
Abstract 

Background & Aim: Runt-related transcription factor 3 (RUNX3) is a tumor suppressor gene 

that is expressed in gastric and other cancers including pancreatic cancer. However, the 

precise function of RUNX3 in pancreatic cancer has not been fully elucidated. In this study, 

we aimed to determine the effect of decreased RUNX3 expression in pancreatic cancer. 

Methods: This study included 36 patients with primary pancreatic cancer, who had 

undergone pancreaticoduodenectomy. All patients were treated with 1000 mg/m
2
 gemcitabine 

after the surgery. The pancreatic cancer cell lines PANC-1, MIAPaCa-2, BxPC-3, SUIT-2, 

and KLM-1 were used for immunoblotting analysis of RUNX3 and multidrug resistance 

protein (MRP) expressions. Ectopic RUNX3 expression was achieved by cDNA transfection 

of the cells, and small interfering RNA (siRNA) against RUNX3 was used to knock down 

endogenous RUNX3. Cell growth in the presence of gemcitabine was assessed using the 

MTT assay. 

Results: Patients with RUNX3-positive and RUNX3-negative pancreatic cancer had a 

median survival of 1006 and 643 days, respectively. Exogenous RUNX3 expression reduced 

the expression of MRP1, MRP2, and MRP5 in endogenous RUNX3-negative cells, whereas 

RUNX3 siRNA increased the expressions of these genes in endogenous RUNX3-positive 

cells. Exogenous RUNX3 expression decreased gemcitabine IC50 in RUNX3-negative cells. 

Conclusion: Loss of RUNX3 expression contributes to gemcitabine resistance by inducing 

MRP expression, thereby resulting in poor patient survival. 
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Abstract 
 
Background & Aim: Runt-related transcription factor 3 (RUNX3) is a tumor suppressor 
gene that is expressed in gastric and other cancers including pancreatic cancer. 
However, the precise function of RUNX3 in pancreatic cancer has not been fully 
elucidated. In this study, we aimed to determine the effect of decreased RUNX3 
expression in pancreatic cancer. 
Methods: This study included 36 patients with primary pancreatic cancer, who had 
undergone pancreaticoduodenectomy. All patients were treated with 1000 mg/m2 
gemcitabine after the surgery. The pancreatic cancer cell lines PANC-1, MIAPaCa-2, 
BxPC-3, SUIT-2, and KLM-1 were used for immunoblotting analysis of RUNX3 and 
multidrug resistance protein (MRP) expressions. Ectopic RUNX3 expression was 
achieved by cDNA transfection of the cells, and small interfering RNA (siRNA) against 
RUNX3 was used to knock down endogenous RUNX3. Cell growth in the presence of 
gemcitabine was assessed using the MTT assay. 
Results: Patients with RUNX3-high and RUNX3-low pancreatic cancer had a median 
survival of 1322 and 627 days, respectively. Exogenous RUNX3 expression reduced the 
expression of MRP1, MRP2, and MRP5 in endogenous RUNX3-negative cells, whereas 
RUNX3 siRNA increased the expressions of these genes in endogenous RUNX3-positive 
cells. Exogenous RUNX3 expression decreased gemcitabine IC50 in RUNX3-negative 
cells. 
Conclusion: Loss of RUNX3 expression contributes to gemcitabine resistance by 
inducing MRP expression, thereby resulting in poor patient survival. 
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1. Introduction 

Although pancreatic cancer has a low incidence rate of approximately 20 cases per 100,000 

persons annually (Jemal et al., 2010), it is one of the most fatal cancers. In recent years, the 

outcome of patients with pancreatic cancer has improved following introduction of gemcitabine 

as standard therapy; however, the prognosis remains poor (Hidalgo, 2010).  

Pancreatic cancer is often diagnosed at an advanced stage because of the lack of biomarkers 

for early detection. To date, there is no effective therapy for pancreatic cancer. The development 

of drug resistance presents a major problem in gemcitabine chemotherapy for pancreatic cancer, 

and elucidating the underlying molecular mechanisms of drug resistance would facilitate 

development of more effective therapeutic strategies (Arumugam et al., 2009). 

One of the various molecular mechanisms postulated to underlie drug resistance in pancreatic 

cancer is decreased accumulation of anticancer drugs in cancer cells due to increased drug efflux 

(Bergman et al., 2003). Members of the ATP-binding cassette (ABC) transporter superfamily are 

the major proteins involved in drug efflux (Dean et al., 2001). Multidrug resistance protein 

(MRP) 2, an ABC transporter, seems to play an important role in sensitivity to 

gemcitabine–cisplatin combination therapy in pancreatic cancer (Tanaka et al., 2011). Previous 

reports showed that MRP expression contributes in predicting the efficacy of chemotherapy 

(Konig et al., 2005). MRPs were upregulated in 5-fluorouracil (5-FU)-resistant cancer cells and 



4 

 

MRP5 expression influenced 5-FU resistance in pancreatic carcinoma cells (Hagmann et al., 

2009). Furthermore, a study showed a significant association between MRP5 and gemcitabine 

sensitivity in lung cancer (Oguri et al., 2006). 

The pathogenesis of pancreatic ductal adenocarcinoma is induced by alteration in genes 

including K-ras, p53, p16, and smad4 (Efthimiou et al., 2001; Giovannetti et al., 2006; Jaffee et 

al., 2002; Jones et al., 2008; Kern et al., 2002; Maitra and Hruban, 2008; Mimeault et al., 2005). 

K-ras mutation is common in human pancreatic cancer (Giovannetti et al., 2006), and the 

transforming growth factor- (TGF-) signaling pathway is an important tumor-suppressing 

signal (Nomoto et al., 2008; Subramaniam et al., 2009). The human runt-related transcription 

factor 3 (RUNX3) gene, a tumor suppressor gene expressed in gastric cancers (Efthimiou et al., 

2001), regulates cell growth and apoptosis as a downstream effector of TGF- signaling 

(Subramaniam et al., 2009). Previous reports showed that silencing mechanisms such as loss of 

heterozygosity and gene promoter hypermethylation result in loss of RUNX3 function (Bae and 

Choi, 2004; Li et al., 2002; Nomoto et al., 2008; Wada et al., 2004) and that RUNX3 expression 

is correlated with clinicopathological variables in pancreatic cancer (Li et al., 2004; Nomoto et 

al., 2008; Subramaniam et al., 2009). In this study, we investigated the correlation of RUNX3 

expression with survival and gemcitabine sensitivity in human pancreatic cancer.  
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2. Materials and Methods 

2.1. Patients 

Thirty-six patients with primary pancreatic cancer, who underwent pancreaticoduodenectomy 

at the Okayama University Hospital, Okayama, Japan, between March 2004 and May 2009, were 

enrolled in this study. The patients received adjuvant chemotherapy after resection. Gemcitabine 

(Eli Lilly Co., Indianapolis, IN) was administrated at a starting dose of 1000 mg/m
2
 by a 30-min 

intravenous infusion weekly for 3 out of 4 weeks. Pancreatic tissue samples were obtained from 

all patients after obtaining their informed consent as per institutional guidelines, and the study 

was approved by the Research Ethics Committee of Okayama University. For pathological tumor 

staging, we used the TNM classification system (Union for International Cancer Control 

[UICC]). 

 

2.2. Pancreatic cancer tissue and immunohistochemistry 

Pancreatic cancer and adjacent tissues were used in the analysis. None of the patients received 

chemotherapy before surgery.  

Immunohistochemistry was performed on formalin-fixed paraffin-embedded sections. The 

sections were dewaxed and dehydrated. After rehydration, endogenous peroxidase activity was 

blocked for 30 min in a methanol solution containing 0.3% hydrogen peroxide. After antigen 

file:///C:/Documents%20and%20Settings/Hidenori%20Shiraha/My%20Documents/Downloads/松尾先生論文.pdf
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retrieval in citrate buffer, the sections were blocked overnight at 4°C, and then probed with 

anti-RUNX3 antibody (Abcam, Cambridge, MA). The primary antibody was detected with a 

biotinylated anti-mouse antibody (Dako Japan, Tokyo, Japan). The signal was amplified via 

avidin–biotin complex formation and developed using diaminobenzidine. The sections were 

counterstained with hematoxylin and independently examined by 2 observers (T.T. and K.I.) 

blinded to the study. All discrepancies in RUNX3 expression evaluation were reviewed, and a 

consensus was reached. The cutoff for positive staining was set at 30% according to Li et al 

(2004). The staining grade was defined as low or high. Samples showing negative or <30% 

staining were categorized as the low-staining group, and samples with ≥30% staining area were 

categorized as the high-staining group. To exclude misleading evaluation for nonspecific staining, 

we counted cells showing sharply defined staining as positive. 

 

2.3. Gene expression profiling analysis in human pancreatic cancer 

Correlations between the expressions of RUNX3 and MRPs were assessed using publicly 

available pancreatic cancer data sets from Oncomine (http://www.oncomine.org). Briefly, the 

mRNA expression profiles for RUNX3, MRP1, MRP2, and MRP5 were evaluated using 

RUNX3/234928_x_at, RUNX3/IMAGE:291478, MRP1/202804_at, MRP2/IMAGE:196387, 

and MRP5/226363_at, respectively. 
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2.4. Statistical analysis 

Correlations between RUNX3 expression and clinicopathological variables were analyzed 

using the 2
 test. Survival rates were calculated by the Kaplan–Meier method, and survival 

curves were compared using the log-rank test. A Cox proportional hazard model was used to 

assess the influence of each variable on survival. For in vitro studies, each experiment was 

performed independently at least twice with similar results. The data were compared using 

Student’s t-test. The JMP software (SAS Institute Inc., Cary, NC) was used for the analyses. A P 

value of 0.05 was considered statistically significant. 

  

2.5. Cell lines and cell culture 

The human pancreatic cancer cell lines PANC-1, MIAPaCa-2, and BxPC-3 were obtained 

from DS Pharma Biochemical Co., Ltd. (Osaka, Japan); SUIT-2 from the Japanese Collection of 

Research Bioresources (Tokyo, Japan); and KLM-1 from the Cell Resource Center of the 

Biomedical Research Institute of Development, Aging, and Cancer at Tohoku University (Sendai, 

Japan). PANC-1 and MIAPaCa-2 were maintained in Dulbecco's modified Eagle medium 

(Invitrogen, Carlsbad, CA), and BxPC-3, SUIT-2, and KLM-1 were maintained in RPMI 1640 

(Sigma, St. Louis, MO). The media were supplemented with 10% heat-inactivated fetal bovine 

file:///C:/Documents%20and%20Settings/Hidenori%20Shiraha/My%20Documents/Downloads/40.full.pdf
file:///C:/Documents%20and%20Settings/Hidenori%20Shiraha/My%20Documents/Downloads/松尾先生論文.pdf
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serum (FBS) (Sigma), 1% nonessential amino acids (Sigma), 1% sodium pyruvate (Sigma), and 

1% penicillin/streptomycin solution (Sigma). Cells were cultured at 37°C in a humidified 

atmosphere of 5% CO2 and 95% air. Before the experiment, cells were quiesced at subconfluence 

under restricted serum conditions by using 0.1% dialyzed FBS for 24 h. 

 

2.6. Ectopic RUNX3 expression 

A human RUNX3 construct was obtained by reverse transcriptase-PCR-based cloning of a 

normal human hepatocyte (Sanko Junyaku, Co. Ltd., Tokyo, Japan) (Nakanishi et al., 2011). 

Human RUNX3 and/or chloramphenicol acetyltransferase (CAT) (mock) constructs were 

transfected into PANC-1, MIAPaCa-2, and BxPC-3 by using FuGENE
TM

 6 transfection reagent 

(Roche Diagnostics, Basel, Switzerland). At least 2 independent transfections were performed for 

each cell line. The cells were incubated under serum-starved conditions for 24 h and used for the 

following experiments.  

 

2.7. Immunoblot analysis 

Cells were plated into 6-well tissue culture plastic dishes and grown to confluence. Next, the 

cells were washed twice with cold phosphate-buffered saline (PBS) and lysed with 150 μL of 

sample buffer (100 mM Tris-HCl [pH 6.8], 10% glycerol, 4% sodium dodecyl sulfate [SDS], 1% 

file:///C:/Documents%20and%20Settings/Hidenori%20Shiraha/My%20Documents/Downloads/松尾先生論文.pdf
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bromophenol blue, 10% β-mercaptoethanol). The samples were resolved using 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto Immobilon-P
TM

 

membranes (Millipore Corporation, Bedford, MA). The membranes were blocked with the 

Tris-buffered saline with Tween 20 (Sigma) (TBS-T) buffer containing 1% bovine serum 

albumin for 1 h, and then incubated overnight with antibodies against RUNX3 (Abcam), MRP1 

(Abcam), MRP2 (Abcam), MRP5 (Sigma), and α-actin (Sigma) at 4°C. The membranes were 

washed 3 times with TBS-T, probed with horseradish peroxidase-conjugated secondary antibody, 

and developed by enhanced chemiluminescence using an ECL Western Blotting Detection 

System (GE Healthcare, Buckinghamshire, UK). 

 

2.8. MTT assay 

Cell proliferation was assessed using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl 

tetrazolium bromide) assay. Briefly, cells were grown in 96-well plastic tissue culture dishes at a 

concentration of 10
4 

cells/mL. After 24 h of quiescence, the cells were cultured for the indicated 

period with or without 10% FBS. Then, 10 μL of MTT (5 mg/mL in PBS) was added to each 

well, and the cells were incubated for an additional 4 h at 37°C. The purple–blue formazan 

precipitate was dissolved using 100 μL of DMSO. Mitochondrial activity, which reflected cell 

viability, was evaluated by measuring the absorbance at 570 nm using a microplate reader 

file:///C:/Documents%20and%20Settings/Hidenori%20Shiraha/My%20Documents/Downloads/松尾先生論文.pdf


10 

 

(Bio-Rad, Hercules, CA).  

For evaluation of gemcitabine resistance, the cells were treated with various concentrations of 

gemcitabine for 72 h, and then, the MTT assay was performed as described previously in this 

section.  

 

2.9. Gene silencing of RUNX3 by using small interfering RNA 

RUNX3-expressing SUIT-2 and KLM-1 cells were transfected with either scrambled negative 

control small interfering RNA (siRNA) or RUNX3 siRNA (Applied Biosystems, Foster City, 

CA) by using RNAiFect
TM

 transfection reagent (Qiagen, Hilden, Germany). The cells were 

incubated for 24 h and then serum starved for 48 h. The MTT assay was performed as described 

in section 2.8. 

 

  

file:///C:/Documents%20and%20Settings/Hidenori%20Shiraha/My%20Documents/Downloads/松尾先生論文.pdf
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3. Results 

3.1. RUNX3 expression in clinical samples improved the clinical course 

Of the 36 patients enrolled in the study, 10 (28%) patients had RUNX3-high pancreatic cancer 

(6 men and 4 women) and the remaining 26 (72%) patients had RUNX3-low pancreatic cancer 

(15 men and 11 women).  

Before resection, the cancers of all patients were staged using CT, MRI, and ultrasonography. 

There was no significant difference in the gender, age, UICC stage, pathologic T and N stage, 

histologic grade, and resection margin between the RUNX3-high and RUNX3-low groups (Table 

1). Figure 1A shows representative images of RUNX3-high and RUNX3-low pancreatic cancer 

tissues. RUNX3 expression was observed in both the cytoplasm and nuclei. In one sample, some 

cells expressed RUNX3 in the cytoplasm, whereas other cells expressed RUNX3 in the nuclei.  

We investigated the association of RUNX3 expression with survival and time to recurrence. 

The RUNX3-high and RUNX3-low groups showed a median survival of 1322 days (range, 

657–1757 days) and 627 days (range, 174–1590 days) (P = 0.014 ) (Fig. 1B) and a median time 

to recurrence of 657 days (range, 22–1459 days) and 442 days (range, 49–1117 days) (P = 

0.048 ) (Fig. 1C), respectively. 

 

3.2. RUNX3 was differentially expressed in pancreatic cancer cell lines  
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We determined RUNX3 expression in various pancreatic cancer cell lines by immunoblot 

analysis. RUNX3 protein was expressed in SUIT-2 and KLM-1 cells, but was undetectable in 

PANC-1, MIAPaCa-2, and BxPC-3 cells (Supplementary Fig. 1).  

 

3.3. Ectopic RUNX3 expression decreased MRP protein expression 

We analyzed ectopic RUNX3 expression in the endogenous RUNX3-low pancreatic cancer 

cell lines: PANC-1, MIAPaCa-2, and BxPC-3. RUNX3 protein expression was detected after 

transfection with the RUNX3 plasmid (Fig. 2A).  

PANC-1, MIAPaCa-2, and BxPC-3 cells expressed MRP1, MRP2, and MRP5. Strong MRP1 

expression was observed in PANC-1 and MIAPaCa-2 at baseline. Exogenous RUNX3 

expression generally decreased MRP expression in all 3 cell lines (Fig. 2A). Expression of 

MRP1, MRP2, and MRP5 in RUNX3-expressing PANC-1, MIAPaCa-2 and BxPC-3 cells was 

weaker than that in control CAT-expressing cells (Fig. 2A). 

 

3.4. Ectopic RUNX3 protein expression suppressed cell growth and increased gemcitabine 

sensitivity 

Ectopic RUNX3 expression suppressed cell growth compared with control by 49%, 74%, and 

29% in PANC-1, MIAPaCa-2, and BxPC-3 cells, respectively, at 5 days after transfection (Fig. 



13 

 

2B). 

A chemosensitivity assay was performed on RUNX3- and CAT (mock)-transfected PANC-1, 

MIAPaCa-2, and BxPC-3 cells. RUNX3 expression enhanced gemcitabine sensitivity in all 3 cell 

lines; the gemcitabine IC50 decreased from 42 nM to 2.8 nM, from 4.0 nM to 0.01 nM, and from 

17 nM to 7.8 nM in PANC-1, MIAPaCa-2, and BxPC-3 cells, respectively (Fig. 2C–E).  

 

3.5. siRNA against RUNX3 increased cell growth and decreased gemcitabine sensitivity 

After transfection with RUNX3 siRNA, RUNX3 expression was successfully knocked down 

in SUIT-2 and KLM-1 cells. RUNX3 siRNA-treated cells exhibited increased MRP expression 

(Fig. 3A). Moreover the growth of RUNX3 siRNA-treated SUIT-2 and KLM-1 cells increased 

8.1 and 3.2 times, respectively, over that of control siRNA-treated cells at 5 days after 

transfection (Fig. 3B). The gemcitabine sensitivity of RUNX3 siRNA-treated cells decreased 

significantly; the gemcitabine IC50 increased from 11 nM to 61 nM and from 28 nM to 65 nM in 

SUIT-2 and KLM-1 cells, respectively (Fig. 3C and D). 

 

3.6. RUNX3 mRNA expression was inversely correlated with MRP mRNA expression 

We evaluated the effect of ectopic RUNX3 expression on MRPs to elucidate the underlying 

mechanisms of RUNX3 expression-induced chemosensitivity. We analyzed the Oncomine data 
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sets to examine the correlation between the expression of RUNX3 and MRPs. The results 

revealed that RUNX3 mRNA expression was inversely correlated with MRP1 and MRP5 mRNA 

expression (MRP1: r = 0.40, P < 0.05; MRP5: r = 0.39, P < 0.05) (Fig. 4). MRP2 mRNA 

expression had a trend correlating with RUNX3 mRNA expression (r = 0.20); however, this 

correlation was not statistically significant (Fig. 4).  
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4. Discussion 

Runt domain family members are master regulators of gene expression in major 

developmental pathways (Subramaniam et al., 2009). RUNX3 is a downstream effector of the 

TGF- signaling pathway and plays a critical role in the regulation of cell proliferation and cell 

death (Subramaniam et al., 2009). Li et al. (2004) reported that TGF-1 repressed RUNX3 

expression only in Colo-357 pancreatic cancer cells and did not influence RUNX3 mRNA 

expression in the other cell lines studied. They suggested that the repressive effect of TGF- 1 on 

RUNX3 expression was lost in tumors with gene alteration. Further, Ito (2011) reported that 

RUNX3 deficiency results in impaired TGF- signaling. It is possible that the TGF- pathway 

loses its repressive function in pancreatic cancer. More data are needed to elucidate the function 

of RUNX3 in pancreatic cancer. 

Wada et al. (2004) reported that RUNX3 inactivation contributes to the tumorigenesis of bile 

duct and pancreatic carcinomas. Li et al. (2004) noted loss of RUNX3 expression in primary and 

metastatic pancreatic cancers. They reported that some primary pancreatic cancers lost RUNX3 

expression and metastatic tumors either were completely devoid of or showed only very weak 

RUNX3 immunoreactivity. These findings suggest a tumor-suppressive role of RUNX3 in 

pancreatic cancer. In the present study, we examined RUNX3 protein expression by 

immunohistochemistry in 36 primary pancreatic tumor samples and confirmed RUNX3 
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expression in 28% of the samples (Table 1). Previous reports demonstrated reduced RUNX3 

expression in 71–75% of pancreatic cancer samples (Li et al., 2004; Subramaniam et al., 2009; 

Wada et al., 2004), which is concordant with our results. Li et al. reported differences in the 

location of RUNX3 protein between pancreatic cancer samples and normal pancreatic tissue (Li 

et al., 2004). However, they did not demonstrate the functional consequence of cytoplasmic 

translocation of RUNX3. In the present study, we observed RUNX3 expression in both the 

cytoplasm and nuclei. We did not observe any significant difference among the pancreatic cancer 

tissue samples. Moreover, a previous report showed RUNX3 to be inactivated in pancreatic 

cancer through either hemizygous deletion or hypermethylation and found no evidence of 

cytoplasmic mislocation (Chuang and Ito, 2010). Thus, the significance of mislocation of 

RUNX3 remains unclear. Additional data are necessary on the localization of RUNX3 in 

pancreatic cancer. The RUNX3-high and RUNX3-low groups showed no significant differences 

in patient characteristics and clinicopathological stages (Table 1), although Kaplan–Meier 

analysis demonstrated a significant difference in patient survival between the 2 groups (Fig. 1B). 

A substantial difference in time to recurrence was also observed, with the RUNX3-high group 

showing significantly longer relapse-free survival than the RUNX3-low group (Fig. 1C).  

Univariate analysis demonstrated that lymph node involvement, poor histological 

differentiation, and loss of RUNX3 expression were significant factors for survival 
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(Supplementary Table 1). These factors were also identified as significant prognostic factors in 

the multivariate analysis (Table 2). A previous report showed that RUNX3 was frequently 

methylated in primary pancreatic cancer tissues, with hemizygous deletion occurring at locus 

1p36 and the RUNX3-inactivated cases showing worse survival (Nomoto et al., 2008). The study 

suggested that RUNX3 inactivation contributed to alteration of the TGF- signaling pathway and 

pancreatic cancer tumorigenesis. In concordance with this report, we observed a significant 

association between RUNX3 loss and poor prognosis among patients who had undergone an 

operation and who were treated with gemcitabine. Furthermore, RUNX3-low patients treated 

with gemcitabine after the operation had significantly shorter time to recurrence than the 

RUNX3-high patients. 

Some studies proposed an initial schedule of 7-out-of-8-weeks of gemcitabine administration 

(Burris et al., 1997; Rothenberg et al., 1996). We used a 3-out-of-4-week schedule because it is 

the commonly used administration schedule in Japan. This schedule is preferred because the 

effects of the 3-out-of-4-week schedule of gemcitabine administration without the initial 

consequent 7-week administration were almost equal to that of the 3-out-of-4-weeks with initial 

7-out-of-8-week administration in the treatment of pancreatic cancer (Poplin et al., 2009). 

Moreover, an initial 7-out-of-8-week administration reached the dose-limiting toxicity in the 

phase I trial on Japanese patients with advanced pancreatic cancer (Okada et al., 2001).  
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We surmised that gemcitabine sensitivity was the main determinant of prognosis in pancreatic 

cancer because none of the patients who received adjuvant chemotherapy with gemcitabine 

showed any significant difference in baseline characteristics and clinicopathological stage in 

terms of RUNX3 expression status. We hypothesized that RUNX3 expression influences 

gemcitabine sensitivity in pancreatic cancer. Previous reports attributed drug resistance to several 

cellular processes, one of which is decreased accumulation of drugs within cancer cells due to 

increased drug efflux. Proteins mediating this drug efflux mostly belong to the superfamily of 

ABC transporters, particularly the ABCC family members (Konig et al., 2005). Although we 

assessed the correlation of MRP expression with RUNX3 expression in the current study, other 

factors have also been implicated in gemcitabine resistance. Multidrug resistance 1 

(MDR1/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) are also involved in the 

resistance against gemcitabine (Hong et al., 2009) (Chen et al., 2012). Previous reports showed 

that MRPs were associated with prognosis or/and relapse-free survival in various cancers 

(Langer et al., 2010; Nakagawa et al., 2009; Plasschaert et al., 2005). Several reports have 

described chemoresistance and expression of MRPs in pancreatic cancer (Hagmann et al., 2009; 

Hagmann et al., 2010; Konig et al., 2005; Noma et al., 2008). These reports suggest an important 

role of MRPs in the gemcitabine resistance. Thus, we investigated MRP expression in pancreatic 

cancer cell lines, which we divided into 2 groups: RUNX3-high and RUNX3-low 
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(Supplementary Fig. 1).  

We examined the expression of MRP subsets in the RUNX3-negative and RUNX3-positive 

cell lines by immunoblot analysis. Only MRP1, MRP2, and MRP5 correlated with RUNX3 

expression. On the other hand, MRP1, MRP2, and MRP5 were expressed in the endogenous 

RUNX3-negative cell lines (Fig. 2A). In addition, a positive correlation was observed between 

these subtypes and RUNX3 in the Oncomine database. The cell lines showed various patterns of 

MRP expression, and exogenous RUNX3 expression generally suppressed MRP expression (Fig. 

2A). As expected, exogenous RUNX3 expression decreased cell proliferation (Fig. 2B) and 

increased gemcitabine sensitivity in the endogenous RUNX3-negative cell lines (Fig. 2C–E). On 

the other hand, RUNX3 siRNA knocked down RUNX3 in the endogenous RUNX3-positive 

pancreatic cancer cell lines. RUNX3 knockdown enhanced MRP expression in the endogenous 

RUNX3-positive cell lines (Fig. 3A), as well as increased the proliferation (Fig. 3B) and 

decreased the gemcitabine sensitivity of the cells (Fig. 3C and D). These results suggest that 

RUNX3 may regulate MRP expression. A previous study on gastric cancer reported that RUNX3 

sensitized gastric cancer cells to chemotherapeutic drugs by downregulating MRP1 through 

inhibition of MRP1 promoter activity (Hagmann et al., 2010). Further, (Guo et al., 2005) 

established that RUNX3 directly controls MRP1 expression in EMSA and luciferase reporter 

assay. However, whether MRP2 and MRP5 expression is directly inhibited by RUNX3 is still 
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unclear. Further study is warranted to elucidate the regulatory function of RUNX3 in MRP 

expression.  

On the basis of these data, we analyzed MRP expression in pancreatic cancer tissues by using 

the Oncomine database to determine the molecules that contribute to gemcitabine sensitivity. Our 

results revealed an inverse relationship between MRP and RUNX3 expression (Fig. 4).  

The standard chemotherapy for metastatic pancreatic cancer patients may change in the future, 

because the efficiency of the chemotherapy with gemcitabine is limited. Conroy et al. report that 

the combination regimen consisting of oxialiplatin, irinotecan, fluorouracil, and leucovorin 

(FOLFIRINOX) is efficient for metastatic pancreatic cancer patients, with good performance 

status (Conroy et al., 2011). As MRPs could be involved in the drug resistance of the 

chemotherapeutic agent for FOLFIRINOX, RUNX3 expression may be a prognostic biomarker 

for FOLFIRINOX-treated pancreatic cancer patients.  

  

Conclusion 

We found RUNX3 protein expression to be absent in 72% of pancreatic cancer samples. Loss 

of RUNX3 expression may upregulate MRP expression and may contribute to gemcitabine 

resistance, poor survival, and shorter time to recurrence. Moreover, re-expression of RUNX3 

downregulated MRP expression, suppressed the growth of pancreatic cancer cells, and 
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resensitized the cells to gemcitabine. Taken together, these findings indicate that targeting the 

RUNX3 pathway may be a potential treatment modality for pancreatic cancer. Re-expression of 

RUNX3 may help improve the chemosensitivity to gemcitabine in RUNX3-low pancreatic 

cancer. 
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Figure legends 

Figure 1. RUNX3 protein expression in pancreatic cancer samples 

(A) RUNX3 protein expression in human pancreatic cancer tissue. RUNX3 was expressed in 10 

of 36 (28%) patients. Scale bars: 100 μm. (B) Kaplan–Meier survival curves of 

gemcitabine-treated patients. The survival of the 10 RUNX3-high patients was significantly 

longer than that of the 26 RUNX3-low patients (log-rank test, P < 0.05). (C) Kaplan–Meier 

curves of time to recurrence of gemcitabine-treated patients. The time to recurrence of the 10 

RUNX3-high patients was significantly longer than that of the 26 RUNX3-low patients (log-rank 

test, P < 0.05). 

 

Figure 2. Ectopic RUNX3 protein expression in pancreatic cancer cell lines 

Eukaryotic expression constructs for CAT (mock) and RUNX3 were introduced into PANC-1, 

MIAPaCa-2, and BxPC-3 cells. (A) Immunoblot analysis of RUNX3 and MRP expression. 

Immunoblot analysis was performed using antibodies against RUNX3, MRP1, MRP2, MRP5, 

and α-actin. Immunoblotting for α-actin was done to verify equal loading. These 3 cell lines were 

originally endogenous RUNX3 negative. The left lane for each cell line represents 

mock-transfected cancer cells, and the right lane represents RUNX3-transfected cancer cells. 

Representative blots of more than 3 independent experiments. (B) Cell growth activity. Cell 
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proliferative activities were measured by MTT assay. All results are expressed as ratios 

compared to day 1. Data represent the means  SE of more than 3 independent experiments 

performed in triplicate. *P < 0.05; **P < 0.01, versus mock-transfected cells (Student’s t test). 

(C–E) Gemcitabine sensitivity. PANC-1 (C), MIAPaCa-2 (D), and BxPC-3 (E) cell lines were 

treated with various concentrations of gemcitabine for 24 h. Cell viability was measured by MTT 

assay and expressed as a percentage relative to control cells. Data represent the means  SE of 

more than 3 independent experiments performed in triplicate.  

 

Figure 3. RUNX3 knockdown in pancreatic cancer cell lines 

RUNX3 siRNA and control siRNA were transfected into the endogenous RUNX3-positive cell 

lines SUIT-2 and KLM-1. (A) Immunoblot analysis of RUNX3 and MRP expression. 

Immunoblot analysis was performed using antibodies against RUNX3, MRP1, MRP2, MRP5, 

and α-actin. Immunoblotting for α-actin was done to verify equal loading. These 2 cell lines were 

originally endogenous RUNX3 positive. The left lane for each cell line represents 

mock-transfected cancer cells, and the right lane represents RUNX3 siRNA-transfected cancer 

cells. Representative blots of more than 3 independent experiments. (B) Cell growth activity. 

Cell proliferative activities were measured by MTT assay. Results are expressed as ratios 

compared to day 1. Data represent the means  SE of more than 3 independent experiments 
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performed in triplicate. **P < 0.01, versus control siRNA-transfected cells (Student’s t test). (C 

and D) Gemcitabine sensitivity. SUIT-2 (C) and KLM-1 (D) cell lines were treated with various 

concentrations of gemcitabine for 24 h. Cell viability was measured by MTT assay and expressed 

as a percentage relative to control cells. Data represent the means  SE of more than 3 

independent experiments performed in triplicate.  

 

Figure 4. Correlation between RUNX3 and MRP expression in human pancreatic cancer data 

sets 

The correlation between RUNX3 and MRP expression was analyzed using publically available 

microarray data sets (http://www.oncomine.org). The RUNX3, MRP1, MRP2, and MRP5 

expression values (in arbitrary units) and 95% tolerance ellipse for pairs of variables were 

plotted. 

 

Supplementary Figure 1. RUNX3 protein expression in pancreatic cancer cell lines 

Immunoblot analysis was performed using RUNX3 and α-actin antibodies. Immunoblotting for 

α-actin was done to verify equal loading. Representative blots of more than 3 independent 

experiments. 
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