.69  33.74  32.26  

96 Midori 50.03  47.67  50.41  

97 Asuka 53.81  52.38  53.55  

98 Kuresikamagari 5.53  -14.37  -46.59  

99 Susa -11.24  -8.98  -21.79  

100 Hagi 46.37  41.88  41.95  

101 Tokusa 21.54  28.96  -16.35  

102 Akiyoshidai -33.61  -36.91  -39.93  

103 Hirose  54.14  53.23  53.57  

104 Toyota  37.63  37.76  -6.08  

105 Yamaguchi 51.47  50.91  51.63  

106 Hofu 10.52  19.93  13.41  

107 Kudamatsu 50.01  47.42  48.33  

108 Shimonoseki 35.36  33.74  35.23  

109 Ube 33.04  36.36  32.34  

110 Agenosho  43.27  41.02  43.35  

111 Kuga 51.28  47.58  49.33  

112 Yuya 34.85  35.74  35.42  

113 Iwakuni 47.02  50.72  48.46  

114 Yanai 14.14  15.22  -31.25  

115 Rakanzan 54.13  52.85  53.23  

116 Wada 41.82  40.61  -2.67  

117 Shinobu 7.02  8.47  -33.27  

118 Kano  52.49  53.41  53.79  

119 Higashiatsu 28.17  28.96  27.94  
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B.2  Sample influence function for the Akaike information criterion. 

NO. Station 
Gaussian Exponential Spherical 

 AICDeSIF ;   AICDeSIF ;   AICDeSIF ;  

1 Imaoka 32.80  39.14  74.89  

2 Kuse -62.02  -95.69  1.00  

3 Tsuyama 139.77  44.68  67.24  

4 Niimi -33.54  -26.24  -38.32  

5 Akaiwa -106.14  -80.96  -97.75  

6 Jinyama 289.19  256.63  274.01  

7 Fukuwatari  -44.98  -81.23  18.39  

8 Wake  98.65  151.91  158.36  

9 Saya -21.28  -46.96  44.19  

10 Yakage -51.26  -82.87  -70.49  

11 Okayama -64.81  -65.05  -65.66  

12 Mushiake 664.47  557.52  739.58  

13 Kurashiki -44.29  -63.10  -55.08  

14 Tamano 13.03  24.13  10.99  

15 Kasaoka -96.87  -84.33  -90.17  

16 Shimoazae -109.35  -105.81  -107.12  

17 Takaha -98.20  -111.52  -110.53  

18 Nagi 270.52  221.33  264.29  

19 Kaminagata -108.28  -107.34  -108.25  

20 Chiya -88.82  -99.16  -99.64  

21 Onbara 86.71  19.87  33.41  

22 Nichioji -104.70  -105.11  -105.48  

23 Tomi -99.63  -78.89  -83.53  

24 Kibichuo -44.56  -48.68  -44.44  

25 Asahinishi -36.94  -85.26  -72.23  

26 Sakai  123.30  116.91  136.06  

27 Aoya -34.50  -40.81  -33.72  

28 Tottori  178.84  142.41  172.45  
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29 Iwai  143.23  178.75  314.65  

30 Yonago -13.70  21.77  10.02  

31 Kurayoshi -102.90  -100.19  -101.89  

32 Daisen 2770.69  3334.62  3334.26  

33 Chizu 163.39  129.31  234.62  

34 Sekigane -59.28  -71.02  -63.20  

35 Wakasa -33.44  -65.48  51.81  

36 Shiotsu 58.56  143.30  108.49  

37 Chaya -78.27  -66.73  -74.08  

38 Saji 281.48  186.84  278.06  

39 Ebi 539.66  808.51  850.80  

40 Shikano 411.45  362.97  364.84  

41 Koyama 476.12  367.61  418.23  

42 Kashima -59.38  -68.68  -62.09  

43 Hikawa -102.15  -102.14  -104.38  

44 Matsue -17.47  -43.62  -28.96  

45 Daito 20.34  20.56  26.21  

46 Ota -99.02  -91.71  -96.64  

47 Kakeya -97.13  -103.81  -103.54  

48 Yokota -81.64  -72.99  -68.48  

49 Kawamoto -86.77  -98.48  -9.44  

50 Hamada -101.04  -99.30  -101.93  

51 Misumi  -63.38  -63.64  -48.75  

52 Masuda -83.95  -103.34  -92.83  

53 Tsuwano -93.24  -97.76  -100.53  

54 Sada -26.60  -54.15  -43.55  

55 Sakurae -10.14  31.09  23.20  

56 Mizuho 53.02  17.33  16.20  

57 Hakuta 569.02  702.98  772.75  

58 Haza -48.99  -30.74  -43.30  

59 Hikimi -106.48  -101.65  -104.50  

60 Izumo -100.08  -96.58  -100.48  
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61 Akana -108.64  -103.77  -105.97  

62 Yasaka -103.33  -106.63  -14.64  

63 Fukumitsu 17.81  38.30  10.94  

64 Takatsu 52.49  15.09  50.94  

65 Yoshika -100.74  -102.30  -102.32  

66 Dogoyama 133.88  167.32  152.00  

67 Miyoshi -99.31  -98.75  -99.64  

68 Shobara -81.20  -76.55  -79.21  

69 Oasa -85.71  -86.31  3.79  

70 Kake -110.53  -116.06  -113.80  

71 Joge 20.97  9.10  22.45  

72 Uchiguroyama 42.80  49.26  129.21  

73 Sera -96.65  -80.74  -90.55  

74 Higashihiroshima -89.90  -75.98  -83.29  

75 Fukuyama 131.92  74.94  99.33  

76 Hiroshima -108.26  -103.61  -105.47  

77 Takehara -53.62  -22.41  -28.97  

78 Ikuchishima  -75.78  -59.18  -64.04  

79 Otake  -106.87  -106.61  -106.98  

80 Kure -100.90  -95.25  -98.94  

81 Kurahashi 295.10  414.44  492.36  

82 Takano -108.07  -104.92  -106.65  

83 Dongcheng -86.94  -74.34  -73.76  

84 Koda  -41.76  -45.39  -42.32  

85 Miiri -88.58  -96.26  -89.92  

86 Fuchu 236.66  155.90  188.85  

87 Shiwa -92.43  -97.19  -90.18  

88 Odomari -31.66  -40.82  48.58  

89 Yawata -86.62  -92.36  -88.01  

90 Yuki  -85.54  -72.22  -78.69  

91 Hatsukaichitsuda -108.51  -104.88  -105.31  

92 Hongo 0.32  -10.62  -6.44  
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93 Saekiyuki -56.29  -26.85  -30.30  

94 Tsushimi 208.81  214.44  222.83  

95 Kimita -73.39  -67.47  -64.52  

96 Midori -100.06  -95.34  -100.82  

97 Asuka -107.61  -104.75  -107.10  

98 Kuresikamagari -11.06  28.74  93.18  

99 Susa 22.48  17.96  43.57  

100 Hagi -92.74  -83.77  -83.90  

101 Tokusa -43.09  -57.93  32.71  

102 Akiyoshidai 67.23  73.83  79.85  

103 Hirose  -108.29  -106.47  -107.15  

104 Toyota  -75.26  -75.52  12.16  

105 Yamaguchi -102.94  -101.82  -103.27  

106 Hofu -21.04  -39.85  -26.82  

107 Kudamatsu -100.01  -94.83  -96.66  

108 Shimonoseki -70.72  -67.47  -70.46  

109 Ube -66.07  -72.72  -64.69  

110 Agenosho  -86.54  -82.04  -86.71  

111 Kuga -102.57  -95.17  -98.65  

112 Yuya -69.69  -71.49  -70.84  

113 Iwakuni -94.03  -101.43  -96.92  

114 Yanai -28.28  -30.44  62.50  

115 Rakanzan -108.26  -105.70  -106.47  

116 Wada -83.64  -81.22  5.34  

117 Shinobu -14.03  -16.94  66.54  

118 Kano  -104.97  -106.82  -107.58  

119 Higashiatsu -56.34  -57.93  -55.88  
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