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ABSTRACT 

DNA topoisomerase II (topo II) changes DNA topology by cleavage/re-ligation cycle(s) and 

thus contributes to various nuclear DNA transactions. It is largely unknown how the enzyme 

is controlled in a nuclear context. Several studies have suggested that its C-terminal domain 

(CTD), which is dispensable for basal relaxation activity, has some regulatory influence. In 

this work, we examined the impact of nuclear localization on regulation of activity in nuclei. 

Specifically, human cells were transfected with wild type and mutant topo IIβ tagged with 

EGFP. Activity attenuation experiments and nuclear localization data reveal that the 

endogenous activity of topo IIβ is correlated with its subnuclear distribution. The enzyme 

shuttles between an active form in the nucleoplasm and a quiescent form in the nucleolus in a 

dynamic equilibrium. Mechanistically, the process involves a tethering event with RNA. 

Isolated RNA inhibits the catalytic activity of topo IIβ in vitro through the interaction with a 

specific 50-residue region of the CTD, (termed the CRD). Taken together, these results 

suggest that both the subnuclear distribution and activity regulation of topo IIβ is mediated by 

the interplay between cellular RNA and the CRD. 
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INTRODUCTION 

Type II DNA topoisomerases (topo II) catalyze interconversion of DNA’s topological states 

by swapping the spacial position of two segments of duplex DNA (1). This is achieved 

through a catalytic cycle composed of multiple steps that are highly concerted (2). Structural 

basis for the reaction comes from three mobile ‘gates’ that are formed between two identical 

subunits associated head-to-head orientation (3) (see Supplemental Fig. S1). Two segments of 

DNA enter from the N-terminal gate (N-gate) whose closure and opening is controlled by 

binding and hydrolysis of ATP, respectively.  

   While invertebrates have only one form of topo II, vertebrates have two isoforms (α and 

β) encoded by distinct genes (4-6). Although the two isoforms possess very similar basic 

structure and mode of reaction, they are clearly different in several aspects. Topo IIα relaxes 
positively supercoiled DNA more readily than negative supercoils in vitro (7). Expression of 

topo IIα is restricted to proliferating cells and is regulated in a cell cycle-dependent manner 

(8,9). It plays a critical role in the decatenation of entangled sister chromatids before 

segregation, thus being essential for cell proliferation. In contrast, topo IIβ appears to play 

more specialized roles in cellular physiology. Topo IIβ is indispensable for gene regulation in 

the final stage of neuronal differentiation when the enzyme shows elevated expression (10-13). 

In immortalized cell lines, however, its expression is de-regulated to become constitutive and 

even dispensable for cell survival(8,14). 

   Amino acid sequence of topo II isoforms is highly homologous each other (80-90% 

similarity) except for ~400 residues in the C-terminal domain (CTD), which is diverged 

significantly. Whether the difference in CTD sequence can explain the differential behavior of 

topo II isoforms is an obvious question, which is not fully answered. Remarkably, CTD is 

dispensable for the basal activity of topo II (15). There has been little insight from structural 

studies since the domain is an intrinsically disordered region with little higher-order structure 

(16). Several reports have already addressed the functional ambiguity of CTD. Specifically, 

comparison between topo IIα wild type and CTD-truncated mutant revealed that CTD confers 
preference to positive supercoils (7). It would be reasonable to assume that CTD has some 

regulatory role not only in the catalytic reaction per se but also in living cells. The latter may 

be complex due to unknown interactive factors. The primary function of CTD would be to 

confine the enzyme to the nucleus as multiple nuclear localization signals has been located in 

CTD (17-19). Experiments where the CTDs were swapped between the two isoforms 

exhibited the importance of CTD in the isoform-specific functioning in vivo (20). 

   Most nuclear proteins localize to certain subnuclear regions because they are either in an 

operational mode or in a transient holding pattern. During M-phase, nucleoplasmic proteins 
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redistribute to daughter cells by associating with chromosomes, while others diffuse out 

through the cytoplasm after the breakdown of nuclear membrane. Nuclear dynamics of topo II 

isoform distribution has been evaluated in a cellular context using photo-bleaching (21). The 

results showed clearly that in mitosis topo IIα migrates with chromosomes whereas topo IIβ 

becomes cytoplasmic. In interphase both are concentrated in nucleoli in a dynamic process, as 

attested by the rapid movement to nucleoplasm following treatment with topo II-specific 

poisons such as etoposide, which covalently traps the enzyme on genomic DNA. 

   Despite the recent progress in this area, regulation of topo II in the nuclear milieu remains 

unsettled. One issue in particular is how topo II operates catalytically in an environment 

replete with RNA, given that RNA is strongly inhibitory at least in vitro (22,23). We have 

shown recently that the RNA-inhibition is neutralized by an nucleoplasmic RNA-binding 

protein hnRNP U/SAF-A/SP120 (23), thus, providing a rational built-in mechanism for 

activity regulation. In the present study we examined the mechanism of topo IIβ activity 

regulation by analyzing the dynamics of subnuclear localization in response to activity 

changes. Results show that topo IIβ shuttles between nucleoplasm and nucleolus in a dynamic 
equilibrium that is determined by its residence time on nuclear DNA. We also investigated the 

roles of CTD in vitro using immobilized topo IIβ on beads and successfully identified a 
subdomain in CTD that is required for the susceptibility to RNA, which suggests that RNA is 

an innate regulator of topo IIβ. 

 

MATERIALS AND METHODS 

Plasmid construction 

The plasmid pFlag-top2b encoding the full-length rat topo IIβ (1614 amino acids) with Flag 

sequence tagged at the N-terminus was constructed. The original topo IIβ cDNA clone 
(AB262979) was amplified with primers containing restriction overhangs (Not I/Sma I) that 

are listed in the supplementary file (Table S1). A high-fidelity DNA polymerase, Phusion Hot 

Start II (Thermo Scientific), was used throughout. The PCR product was inserted in frame 

between the Not I/Sma I sites of pFlag-CMV-2 expression vector (Sigma-Aldrich). To obtain 

Flag-fused C-terminal truncation mutants (ΔCTD, ΔCTD’), the pFlag-top2b plasmid was 
amplified with primers listed in Table S1 and the products were inserted into pFlag-CMV-2 

between Not I/Sma I sites. To construct pFlag-top2b (ΔCRD) expression plasmid, a 

C-terminal portion of topo IIβ (CTD’; #1251-1614) was PCR-amplified from pFlag-top2b 
with primers containing restriction overhangs (Sma I/Sma I). The PCR product was then 

inserted at the Sma I site of the pFlag-top 2b (ΔCTD) expression plasmid and a transformed 

colony containing the insert in correct orientation was selected by colony PCR using forward 
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primer (5’-GTCTCTATGGTCTCTTAC-3’) and reverse primer 

(5’-TCCCCCGGGCTCCTTTTTCTCCCTTTT-3’). 

   The plasmid pEGFP-top2b that encodes the full-length rat topo IIβ with EGFP sequence 
fused at the C-terminus was constructed. The pFLAG-top2b plasmid was PCR amplified with 

primers containing restriction overhangs (Xho I/Sma I) and the product was inserted in frame 

between the Xho I/Sma I sites of pEGFP-N1 expression vector (Clontech). Amino acid 

substitution mutants of topo IIβ (G173I, L178F, and Y814S) were prepared using 

QuikChange II XL Site-Directed Mutagenesis Kit (Agilent) with the pEGFP-Top2b plasmid 

as a template and with primers containing the desired mutation (underlined in Table S1). 

   To express proteins with Flag-tag at the N-terminus and EGFP-tag at the C-terminus, 

pFlag-CMV-2-EGFP expression vector was constructed. We first obtained EGFP cDNA from 

pEGFP-N1 vector by PCR amplification with a primer pair (sense, 

5’-GGGAATTCTCGAGTAGATCTGCCGGTCGCCACCATGGTG-3’; antisense, 

5’-CGGGATCCCGCTTTACTTGTACAGCTC-3’) containing Eco RI or Bam HI overhangs 

(underlined). The EGFP cDNA was then inserted in frame between the Eco RI/Bgl II sites of 

the pFlag-CMV-2 vector. DNA fragments encoding the full-length or domain mutants of topo 

IIβ were PCR-amplified with primers containing restriction overhangs (Not I/Sma I or Sma 
I/Sma I) from pFlag-top2b and subcloned into the pFlag-CMV-2-EGFP vector. 

   All the constructs used in this work were sequenced to confirm the absence of unintended 

mutations. 

 

Cell culture and transfection 

The human embryonal kidney cell line HEK293E (designated HEK hereafter), a rat 

fibroblast-like cell line (Rat-1) and a mouse neuroblastoma cell line (Neuro 2a) cells were 

grown at 37˚C in a humidified atmosphere of 5% CO2 in a Dulbecco’s modified Eagle’s 
medium (DMEM) (Sigma-Aldrich) supplemented with 10% fetal calf serum (FCS) and 100 

µg/ml kanamycin sulfate.  
   For ATP depletion studies, cells were washed with phosphate buffered saline (PBS), and 

incubated in glucose-free DMEM (catalog no. 11966–025; GIBCO BRL) containing 10 mM 

sodium azide, 6 mM 2-deoxy-D-glucose, 100 µg/ml kanamycin sulfate, and 10% FCS 
(hereafter referred to as ‘ATP depletion medium’) for times indicated in the figure legends 

(24). Cellular ATP was quantified by a luciferin-luciferase-based ATP assay kit (Wako, 

Japan) according to the manufacturer’s instructions.  

   For in situ digestion of cellular RNA or DNA, cells were permeabilized with 50 µg/ml 

digitonin in 20 mM HEPES-KOH (pH 7.3), 110 mM KOAc, 5 mM MgCl2 and 2 mM 
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dithiothreitol for 5 min at 37˚C, followed by digestion with 0.4 mg/ml RNase A (Qiagen) or 

1.4 U/µl DNase I (InvitrogenTM) in 50 mM HEPES-NaOH (pH 7.4), 120 mM NaCl and 10 
mM MgCl2 for 20 min at 37˚C. 
   For cell transfection, HEK (2x105 cells/35-mm dish) were cultured for 24 h and then 

incubated with 3 µl of FuGENE 6 Transfection Reagent (Promega), and 1 µg of 

pFlag-CMV-2, pEGFP-N1, or pFlag-CMV-2-EGFP expression vectors harboring full-length 

or mutant topoisomerase IIβ cDNA. After 24 h, cells were subjected to analyses. 

 

Immunocytochemistry 

Cells were grown on 13-mm round coverslips immersed in DMEM with 10% FCS and 100 

µg/ml kanamycin sulfate. Cells at subconfluency were fixed with 4% paraformaldehyde in 
PBS kept at 37˚C or on ice beforehand as indicated in figure legends, permeabilized then with 

0.3% Triton X-100 in PBS, and blocked with 10% goat serum in PBS containing 0.3% Triton 

X-100 (TPBS). After incubation with primary antibodies diluted in PBS supplemented with 

1% goat serum, sections were washed with PBS, followed by incubation with fluorescent 

conjugates of goat secondary antibodies in PBS (9,10). Cells were finally stained for DNA 

with 0.25 µg/ml 4’, 6-diamidino-2-phenylindole (DAPI) in PBS. 
 

Fluorescence Microscopy 

To capture images of living cells, HEK cells expressing EGFP-tagged recombinant proteins 

on 35-mm glass-bottomed dishes were examined under an inverted fluorescence microscope 

equipped with ApoTome device (Axiovert 200M, Carl Zeiss) and a cooled CCD camera 

(AxioCam MRm) using Axiovision 4.01 software (Zeiss). 

   For time-lapse imaging the glass-bottomed dishes with HEK/ topo IIβ -EGFP cells in 2 ml 
of growth medium were placed into an on-stage heating and cooling chamber (Temperable 

Insert P S1, Carl Zeiss) equipped with F25-ME Refrigerated/Heating Circulator (Carl Zeiss), 

and images were recorded at 1 min intervals for 60 min in the environmental chamber 

ensuring a constant change of temperature.  

   Fluorescence recovery after photobleaching (FRAP) analysis of living cells were 
performed at either 37˚C or 18˚C with a confocal microscope (FV-1000; Olympus; operated 

by the built-in software version 2.1.1.4) equipped with a CO2-controlled on-stage heating 

chamber using a PLAPON 60XOSC NA 1.4 oil immersion lens. Images were taken before 

(10 images) and after (120 images) bleaching of a circular area of 1-µm diameter at 100% 
488-nm laser transmission with four iterations. The imaging scans were acquired with a laser 
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power attenuated to 0.1% of the bleached intensity using settings of 205 ms/frame; 2 µs/pixel; 

pinhole 300 µm (25). Binding kinetics was analyzed as described (26). 
 

Protein expression and purification 

To express Flag-tagged proteins for in vitro experiments, HEK cells grown to subconfluency 

on 100-mm dishes (1.2x106 cells/dish) were transfected with 3 µg of the construct plasmids 

using FuGENE 6 and cultured for 3 days. Cells were lysed on ice in 1 ml/dish of ice-cold 

HSB consisted of 50 mM HEPES-NaOH (pH7.4), 1 mM EDTA, 500 mM NaCl, 1 mM 

dithiothreitol, 0.1% NP-40, and Protease Inhibitor Cocktail (PIC, EDTA-free, Roche). Clear 

lysates were prepared by repeated centrifugation. Immunoprecipitation was performed at 4ºC 

for 2 h with Dynabeads Protein G that had been pre-coated with anti-tag antibodies. After 

incubation, the beads were washed 3 times with HSB, suspended in 50 mM Tris-HCl (pH 8.0), 

120 mM KCl, 10 mM MgCl2, 1 mM dithiothreitol, 0.5 mM EDTA, PIC, and 50% glycerol. 

The beads suspension was stored at -80ºC until use.  

   To release Flag-tagged proteins from the Dynabeads, the protein-bound beads were 

incubated with 150 µg/ml 3x Flag peptide (Sigma) in 50 mM Tris-HCl (pH 8.0), 120 mM 

KCl, 10 mM MgCl2, 1 mM dithiothreitol, 0.5 mM EDTA and PIC for 30 min on ice. The 

released proteins were frozen quickly in liquid N2 and stored at -80ºC until use. 

   Protein concentrations of purified fractions were determined by densitometric scanning of 

SYPRO Ruby-stained SDS-PAGE gel bands using BSA as a standard. 

 

Procedures that involve Western blotting 

Western blotting was carried out as described (11). Cells grown on culture dishes were lysed 

directly in SDS-PAGE sample buffer (50 mM Tris-HCl: pH 6.8, 2% SDS, 1.25% 

2-mercaptoethanol, 250 mM sucrose, 0.0025% bromophenol blue), subjected to 6.5% 

SDS-PAGE and transferred to a PVDF membrane. Protein-blotted membranes were incubated 

with anti-topo IIβ monoclonal antibody (clone 3B6, 1.5 µg/ml) (10) and then with horseradish 
peroxidase-conjugated second antibody (KPL) according to standard procedure. The 

peroxidase activity was detected by a chemiluminescence method using an ECL kit (GE 

Healthcare) and recorded on VersaDoc MP 5000 Imaging Systems (Bio-Rad). Protein bands 

were quantified by densitometry.  

   For band depletion assay, cells grown on 35 mm-culture dishes were incubated with 200 
µM etoposide (VP-16) in DMEM for 30 min at 37˚C in a humidified atmosphere of 5% CO2 

to stabilize topo IIβ -DNA cleaved complex. The etoposide-treated cells were lysed directly in 

100 µl of SDS-PAGE sample buffer and 10 µl-aliquots were subjected to Western blot 
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analyses. 

 

Relaxation assay 

Relaxation of supercoiled pUC18 (form I) DNA by immunopurified Flag-topoisomerase IIβ, 
either wild type or a deletion mutant, was carried out for 30 min at 30˚C in 10 µl of reaction 

mixture containing 5 ng or 50 ng DNA, 50 mM Tris-HCl (pH 8.0), 120 mM KCl, 10 mM 

MgCl2, 0.5 mM dithiothreitol, 0.5 mM EDTA, 0.5 mM ATP and 30 µg/ml BSA, unless stated 

otherwise (27). Reaction products were treated with 1% SDS and 100 µg/ml proteinase K at 
55˚C for 30 min before applying to 1% agarose gel electrophoresis. Topoisomer DNA bands 

were visualized by staining with 1/10,000x SYBR Green I (Takara Bio, Japan) or 0.5 µg/ml 

ethidium bromide. Fully supercoiled DNA substrates that remained unrelaxed after the 

reaction were quantified by densitometry. 

   For relaxation of supercoiled DNA in ‘on-bead assay’, the Flag-tagged enzyme protein 

immobilized on the Dynabeads through anti-Flag antibody was incubated with substrate DNA 

as described above. After reaction, DNA products were fractionated immediately into 

enzyme-bound and free in solution by magnetic separation and treated with 1% SDS and 100 

µg/ml proteinase K prior to electrophoresis on 1% agarose gel. 
 

RNA binding assay  

RNA was purified from HEK cells by using RNeasy Mini kit (Qiagen). This total RNA was 

separated into Poly(A)+ RNA and Poly(A)- RNA fractions using Dynabeads mRNA 
Purification Kit (InvitrogenTM). Purified RNAs were incubated at 30˚C for 30 min with 80 

fmol Flag-tagged proteins (WT topo IIβ or deletion mutants) immobilized on the Dynabeads 
in 10 µl of binding mixture containing 50 mM Tris-HCl (pH 8.0), 120 mM KCl, 10 mM 

MgCl2, 0.5 mM dithiothreitol, 0.5 mM EDTA, 30 µg/ml BSA and 4U RNase inhibitor from 

porcine liver (Takara Bio). Following magnetic separation, bead-bound RNA (bound to topo 

IIβ) and free RNA in solution were quantified directly using Quant-iTTM RiboGreen RNA 
Assay Kit (InvitrogenTM) and GENios multi-detection microplate reader (Tecan). 

 

DNA binding assay 

Flag-tagged proteins (80 fmol of WT topo IIβ or deletion mutants) were immobilized on 

Dynabeads through anti-Flag antibody and incubated with 5 ng pUC18 plasmid DNA 

(supercoiled or linear) in 10 µl of the RNA binding mixture stated above (but without RNase 

inhibitor). Following magnetic separation, bead-bound DNA (bound to topo IIβ) and free 
DNA in solution were treated with 1% SDS and 100 µg/ml proteinase K. DNAs were 
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electrophoresed on 1% agarose gel, followed by visualization with SYBR Green I and 

quantification by densitometry. 

 

RESULTS 

Relocation of topoisomerase IIβ  in interphase nuclei  

The catalytic activity of topo IIβ in neuronal cells remains quite high during the terminal 
differentiation when the enzyme distributes in both nucleoplasm and nucleoli. As the cells 

develop to mature neurons, it shows decreased activity in vivo, which is measured by its 

cross-linking to genomic DNA following etoposide treatment. In concert with this change, the 

enzyme accumulates in nucleoli (9,10). These results suggest that a sub-population of topo IIβ 

is engaged in catalytic action by interacting with DNA in the nucleoplasm and another located 

in nucleoli has little or no access to DNA. In cultured cells, the nuclear distribution of topo 

IIβ detected by immunostaining varies depending on cell types and preparation methods 

(17,21,28,29). Since topo IIβ in interphase nuclei of living cells is quite mobile (21), cellular 
conditions at the time of fixation can be a critical factor for the variable localization.  

   We used three different cell lines (HEK293, Rat-1, Neuro 2a) to assess the effects of 

temperature, topo II inhibition, and cellular ATP content on distribution (Fig. 1). Nucleoli 

were identified by double-immunostaining with an antibody against nucleolin (9). To our 

surprise, the nuclear distribution of topo IIβ differed dramatically depending on the 

temperature of fixation. When cells were fixed at 37°C, topo IIβ distributed throughout the 
nucleus with remarkable enhancement in nucleoli in all three cell types (Fig. 1A). When cells 

were fixed on ice, however, the signal in nucleoli decreased substantially and the 

nucleoplasmic stain increased reciprocally, co-localizing with DAPI-staining signal (Fig. 1B). 

A similar relocation of the enzyme was observed by treating the cells with ICRF-193 (Fig. 

1C), a catalytic inhibitor of type II topoisomerases that stabilizes the closed clamp 

conformation around target DNA during the catalytic reaction (30). In both low temperature 

and ICRF treatments, some topo IIβ signals in nucleoplasm co-localized with heterochromatic 
regions (chromocenters), which is most obvious in mouse Neuro 2a cells. Similar pattern of 

localization was observed by treating mouse cells with etoposide (VP-16), a topo II poison 

that stabilizes the enzyme-DNA covalent complexes (31). As topo IIβ requires ATP for its 
catalytic activity (32), cells were depleted of ATP to see whether its nuclear distribution 

changes. The treatment abolished nucleoplasmic topo IIβ and essentially all fluorescence was 
localized to the nucleolar region (Fig. 1D). These results are in good agreement with the 

notion that the catalytically active topo IIβ is largely nucleoplasmic while the nucleolar form 

is inactive. 
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Dynamic relocation of topoisomerase IIβ-EGFP between nucleoplasm and nucleoli in 
living cells 

To further investigate the relationship between the enzyme activity and nuclear distribution in 

a cellular context, EGFP-fused topo IIβ was transiently expressed in HEK293 cells. As with 
endogenous enzyme (Fig. 1A and 1C), EGFP signals in live cells were concentrated in 

nucleoli, and migrated to nucleoplasm upon ICRF-193 treatment (Fig. 2B, leftmost column). 

When cellular ATP levels were reduced to less than 10% by sodium azide and 

2-deoxyglucose for the times indicated (Fig. 2A), nucleoplasmic EGFP signals were again 

strongly reduced. Concurrently, topo IIβ was clearly located in nucleolar regions (Fig. 2B, 

upper panel). In the ATP depleted cells, the nucleolar signal did not re-distribute to 

nucleoplasm upon ICRF-193 treatment (Fig. 2B, lower panels), suggesting that inactive 

enzyme remains in the nucleoli. The process was rapid and completely reversible as 

subsequent recovery of cellular ATP level increased EGFP signals in nucleoplasm back to 

basal levels and restored the effect of ICRF-193 (Fig. 2A and Fig. 2B, rightmost column). 

   Molecular mechanism underlying the relocation of topo IIβ from nucleoli to nucleoplasm 

at lowered temperature (Fig. 1B) was investigated by time-lapse fluorescence microscopy and 

fluorescence recovery after photobleaching (FRAP). Medium temperature was lowered 

continuously from 37°C to 15°C in 30 min, and then brought back to 37°C in the next 30 min. 

Nuclear distribution of topo IIβ-EGFP was recorded in real time and shown in the upper panel 
(Fig. 3A). The nucleolar signal faded out at temperatures below 20°C (20 min incubation) and 

recovered by the time when the temperature reached 37°C (60 min incubation), indicating that 

the temperature-induced relocation process is not only rapid, but also reversible. We next 

compared the motility of nucleoplasmic and nucleolar topo IIβ-EGFP by FRAP under 
different temperatures. As shown in Fig. 3B, the recovery of fluorescence in bleached areas 

was notably faster in nucleoplasm than in nucleoli at 37°C (binding time=1.38 ± 0.64 s and 

3.75 ± 0.98 s, respectively), in good agreement with a previous report (21). At 18°C, however, 

the mobility of nucleoplasmic topo IIβ-EGFP dropped remarkably. In contrast, the nucleolar 

mobility change was relatively small (binding time=7.61 ± 1.83 s and 5.89 ± 2.53 s, 

respectively). Thus the accumulation of nucleoplasmic topo IIβ at the lower temperature may 
due to increased binding times or residence times in the nucleoplasm.  

   To correlate nucleoplasmic-nucleolar dynamics with catalytic activity, we fractionated 

free and enzyme-bound DNA using immobilized topo IIβ on magnetic beads (on-bead assay). 

Topo IIβ protein, Flag-tagged at the N-terminus, was expressed in HEK cells and pulled down 

onto the beads coated with anti-Flag antibody. Washed beads were used for relaxation of 



 11 

supercoiled plasmid DNA. At 37°C, fully relaxed DNA was released from the enzyme and 

recovered in unbound fraction, whereas partially relaxed DNA remained on the beads (Fig. 

3C, left panel). The beads-bound fraction reflects the DNA directly bound to topo IIβ since 
control beads without enzyme or antibody do not bind DNA (data not shown). When the 

reaction temperature was lowered to 15°C, more plasmid DNA remained on the beads (Fig. 

3C, right panel). At 0°C, essentially all partially relaxed DNA was bound to the enzyme and 

unrelaxed substrate was recovered in unbound fraction. At 15°C, the DNA in unbound 

fraction is fully relaxed. The relative difference in the positions of topoisomer bands between 

37 and 15°C is due to the temperature dependent change in the writhe, which was confirmed 

by electrophoresis in the presence of ethidium bromide and by time course studies at each 

temperature (results not shown). These findings recapitulate our in vivo observations; 

specifically, that the catalytic cycle slows as temperature decreases and thus a higher 

proportion of topo IIβ would be retained on chromatin DNA in the nucleoplasm. 

   We further observed differential nuclear localization of topo IIβ mutants with single 
amino acid changes that cause functional defects (Fig. 4A). The constructs were fused with 

EGFP to track their nuclear location and to unambiguously discriminate from the endogenous 

wild type enzyme. Activity measurements using a band depletion assay with transfected cells 

confirmed expected properties of these mutants (Fig. 4B). This assay is based on the fact that 

protein bands for catalytically active topo II on immunoblots are reduced after treating cells 

with a topo II poison such as VP-16. The reduction is due to formation of covalent topo 

II/DNA complexes (33). 

   The Gly-164 to Ile mutation in human topo IIα disrupts the ATP binding and hydrolysis 

activities (34). Therefore, Gly-173 in rat topo IIβ, the counterpart residue of Gly-164 of 

human α, was altered to Ile (G173I). As shown in Fig. 4B, the EGFP-fused G173I mutant 
(GI-EGFP) expressed in HEK cells did not possess enzymatic activity. The inactive mutant 

GI-EGFP remained in nucleolar region both in the absence or presence of ICRF-193 (44.5 ± 

8.3% and 39.3 ± 7.4%, respectively), as compared to WT-EGFP (36.2 ± 7.9% vs. 8.2 ± 2.8%, 

Fig. 4C). 

   Mutation of Leu-178 to Phe in rat topo IIβ (L178F) converted the enzyme to an ICRF-193 

resistant form just like the human topo IIα counterpart, L169F (35). Although LF-EGFP was 
enzymatically active (Fig. 4B), it was resistant to ICRF-193 (Fig. 4C), as it accumulated in 

nucleoli in the presence or absence of ICRF-193 (37.1 ± 7.9% and 40.4 ± 7.1%, respectively). 

The resistance of L178F / LF-EGFP toward ICRF-193 was also confirmed by in vitro activity 

assays (results not shown). 

   Tyr-814 of rat topo IIβ is an essential residue for the activity. The Tyr to Ser mutant 
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(Y814S) was incompetent in the formation of a DNA cleavage complex (Fig. 4B) as in the 

previously characterized human topo IIα mutant, Y805S (36). Fig. 4C shows that YS-EGFP 
is largely non-nucleolar, even in the absence of ICRF-193 (8.3 ± 2.4% in nucleoli). Treatment 

of the cells with ICRF-193 did not change the distribution (8.3 ± 2.5％ in nucleoli). Since the 

active site tyrosine mutant of human topo IIα (Y805S) was shown to be able to close the 
N-terminal gate (36), nucleoplasmic YS-EGFP is likely due to trapping by the N-terminal 

clamp. 

 

Association of topoisomerase IIβ  with RNA in nucleoli 

Although immobile topo IIβ molecules are virtually absent in living cells, the enzyme is not 

as freely diffusible as free EGFP (21). A simple model analysis for nuclear topo IIβ 
distribution showed that a higher proportion of the enzyme is ‘bound’ as compared to ‘free’ in 

nucleolus, as well as in nucleoplasm (37). In addition to this, except for the Y814S mutant, 

almost half of topo IIβ located in nucleoli in living cells (Fig. 4C), and motility of the 
wild-type enzyme in nucleoli was even smaller than that in nucleoplasm at 37°C (Fig. 3B). 

These findings strongly suggest that some components in the nucleolus associate with topo 

IIβ. We assume that RNA might be one of the major candidates. To test this, HEK cells 
transfected with WT-EGFP were permeabilized with digitonin and treated in situ with RNase 

A or DNase I. The specificity and completeness of digestion was confirmed by agarose gel 

electrophoresis (Fig. S2A). The nucleolar localization of WT-EGFP did not change by 

permeabilization or DNase treatment. However, RNase digestion resulted in relocation of 

EGFP signal from nucleoli to nucleoplasm (Fig. S2B), suggesting that nucleolar retention of 

topo IIβ is mediated primarily through RNA-topo IIβ interactions. 
 

A novel domain in the C-terminal region of topoisomerase IIβ  is involved in nucleolar 

retention 

RNA interactions with a DNA binding protein like topo II may be due to non-specific binding 

activity to a polyanion scaffold. The likelihood of a non-specific, non-physiological artifact is 

reduced if binding is selectively mediated by specific protein domains. To examine the 

domains responsible for topo IIβ-RNA interaction and nucleolar preference, we prepared topo 

IIβ deletion mutants and examined their nuclear localization together with RNA-binding 

abilities in vitro. The canonical C-terminal domain (CTD) of human topo IIβ starts from 
amino acid residue #1202 and ends at the C-terminus #1621 (38) that corresponds to rat topo 

IIβ #1195 to 1614. In this study, the rat enzyme was simply divided into 2 portions, a 

C-terminal segment (CTD, #1201-1614) and its complementary segment (ΔCTD, #1-1199), 
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which contains the ATPase domain, dimerization domain and DNA-binding/cleavage core. 

The CTD’ (#1251-1614), missing N-terminal 50 residues of CTD, is equivalent to the human 

topo IIβ #1258-1621 that contains three nuclear localization signals (NLS) and is capable of 

transferring a marker protein (β-galactosidase) into nuclei (17). Wild-type enzyme and the 

truncation mutants were dually tagged with Flag on N-terminus and EGFP on C-terminus, 

and expressed in HEK cells (Fig. 5A).  

   Tagged proteins were pulled down with anti-Flag antibody-coated magnetic beads, 

followed by incubation either with total RNA, poly (A)- RNA, or poly (A)+ RNA isolated 

from HEK cells. The wild-type topo IIβ (WT) bound RNA regardless of poly (A) tails (Fig. 

5B). Both ΔCTD and CTD retained the RNA binding activity, although bound RNA levels 

were lower than that of WT. As shown in Fig. 5B (center panel), CTD’ did not bind poly (A)- 

RNA, whereas the mutant did bind poly (A)+ RNA (Fig. 5B, right panel), indicating that the 

N-terminal 50 residues of CTD is required for the binding of poly (A)- RNA. 

   Correlations between RNA binding activity and cellular localization of these mutants 

were analyzed. Although ΔCTD binds to both poly (A)- and poly (A)+ RNAs, this mutant was 
localized exclusively in cytoplasm most likely due to the absence of a nuclear localization 

signal (Fig. 5C). Just like the wild-type enzyme (WT), the EGFP signal for CTD localized in 

nuclei with nucleolar enrichment. However, CTD’ did not accumulate in nucleoli although the 

mutant exclusively localized in nuclei. This observation agrees with the previous report (17). 

The EGFP-tagged SV40 NLS showed similar localization pattern (Fig. 5C). These data 

suggest that NLS alone is not sufficient for the nucleolar accumulation and the region 

(#1201-1250) is essential for the topo IIβ C-terminal domain to accumulate in nucleoli and for 

its binding to RNA. 

   Since this 50-residue domain appears to have a prime importance in the enzyme’s 

transactions, we refer to this domain as the CRD (or ‘C-terminal regulatory domain’) and 

performed further analyses by expressing CRD in HEK cells as an EGFP-tagged protein (Fig. 

5D). The localization pattern of CRD was similar to that of WT and CTD, being exclusively 

in nuclei with nucleolar accumulation (Fig. 5D, upper panel). Also like the WT-EGFP, the 

CRD-EGFP relocated from nucleoli to nucleoplasm upon in situ digestion with RNase in 

digitonin-permeabilized cells. Thus, nucleolar retention of CRD may be mediated by its 

binding to RNA in nucleoli. 

   CRD contains some characteristic sequence motifs within lysine clusters on both ends 

(Fig. 5A). The #1201-1215 region is composed of regularly spaced repeats of lysine (K) and 

small hydrophobic residues: glycine (G), alanine (A), or valine (V), which is termed here 

Phi-K motif. The #1247-1250 region contains 4 consecutive lysine residues (K-stretch). When 
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Phi-K motif was deleted from CRD (ΔPhi-K motif), the EGFP signal distributed diffusely 

throughout the cell (Fig. 5D, lower panel). Deletion of K-stretch (ΔK-stretch) from CRD did 
not affect its nuclear localization, whereas its nucleolar accumulation was almost lost, 

suggesting that the K-stretch is indispensable for nucleolar localization of CRD. When both 

Phi-K motif and K-stretch were deleted from CRD, the mutant distributed in cytoplasm. 

These results clearly indicate that Phi-K motif is responsible for the nuclear retention and that 

Phi-K motif and K-stretch cooperate together for the accumulation of CRD in nucleoli. 

 

CRD regulates enzymatic activity of topoisomerase IIβ  through RNA binding 

The function of CRD was further examined using topo IIβ deletion mutants illustrated in Fig. 

6A. The ΔCTD’ is a truncation mutant lacking CTD’. The wild type and mutant enzymes 
were Flag-tagged on their N-termini, expressed in HEK cells and immunopurified with 

anti-Flag antibody. Purified proteins were subjected to relaxation assay with supercoiled 

plasmid DNA. Topo IIβ released from antibody beads showed similar relaxation activities 
regardless of the presence of deletion (Fig. S3A and B). We showed previously that relaxation 

activity of topo IIβ was inhibited by cellular RNA (23). As expected, total RNA purified from 

HEK cells inhibited the relaxation of Flag-tagged WT topo IIβ, whereas that of ΔCTD was 

not inhibited at all (Fig. 6B). Remarkably, however, RNA did inhibit the reaction with ΔCTD’. 

Therefore, we examined whether topo IIβ lacking only CRD (ΔCRD) was resistant to RNA 

and found that this is indeed the case. To confirm the resistance of ΔCRD to RNA, enzyme 
inputs were varied in a dilution series keeping the RNA amount constant (Fig. S4A). These 

data show that relaxation activity was essentially independent of enzyme/RNA ratios.  

   When the inhibition experiments were repeated under the same conditions using RNA 

samples fractionated into poly (A)- and poly (A)+ RNAs, we obtained basically the same 

results with unfractionated total RNA. Thus, CRD is very likely responsible for the regulation 

of enzyme activity mediated by RNA regardless of poly (A) tailing. 

 

CRD is involved, but not essential, in the processivity of topoisomerase IIβ  

The use of a bead-bound topo IIβ assay allowed us to assess the topological status of substrate 
DNA that is free vs. enzyme bound. Negatively supercoiled DNA was relaxed by the 

immobilized WT or mutant topo IIβ in the presence of increasing RNA inputs (Fig. 6C). 

Without RNA, WT enzyme did not release the product until DNA was fully relaxed, 

reflecting the processive nature of WT enzyme. To see whether CRD contributes to the 

processivity, topo IIβ mutants were compared. When incubated at 30°C it appeared that CRD 

has little contribution to the processive mode of reaction since ΔCTD’ that contains CRD did 
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not hold partially relaxed DNA, while ΔCRD did (Fig. 6C). However, when the reaction was 

performed at lower temperatures (to reduce catalytic rates), ΔCTD’ did retain the intermediate 

products (Fig. 6D, lower panel). In contrast, ΔCTD did not bind partially relaxed DNA even 

at lower temperatures (Fig. 6D, upper panel), or at decreased activity with less ΔCTD protein 

(Fig. S4B). The results indicate that without CTD, topo IIβ-DNA interaction is highly 
distributive, viz. non-processive. 

   Thus, CRD appears to be involved, but not essential, in the processive reaction and the 

CTD’ is more likely responsible for processivity of topo IIβ through retention of partially 
relaxed DNA. The binding or retention of these intermediate products is inhibited by 

increasing RNA inputs (Fig. 6C). 

 

CRD assists the RNA-mediated inhibition of supercoiled DNA binding to topoisomerase 

IIβ  

Previous studies on topo II-DNA interactions demonstrated that the enzyme prefers to bind 

crossovers between duplex DNA segments, which occur frequently in supercoiled 

conformation (39,40). More recent studies suggested the involvement of CTD in capturing the 

G-segment that is strongly bent between the paired winged-helix domains (41,42). Little 

biochemical knowledge is available, however, concerning the DNA binding properties of topo 

II relative to supercoils. We took advantage of the on-bead assay to investigate the binding of 

DNA and effects of RNA on the binding in the absence of ATP. Without ATP, the enzyme 

would behave like a simple DNA binder with constitutively open N-gate. 

   DNA binding reaction was first optimized by incubating equimolar mixtures of negatively 

supercoiled (form I) and linear (form III) DNAs with constant amount of immobilized 

WT-topo IIβ (Fig. S5). The enzyme bound supercoiled DNA preferentially as total DNA 
amounts increase to a saturation level but both forms were equally bound 100% at a lower 

dosage (5 ng each). Under the latter conditions competitive binding assay was performed with 

WT and deletion mutants (Fig. 7A). All mutants showed preference toward supercoiled DNA 

over linear DNA although with reduced overall affinity. Reduction of DNA binding ability 

was also reported with enzyme-oligonucleotide interactions when C-terminal region 

(#1264-1621) was deleted from human topo IIβ (43). The deleted region corresponds to 

#1257-1614 of rat topo IIβ. Deletion of CTD (ΔCTD) significantly decreased linear DNA 

binding. Adding back either CRD or CTD’ however restored binding to 50-60%. Without 

CTD’, CRD was essential for linear DNA binding.  

Similar results were obtained when supercoiled and linear DNAs were incubated 

separately (Fig. 7B, leftmost lanes). The data clearly indicate that CTD, including CRD, is not 
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essential for supercoiled DNA binding but CTD’ assists the binding. In contrast, CTD is 

essential for linear DNA binding (Fig. 7C, right panel) and mutants harboring either CRD or 

CTD’ retained linear DNA binding activity with reduced levels, suggesting that CRD alone 

retains the ability to bind linear DNA. 

In the presence of RNA, binding of supercoiled DNA to ΔCTD decreased slightly in a 
dose-dependent manner (Fig. 7B and C), although the change was statistically insignificant (P 

>0.10). In contrast, the RNA inhibition was significant (P <0.01) when topo IIβ contains CRD 

(compare ΔCTD and ΔCTD’). Similarly, ΔCRD was less susceptible to RNA compared to 
WT (P <0.01). Thus, CRD appears to be a principal element for the RNA interference on the 

association between topo IIβ and supercoiled DNA. Importantly, this parallels the effects of 

RNA on catalytic activity (Fig. 6). As for linear DNA, RNA strongly inhibited both CRD- 

and CTD’-DNA interactions (Fig. 7C, right panel). 

   These data suggest that supercoiled DNA is recognized by and bound to the N-terminal 

catalytic core (ΔCTD) that contains minimal topo IIβ activities of ATPase and DNA 
binding/cleavage. The consecutive short segment, CRD, is not required for the supercoiled 

DNA binding but it regulates the association between the enzyme core and substrate DNA by 

an RNA-mediated mechanism, probably through direct interaction with RNA. Taken together, 

CRD is a critical domain that controls topo IIβ activity by conferring its susceptibility to RNA 
and directionality toward nucleolus. 

 

DISCUSSION 

Subnuclear localization and catalytic activity of topoisomerase IIβ  are linked 

Topo IIβ in interphase nuclei was reported to be highly mobile and free to exchange between 
nuclear subcompartments (21). The enzyme relocates from nucleoli to nucleoplasm upon 

stabilizing the catalytic intermediates, indicating that it is most actively engaged in DNA 

catalysis in nucleoplasm. The notion is in good agreement with our previous observation that 

in differentiating neuronal cells a large proportion of topo IIβ is involved in catalytic action 
and distributed in nucleoplasm, whereas in mature neuronal cells the enzyme is concentrated 

in nucleoli and has a limited access to chromatin DNA although isolated enzyme is fully 

active on plasmid DNA in vitro. (9,10). 

   Using topo IIβ mutants we have directly demonstrated in this study that enzymatically 

incompetent topo IIβ accumulates in the nucleolus. In ATP-depleted cells, both endogenous 

and EGFP-fused topo IIβ is exclusively nucleolar. The G173I mutant lacking ATP binding 
activity was exclusively nucleolar when expressed in HEK cells. We also showed that 

nucleoplasmic topo IIβ is the catalytically active form. Topo IIβ clamped around target DNA 
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by ICRF-193 treatment distributed predominantly in nucleoplasm. As expected, 

enzymatically incompetent topo IIβ (the G173I mutant and wild type topo IIβ in ATP 
depleted cells) did not change the nucleolar localization even after ICRF-193 treatment. The 

inactive tyrosine mutant, Y814S, was most likely immobilized on chromatin by the 

N-terminal clamp and thus heavily enriched in the nucleoplasm. 

   To our knowledge, the reversible translocation of topo IIβ induced by temperature has not 
been previously described. FRAP experiments and DNA relaxation with immobilized enzyme 

reveal that this effect is due to slower catalytic rates of topo IIβ at sub-optimal temperatures, 
which results in prolonged residence time in nucleoplasm in living cells. 

 

RNA is a major determinant of topoisomerase IIβ  localization in nucleoli 

The binding time of topo IIβ at 37°C estimated from FRAP was much longer in nucleoli than 
in nucleoplasm (Fig. 3B), which is in good agreement with Christensen et al. (21). They 

further showed later using a mathematical distribution model with simple differential 

equations that nuclear topo IIβ can be distinguished between free and bound fractions, 
indicating a higher proportion of bound form in nucleoli than in nucleoplasm (37). Whereas 

the binding time for nucleoplasmic topo IIβ increased remarkably at lower temperatures 
because of its decreased turnover rate on DNA, the binding time in nucleoli did not increase 

significantly (Fig. 3B), indicating that the enzyme is not interacting with DNA. Therefore, the 

putative binding partner(s) of topo IIβ in nucleoli is unlikely to be genomic DNA (presumably 
ribosomal DNA repeats). 

   Salt extraction experiments with whole cells indicated that the interaction between topo 

IIβ and cellular components is stable in 0.12 M NaCl but disrupted in 0.42 M NaCl, 
suggesting the ionic nature of this interaction (data not shown). Furthermore, treatment of 

permeabilized cells with RNase, but not DNase, resulted in the relocation of topo IIβ-EGFP 

from nucleoli to nucleoplasm (Fig. S2B). We have also presented more direct evidence for the 

binding of cellular RNA with topo IIβ that is immobilized on magnetic beads (Fig. 5B). These 

data suggest that RNA or an RNA-containing complex is a major holding element of topo IIβ 

in nucleoli that contributes to the prolonged residence of the enzyme in nucleoli. 

 

Identification of a new domain in CTD that mediates topoisomerase IIβ-RNA 

interactions and nucleolar localization 

EGFP-fused CTD expressed in HEK293 cells localized exclusively in nuclei with enhanced 

targeting to nucleoli. CTD’-EGFP, however, localized predominantly to nucleoplasmic 

regions (and was depleted from nucleoli). The human counterpart of CTD’ fragment that 
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contains multiple NLSs also localizes in nucleoplasm but not in nucleoli (17). It appears, 

therefore, the N-terminal 50 residues of CTD (CRD) are indispensable for nucleolar 

accumulation of CTD. 

   The CRD is located in a region predicted to be intrinsically disordered (Fig. S6A). 

However, its sequence is highly conserved among rat, mouse, and human topo IIβ but 

diversified from topo IIα (Fig. S6B). EGFP-fused CRD is small enough to passively diffuse 
into nuclei. For nuclear retention of CRD, the ‘Phi-K motif’ composed of a 15 amino acid 

stretch with alternating Lys and hydrophobic amino acids seems to be essential (Fig. 5D). The 

Phi-K motif, however, does not behave like a functional NLS since ΔCTD’-EGFP that 
contains the Phi-K motif but not a canonical NLS localized predominantly in cytoplasm (data 

not shown). CRD also contains a stretch of four Lys residues (termed K-stretch) that was 

necessary but not sufficient for nucleolar accumulation of CRD, which required both Phi-K 

motif and K-stretch. 

   Experimental validation of nucleolar localization signals (NoLSs) revealed that NoLSs are 

mainly comprised of a stretch of basic residues (Arg or Lys) and are localized in regions 

predicted to be α-helices or coils (44). Secondary structure of CRD around Phi-K motif and 

K-stretch predicted by Jpred 3 (45) did not contradict this view. Thus the Lys-rich regions in 

CRD (Phi-K motif and K-stretch) are likely to function together as a NoLS also in full-length 

topo IIβ. 

   Unlike the nucleus and other membrane-bound organelles, there is no membrane 

separating the nucleolus from the surrounding nucleoplasm, thus any soluble molecule could 

diffuse in and out of the nucleolar compartment. Targeting of a specific molecule to the 

nucleolus requires direct or indirect interaction with one of the nucleolar building blocks 

composed of rDNA, its transcripts, small nucleolar RNAs and a number of 

ribosomal/non-ribosomal proteins (46). A short stretch of positively charged amino acids of 

human T-cell leukemia virus Rex proteins that localize in nucleoli contributes to the binding 

of Rex to its target RNA (47). An Arg/Lys-rich peptide derived from TRBP, a cellular protein 

that binds HIV-1 trans-activation responsive (TAR) RNA, was necessary and sufficient to 

insure binding to the upper-stem/loop site of TAR that contains a double-stranded RNA 

(dsRNA). The Arg/Lys-rich peptide of TRBP is composed of 15 amino acid residues with 

alternations of Lys/Arg and hydrophobic amino acid stretches (48). The dsRNA elements can 

be formed by base pairing of complementary sequences within primary RNA transcripts. 

Based on these reports and our current results, we speculate that topo IIβ stays in nucleoli 
through interaction between CRD and nucleolar RNA. 
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CRD is an essential element for RNA-mediated regulation of topoisomerase IIβ  activity 

The CTD-truncated mutant (ΔCTD) was catalytically as active as full-length topo IIβ (15). 

However, CTD was essential for the RNA-mediated inhibition of topo IIβ catalytic activity. 

We have shown previously that relaxation of supercoiled DNA by full-length topo IIβ was 

inhibited by cellular RNA (23). In the present study it became clear that the RNA inhibition is 

abolished by truncation of CTD. A responsive element of the RNA-mediated inhibition was 

more finely mapped to CRD, since relaxation of supercoiled DNA by CRD-deleted mutants 

(ΔCTD and ΔCRD) was insensitive to RNA whereas the relaxation by the CRD containing 

mutant (ΔCTD’) was inhibited. 

   To understand the molecular mechanism of RNA-mediated regulation of topo IIβ through 

CRD, we compared DNA binding of immobilized topo IIβ with supercoiled (form I) and 
linear (form III) targets in the absence of ATP. The model shown in Fig. 8A and B will be 

helpful for understanding the following discussions. Without ATP, N-gate of the enzyme is 

supposed to be open and supercoiled DNA will not be relaxed (49,50). Full-length topo IIβ 
can bind with both supercoiled and linear DNA with preference to supercoils (Fig. 7A, Fig. 

S5), which is consistent with the notion that eukaryotic type II topoisomerases prefer 

supercoiled substrates because DNA crossings are more prevalent in superhelical DNA 

compared to unconstrained DNA (39,40,50,51). All the mutants we studied bound supercoiled 

DNA although the ability decreased somewhat when CTD or CTD’ was deleted. To our 

surprise, in contrast to supercoiled DNA, linear DNA did not bind to the ΔCTD mutant (both 
CTD’ and CRD were deleted) although it retained binding activity to supercoiled DNA. 

   These data suggest that supercoiled DNA binds to the core region of topo IIβ as an initial 

step and the CTD facilitates this binding. Inhibitory effects of RNA on supercoiled DNA 

binding to topo IIβ mutants resembled those on DNA relaxation activity of the mutants. This 
implies that the binding of RNA with CRD inhibits the interaction of supercoiled DNA 

substrate with the core region, resulting in the inhibition of relaxation (Fig. 8B). The 

inhibition appears to be noncompetitive in nature and CRD behaves like a built-in 

RNA-responsive element for the regulation of topo IIβ activity. Similarly, inhibitory effects 

of RNA on linear DNA binding to topo IIβ mutants resembled those on DNA capture by the 

enzyme during catalysis (Fig. 8B). The CTD-truncated topo IIβ does not bind linear DNA and 
lacks the ability to hold partially relaxed DNA, suggesting that interaction between CTD and 

substrate DNA is required for the retention of G-segment during the relaxation in a processive 

mode. RNA may thus interfere with the DNA retention by binding competitively to CTD 

(especially to CTD’ portion). 

   Although crystallographic information on CTD is not available at present, it would be 
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possible to extrapolate the position of CRD relative to the known structure because CRD 

resides right next to the C-terminus of the crystalized fragments (3,38,42,52). CTD’ may 

protrude away from the core region of topo IIβ and involved in holding the G-segment to 
drive the enzyme towards processive mode. However, CRD is probably placed close to the 

DNA gate and the active site tyrosine, thus regulating cleavage reaction more or less directly 

through interaction with RNA. Future studies on CRD structure would help clarify matters. 

The topo IIβ CRD and corresponding region of topo IIα are not highly homologous although 

they share some features in common (Fig. S6B). It is not known whether this region in topo 

IIα serves as a functional counterpart of topo IIβ CRD. 
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FIGURE LEGENDS 

Figure 1. Subnuclear localization of topo IIβ under different conditions. Topo IIβ and 
nucleolin (as a nucleolus marker) were immunostained with cross-reactive antibodies in 

human (HEK293), rat (Rat-1), and mouse (Neuro 2a) cell lines under four different conditions. 

Topo IIβ (green), nucleolin (magenta) are shown together with merged images and DNA 

(DAPI). Scale bars, 5 µm. (A) Cells were fixed with paraformaldehyde (PFA) at 37°C. (B) 
Cells were fixed with PFA at 0°C. (C) Cells were first treated with 30 µM ICRF-193 for 15 

min and then fixed at 37°C. (D) Cells were first treated with 10 mM sodium azide and 6 mM 

2-deoxy-D-glucose for 40 min and then fixed at 37°C. 

 

Figure 2. Topo IIβ shuttles between nucleoplasm and nucleoli depending on the cellular 
content of ATP. At time-zero, culture medium was changed to depletion medium containing 

sodium azide and 2-deoxy-D-glucose. After 40 min the medium was replaced with normal 

medium and continued to incubate at 37°C (indicated by arrow). (A) Time course of the 

relative cellular ATP levels after depletion/recovery treatments. Cells were removed at the 

time points indicated and cellular ATP was determined by fluorometry and plotted in the 

graph. Data points represent mean/SD (n=3). Regression curves were drawn using a software, 

GraphPad Prism 5 (logistic curve fitting). (B) HEK cells were transfected with pEGFP-top2b 

and after 24 h the ATP depletion/recovery procedure was done as in A. Fluorescence 

micrographs of nuclei taken at the indicated times are shown in the upper row (control). 

Shown in the lower row are cells treated with 30 µM ICRF-193 for 15 min at the times 

indicated. Note that ICRF-induced relocation of topo IIβ does not occur under low ATP 

condition. Scale bar, 5 µm. 
 

Figure 3. Cold-induced translocation of topo IIβ from nucleolus to nucleoplasm is accounted 

for by its lowered catalytic rate. (A) Simultaneous recordings of medium temperature and 

nuclear distribution of topo IIβ-EGFP expressed in HEK cells. Medium temperature was 
varied using an on-stage heating/cooling device and monitored by a thermocouple 

thermometer. Images were recorded at 1 min intervals for 60 min. Scale bar, 5 µm. (B) HEK 

cells transfected with topo IIβ-EGFP were subjected to FRAP analysis either at 37°C or at 
18°C. Fluorescence images were recorded after bleaching the circled areas in nucleoplasm or 

nucleolus. Representative images and recovery curves (fluorescence relative to pre-bleach) 

are shown. Plotted in the bar graph are binding times in seconds that were calculated from 

kinetics data of 24 nuclei for each condition using ImageJ 1.4.6. Bars, mean/SD (n=24); 

**p=1.8x10-17, *p=6x10-3 by Student’s t-test. Scale bar, 5 µm. (C) Temperature dependency 
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of relaxation products in on-bead assay: enzyme-bound versus released DNAs. DNA bands in 

each lane were quantified by densitometry and relative amounts at each temperature were 

graphed. Note that the DNA in unbound fraction is fully relaxed at 15°C but remained 

supercoiled at 0°C. 

 

Figure 4. Migratory behavior of functionally defective topo IIβ mutants expressed in nucleus 
that are tagged with EGFP at C-terminus. (A) Summary of amino acid changes introduced to 

wild-type topo IIβ. (B) Assessment of in vivo topo IIβ activity by the band depletion assay. 

Activities for endogenous enzyme (labeled topo IIβ) and EGFP-fused exogenous one (topo 

IIβ-EGFP) can be discriminated by the size difference. EGFP-fused mutants are abbreviated: 

GI, G173I; LF, L178F; YS, Y814S. (C) Changes in the nuclear distribution of topo IIβ 
mutants after ICRF-193 treatment. Shown here are EGFP fluorescence images (upper panel; 

scale bar, 5 µm) and the ratio of nucleolar fluorescence to whole nuclear fluorescence (lower 

graph). The ratio was determined by using the “threshold” and the “integrated density 

(IntDen)” functions of ImageJ software. Bars, mean/SD (n=50). 

 

Figure 5. RNA binding ability and cellular localization of topo IIβ domain-deletion mutants. 
(A) Domain diagram of deletion mutants used in this experiment that are dually tagged with 

Flag/EGFP. Amino acid sequence for CRD (C-terminal regulatory domain) and its 

subdomains (boxed) are given in the middle. (B) Binding of cellular RNA fractions with topo 

IIβ deletion mutants immobilized on magnetic beads. Plotted data are expressed in mean with 

SD (n=4). (C) Cellular localization of topo IIβ deletion mutants. EGFP images are shown 

along with DIC images. Images for the SV40 NLS (PKKKRKV) cloned in pEGFP-N1 are put 

on the right as a control. Scale bars, 5 µm. (D) Localization of CRD in intact, 
digitonin-treated, and digitonin/RNase-treated cells (upper panel). The subdomains boxed in 

A were further deleted from CRD and their cellular localizations were examined (lower 

panel). EGFP images are shown along with DIC images. Scale bars, 5 µm. 
 

Figure 6. Effects of RNA on the relaxation activity of topo IIβ domain-deletion mutants. (A) 
Domain structure of deletion mutants used here that are Flag-tagged on N-terminus (not 

shown in the figure). (B) Inhibitory effects of total RNA on the relaxation activity. 

Tag-purified topo IIβ and the domain mutants (20 fmol) were incubated with 5 ng of 
supercoiled pUC18 DNA. Increasing amounts of RNA (5, 50, 500 ng) was added to the 

reaction. Positions of supercoiled form (I) and relaxed form (Ir) DNA are indicated on the 

right. (C) Fractionation of relaxation intermediates into enzyme-bound and released DNA by 
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using 80 fmol immobilized topo IIβ domain mutants (on-bead assay). After incubation with 5 

ng of supercoiled DNA as described in Methods section, product DNA was fractionated into 

‘bound’ and ‘unbound’ by magnetic separation. (D) Effects of reaction temperature on the 

retention of relaxation intermediates on the enzyme. DNA in unbound fraction indicates that 

the supercoiled substrate remained almost unreacted at 0°C but no unreacted substrate 

remained at 15°C. Difference in the ladder position between 15°C and 37°C is due to the 

temperature-dependent alteration of the writhe for relaxed form (Ir). Results for the wild-type 

enzyme is shown in Fig. 3C. 

 

Figure 7. DNA binding assays of Flag-tagged topo IIβ domain-deletion mutants in the 

absence of ATP. (A) Competitive binding of supercoiled (form I) and linear (form III) DNA 

to the enzyme (80 fmol) immobilized on beads. After incubating equimolar mixture (5 ng 

each) of supercoiled and linear DNA with the beads, bound and unbound DNA was 

fractionated by magnetic separation. DNA amounts in agarose gel bands were quantified by 

densitometry and plotted in the graph as percentages of input DNA (n=3). (B) Effects of RNA 

on DNA binding. Five nanograms of supercoiled and linear DNAs were incubated separately 

with the enzyme (80 fmol). RNA was added as in Fig. 6C. (C) Relative amounts of bound 

DNA as determined by densitometry of the gel images shown in B. Supercoiled or linear 

DNA amounts bound to WT enzyme in the absence of RNA were set to 100%. Data points 

are mean with SD bar (n=5). Asterisks indicate a significant deviation from ΔCTD (p<0.005). 
 

Figure 8. Summary for relative contributions of topo IIβ functional domains. (A) Domains 

involved in the activities shown on the left are shaded. Dark shade and light shade represent 

full and partial contribution, respectively. (B) RNA-mediated inhibition. Inhibitory domains 

are shaded depending on their relative contributions as in A. Domains pointed by arrowhead 

are inhibited domains. Solid line and broken line designate the strong and weak inhibitions, 

respectively. Form I, supercoiled DNA; Form III, linear DNA. 
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Supplementary data 

Nuclear dynamics of topoisomerase IIβ  reflects its catalytic activity that is regulated by 
binding of RNA to the C-terminal domain 

Table S1.  Primer pairs for recombinant construction 
Vector Target Primer Sequence 

(Restriction sites or mutated codons are underlined) 

Restriction 

site 

pFlag-CMV-2 1-1614 

(full-length) 

Sense 5'-GCAGCGGCCGCGCTGCCATGGCCAAGTC-3' Not I 

Antisense 5'-GTGCTCCCCGGGCACTTAATTAAACATTGC-3' Sma I 

1-1199 

(ΔCTD) 

Sense 5'-GCAGCGGCCGCGCTGCCATGGCCAAGTC-3' Not I 

Antisense 5'-TCCCCCGGGCATCCCTGCCAGAAT-3' Sma I 

1-1250 

(ΔCTD’) 

Sense 5'-GCAGCGGCCGCGCTGCCATGGCCAAGTC-3' Not I 

Antisense 5'-TCCCCCGGGCTTCTTCTTCTTCAGCAG-3' Sma I 

1251-1614 

(CTD’) 

Sense 5'-GAAGCCCGGGGATCCTGATACTACA-3' Sma I 

Antisense 5'-GTGCTCCCCGGGCACTTAATTAAACATTGC-3' Sma I 

pEGFP-N1 1-1614 

(full-length) 

Sense 5’-GGCTCGAGCCACCATGGCCAAGTCCAGC-3’ Xho I 

Antisense 5’-GCTCCCGGGGCACTTCATTAAACATTGC-3’ Sma I 

G173I Sense 5'-GTTACAGGAGGCCGTAATATTTATGGTGCAAAACTT-3' 

Antisense 5'-AAGTTTTGCACCATAAATATTACGGCCTCCTGTACC-3' 

L178F Sense 5'-GGAGGCCGTAATGGTTATGGTGCAAAATTTTGTAATATTTTTAGT-3' 

Antisense 5'-ACTAAAAATATTACAAAATTTTGCACCATAACCATTACGGCCTCC-3' 

Y814S Sense 5'-GATGCTGCAAGCCCCCGTTCTATCTTCACAATGTTAAGC-3' 

Antisense 5'-GCTTAACATTGTGAAGATAGAACGGGGGCTTGCAGCATC-3' 

pFlag-CMV-2-

EGFP 

1-1614 

(full-length) 

Sense 5'-GCAGCGGCCGCGCTGCCATGGCCAAGTC-3' Not I 

Antisense 5'-GTGCTCCCCGGGCACTAAATTAAACATTGC-3' Sma I 

1-1199 

(ΔCTD) 

Sense 5'-GCAGCGGCCGCGCTGCCATGGCCAAGTC-3' Not I 

Antisense 5'-TCCCCCGGGCATCCCTGCCAGAAT-3' Sma I 

1201-1614 

(CTD) 

Sense 5'-TCCCCCGGGAAAGCAGTGAAAGGCAAA-3' Sma I 

Antisense 5'-GTGCTCCCCGGGCACTAAATTAAACATTGC-3' Sma I 

1251-1614 

(CTD’) 

Sense 5'-GAAGCCCGGGGATCCTGATACTACA-3' Sma I 

Antisense 5'-GTGCTCCCCGGGCACTAAATTAAACATTGC-3' Sma I 

1201-1250 

(CRD) 

Sense 5'-TCCCCCGGGAAAGCAGTGAAAGGCAAA-3' Sma I 

Antisense 5'-TCCCCCGGGCTTCTTCTTCTTCAGCAG-3' Sma I 
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Figure S1. The catalytic cycle of type II DNA topoisomerase. 

The duplex DNA entering the topo II dimer (G-segment) is cut and cross-linked transiently to 

the enzyme in the intermediate called “cleaved complex”. After the transfer of another

duplex (T-segment) the gap is rapidly re-sealed. The inhibitor etoposide stabilizes the 

complex to trap the enzyme on DNA ends covalently, whereas ICRF-193 prevents the 

enzyme from entering the next cycle and clamps the enzyme on G-segment. In the distributive 

mode G-segment is released at the end of each cycle, while the enzyme enters next cycle 

without releasing G-segment in the processive mode. 

Modified from Berger et al. (1996) Nature 379, 225-232  !

Cleaved!

Distributive�

Processive�
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Figure S2. Changes in nuclear localization of topo IIβ by nuclease treatments. (A) Selective 
degradation of RNA/DNA in digitonin-treated cells. Confluent HEK cells were first 

permeabilized with digitonin and treated with RNase/DNase. After deproteinization with 

SDS/PK, nucleic acids were separated in 1% agarose gel electrophoresis. (B) HEK cells 

grown on 35-mm glass-bottomed dishes for 48 h were treated with RNase/DNase as in A. 

EGFP images are shown along with DIC (differential interference contrast) images revealing 

nucleoli (lower panel). Significant decrease of nucleolar EGFP signal in the central region is 

evident after RNase treatment. Scale bars, 5 µm.
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Figure S3. Enzyme dose dependency of relaxation with topo IIβ WT and domain-deletion 
mutants: bead-bound versus free enzyme. (A) Gel images of reaction products. Reactions 

were set up with decreasing amounts of the enzyme (2-fold dilution series). Amounts of 

enzyme protein are indicated on the gel top. S, supercoiled substrate. (B) Gel bands in A were 

quantified by densitometry and the percentages of unreacted supercoiled substrate are plotted 

against enzyme amounts in logarithmic scale. Regression curves were drawn using a software, 

GraphPad Prism 5 (logistic curve fitting). Note that specific activities among free enzymes 

are not very different but those for the immobilized mutants with deletions in CTD (ΔCTD 

and ΔCTD’) are significantly higher than others. 
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Figure S4. Effects of enzyme dose on RNA inhibition and product retention with topo IIβ 

CTD mutants. (A) Relaxation with decreasing doses of ΔCRD in the absence and presence of 

RNA. Doses used were 20, 10, 5, 2.5, 1.2, 0.6 fmol of Flag-ΔCRD and 500 ng of total RNA. 

(B) On-bead relaxation assay of ΔCTD. Enzyme-bound (B) and unbound (U) relaxation 

products were analyzed after the reaction with indicated amounts of Flag-ΔCTD immobilized 
on magnetic beads.



 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. Binding of supercoiled and linear DNA with WT-topo IIβ. Increasing amounts of 

form I and form III pUC18 DNA (1:1 mixture) were incubated with WT-topo IIβ (80 fmol) 
immobilized on magnetic beads. DNAs bound on washed beads were separated by agarose 

gel electrophoresis and quantified by densitometry. Note that total DNA amounts bound on 

beads (I+III) are almost constant irrespective of added DNA dose. 
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predicted by POODLE�

Rat_beta    1201 GKAVKGKVGKAKVKKLQLEETMPSPYGRRIVPEIT-AMKADASRKLLKKKKGDPDTTVVKVEFDEEFSGTPAEGTGEETLTPSAP 1284!
Mouse_beta  1201 GKAIKGKVGKPKVKKLQLEETMPSPYGRRIVPEIT-AMKADASRKLLKKKKGDPDTTVVKVEFDEEFSGTPAEGTGEETLTPSAP 1284!
Human_beta  1208 GKAIKGKVGKPKVKKLQLEETMPSPYGRRIIPEIT-AMKADASKKLLKKKKGDLDTAAVKVEFDEEFSGAPVEGAGEEALTPSVP 1291!
Rat_alpha   1192 GKGVKAKGKKAQIS-----EVLPSPVGKRVIPQVTMEMRAEAEKKIRRKIK------------SENVEGTPAE-DGAEPG-LRQR 1257!
Mous_alpha  1192 GKAGKAKGKKAQMCA----DVLPSPRGKRVIPQVTVEMKAEAEKKIRKKIK------------SENVEGTPAE-DGAEPGSLRQR 1259!
Human_alpha 1195 GKGGKAKGKKTQMA-----EVLPSPRGQRVIPRITIEMKAEAEKKNKKKIK------------NENTEGSPQE-DGVELEGLKQR 1261!
          !
!
Rat_beta    1285 VNKGPKPKREKKEPGTRVRKTPASTGKPNTKKVKKRNPWSDDESKSESDLEEAEPVVIPRDSLLRRAAAERPKYTFDFSEEEEDD 1369!
Mouse_beta  1285 VNKGPKPKREKKEPGTRVRKTPTSTGKTNAKKVKKRNPWSDDESKSESDLEEAEPVVIPRDSLLRRAAAERPKYTFDFSEEEDDD 1369!
Human_beta  1292 INKGPKPKREKKEPGTRVRKTPTSSGKPSAKKVKKRNPWSDDESKSESDLEETEPVVIPRDSLLRRAAAERPKYTFDFSEEEDDD 1376!
Rat_alpha   1258 LEK-----RQKREPGTRAKKQTTLPFKP-IKKAQKQNPWSDSESDMSS--NESNFDVPPREKEPRIAAT-KAKFTADLDSDDDFS 1333!
Mouse_alpha 1260 IEK-----KQKKEPG--AKKQTTLPFKP-VKKGRKKNPWSDSESDVSS--NESNVDVPPRQKEQRSRAA-KAKFTVDLDSDEDFS 1333!
Human_alpha 1262 LEK-----KQKREPGTKTKKQTTLAFKP-IKKGKKRNPWSDSESDRSS--DESNFDVPPRETEPRRAAT-KTKFTMDLDSDEDFS 1337!
                            !
!
Rat_beta    1370 ADDDDD-NNDLEELKVKASPITNDGEDEFVPSDGIDKDEYAFSPGKSKATPEKSSHDKKSQDFGNLFSFPSYSQKSEDDSAKFDS 1453!
Mouse_beta  1370 AAAADD-SNDLEELKVKASPITNDGEDEFVPSDGLDKDEYAFSSGKSKATPEKSSNDKKSQDFGNLFSFPSYSQKSEDDSAKFDS 1453!
Human_beta  1377 ADDDDDDNNDLEELKVKASPITNDGEDEFVPSDGLDKDEYTFSPGKSKATPEKSLHDKKSQDFGNLFSFPSYSQKSEDDSAKFDS 1461!
Rat_alpha   1334 GLDEKD------------------EDEDFFPLDDT--------PPKTKMPPKNTKKALKPQ--KSSTS-VDLESD-GKDSVPASP 1388!
Mouse_alpha 1334 GLDEKD------------------EDEDFLPLDAT--------PPKAKIPPKNTKKALKTQ--GSSMSVVDLESD-VKDSVPASP 1389!
Human_alpha 1338 DFDEKT------------------DDEDFVPSDAS--------PPKTKTSPKLSNKELKPQ--KSVVS--DLEADDVKGSVPLSS 1392!
                                                                                    !
!
Rat_beta    1454 NEEDTTSVFAPSFGLKQTDKVPSQTVAAKKGKAPSDAAAPKAKRAPRQRKVVEPANSDSDSELGNIPKKTAAPKGKGRGAKKRKA 1538!
Mouse_beta  1454 NEEDTASVFAPSFGLKQTDKLPSKTVAAKKGKPPSD-TAPKAKRAPKQKKIVETINSDSDSEFG-IPKKTTTPKGKGRGAKKRKA 1536!
Human_beta  1462 NEEDSASVFSPSFGLKQTDKVPSKTVAAKKGKPSSD-TVPKPKRAPKQKKVVEAVNSDSDSEFG-IPKKTTTPKGKGRGAKKRKA 1544!
Rat_alpha   1389 GASAADVPAETEPSKPSSKQTVGVKRTITKGQSLTSTAGTKKRAVPKETKSDSALNAH-------VSKKPAPAKAKNS--RKRMP 1464!
Mouse_alpha 1390 GVPAADFPAETEQSKPS-KKTVGVKKTATKSQSSVSTAGTKKRAAPKGTKSDSALSAR-------VSEKPAPAKAKNS--RKRKP 1464!
Human_alpha 1393 SPPATHFPDETEITNPVPKKNVTVKKTAAKSQSSTSTTGAKKRAAPKGTKRDPALNSG-------VSQKPDPAKTKNR--RKRKP 1468!
                             !
!
Rat_beta    1539 SGSENEGDYNPGRKPSKTASKKPKKTSFDQDSDVDIFPSDFTSEPPALPRTGRARKEVKYFAESDEEED-VDFAMFN 1614!
Mouse_beta  1537 SGSENEGDYNPGRKPSKTASKKPKKTSFDQDSDVDIFPSDFTSEPPALPRTGRARKEVKYFAESDEEED-VDFAMFN 1612!
Human_beta  1545 SGSENEGDYNPGRKTSKTTSKKPKKTSFDQDSDVDIFPSDFPTEPPSLPRTGRARKEVKYFAESDEEEDDVDFAMFN 1621!
Rat_alpha   1465 SSSDSSDSEFEKAISKGATSKKLKGEERD-------FHVDLDDTVAPRAKSGRARKPIKYLEESDDD-------LF- 1526!
Mouse_alpha 1465 SSSDSSDSDFERAISKGATSKKAKGEEQD-------FPVDLEDTIAPRAKSDRARKPIKYLEESDEDDD-----LF- 1528!
Human_alpha 1469 STSDDSDSNFEKIVSKAVTSKKSKGESDD-------FHMDFDSAVAPRAKSVRAKKPIKYLEESDDDD------LF- 1531�

B� CRD�

NLS�

NLS�

NLS� NLS�

 
Figure S6. Secondary structure prediction and conserved regions of topo IIβ CTD. (A) Rat 
topo IIβ amino acid sequence 1000-1614 was subjected to the analysis for disordered regions 
using an online tool called POODLE (mbs.cbrc.jp/poodle/). Positions for CTD and CRD are 
indicated. The high disorder probability in CTD reflects that the region is poor in distinct 
secondary structures. (B) Amino acid sequence alignment of CTD of topo II isoforms. 
Sequences aligned are topo IIβ and topo IIα for three species (rat, mouse, human). Numbers 
on both sides represent residue numbers. CLUSTALX (www.clustal.org/clustal2/) was used 
as a tool for multiple sequence alignment. Amino acids shared by topo IIβ sequences or by all 
sequences are shaded. 
 


