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STEENROD-ČECH HOMOLOGY-COHOMOLOGY

THEORIES ASSOCIATED WITH BIVARIANT FUNCTORS

Kohei Yoshida

Abstract. Let NG0 denote the category of all pointed numerically
generated spaces and continuous maps preserving base-points. In [SYH],
we described a passage from bivariant functors NG

op
0 ×NG0 → NG0

to generalized homology and cohomology theories. In this paper, we
construct a bivariant functor such that the associated cohomology is
the Čech cohomology and the homology is the Steenrod homology (at
least for compact metric spaces).

1. introduction

According to [Du], a topological space X is said to be ∆-generated if it
has the final topology with respect to its singular simplexes. CW-complexes
are typical examples of such ∆-generated spaces. In [SYH], we showed that
the category of ∆-generated spaces is equivalent to the subcategory of the
category Diff of diffeological spaces consisting of those special type of ob-
jects which we call numerically generated spaces. Throughout this pager,
we use term “numerically generated” instead of “∆-generated”. Let NG0

be the category of pointed numerically generated spaces and pointed con-
tinuous maps. In [SYH], we showed that NG0 is a symmetric monoidal
closed category with respect to the smash product, and that every bilinear
enriched functor F : NG

op
0 ×NG0 → NG0 gives rise to a pair of general-

ized homology and cohomology theories, denoted by h•(−, F ) and h•(−, F )
respectively, such that

hn(X,F ) ∼= π0F (Sn+k,ΣkX), hn(X,F ) ∼= π0F (ΣkX,Sn+k)

hold whenever k and n+ k are non-negative.
As an example, consider the bilinear enriched functor F which assigns

to (X,Y ) the mapping space from X to the topological free abelian group
AG(Y ) generated by the points of Y modulo the relation ∗ ∼ 0. The Dold-
Thom theorem says that if X is a CW-complex then the groups hn(X,F )
and hn(X,F ) are, respectively, isomorphic to the singular homology and
cohomology groups of X. But this is not the case for general X; there exists
a space X such that hn(X,F ) (resp. hn(X,F )) is not isomorphic to the
singular homology (resp. cohomology) group of X.
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The aim of this paper is to construct a bilinear enriched functor such
that for any space X the associated cohomology groups are isomorphic to
the Čech cohomology groups of X. Interestingly, it turns out that the corre-
sponding homology groups are isomorphic to the Steenrod homology groups
for any compact metrizable space X. Thus we obtain a bibariant theory
which ties together the Čech cohomology and the Steenrod homology theo-
ries.

Let NGC0 be the full subcategory of NG0 consisting of compact metric
spaces. For given a linear enriched functor T : NG0 → NG0, let

F̌ : NG
op
0 ×NGC0 → NG0

be a bifunctor which maps (X,Y ) to the space lim−→λ
map0(Xλ,holim←−−−µi

T (Y Č
µi
)).

Here λ runs through coverings ofX, andXλ is the Vietoris nerve correspond-
ing to λ ([P]). The main results of the paper can be stated as follows.

Theorem 1.1. The functor F̌ is a bilinear enriched functor.

Theorem 1.2. Let X be a compact metraizable space. Then hn(X, F̌) =
Hst

n (X,S) is the Steenrod homology group with coefficients in the spectrum

S = {T (Sk)}.

In particular, let T be the functor which assigns to everyX the topological
abelian group AG(X), and let

Č : NG
op
0 ×NGC0 → NG0

be the corresponding bifunctor.

Theorem 1.3. For any pointed space X, hn(X, Č) is the Čech cohomology

group of X, and hn(X, Č) is the Steenrod homology group of X if X is a

compact metralizable space.

Recall that the Steenrod homology group is related to the Čech homology
group of X by the exact sequence

0 // lim←−
1

λi

H̃n+1(X
Č
λi
) // Hst

n (X) // H̃n(X) // 0.

According to [KKS], if X is a movable compactum then we have

lim←−
1

λi

H̃n+1(X
Č
λi
) = 0, and hence the following corollary follows.

Corollary 1.4. Let X be a movable compactum. Then hn(X, Č) is the Čech
homology group of X.

The paper is organized as follows. In Section 2 we recall from [SYH] the
category NG0 and the passage from bilinear enriched functors to generalized
homology and cohomology theories. We also recall the definition of Čech
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cohomology and Steenrod homology group, and Vietoris and Čech nerves;
In Section 3 we prove Theorem 1.1; Finally, in Section 4 we prove Theorems
1.2 and 1.3.

2. Preliminaries

2.1. Homology and cohomology theories via bifunctors. LetNG0 be
the category of pointed numerically generated topological spaces and pointed
continuous maps. In [SYH] we showed that NG0 satisfies the following
properties:

(1) It contains pointed CW-complexes;
(2) It is complete and cocomplete;
(3) It is monoidally closed in the sense that there is an internal hom ZY

satisfying a natural bijection homNG0(X∧Y,Z) ∼= homNG0(X,ZY );
(4) There is a coreflector ν : Top0 → NG0 such that the coreflection

arrow νX → X is a weak equivalence;
(5) The internal hom ZY is weakly equivalent to the space of pointed

maps from Y to Z equipped with the compact-open topology.

Throughout the paper, we write map0(Y,Z) = ZY for any Y, Z ∈ NG0.
A map f : X → Y between topological spaces is said to be numerically

continuous if the composite f ◦ σ : ∆n → Y is continuous for every singular
simplex σ : ∆n → X. We have the following.

Proposition 2.1. ([SYH]) Let f : X → Y be a map between numerically

generated spaces. Then f is numerically continuous if and only if f is con-

tinuous.

From now on, we assume that C0 satisfies the following conditions: (i) C0

contains all finite CW-complexes. (ii) C0 is closed under finite wedge sum.
(iii) If A ⊂ X is an inclusion of objects in C0 then its cofiberX∪CA belongs
to C0; in particular, C0 is closed under the suspension functor X 7→ ΣX.

Definition 2.2. Let C0 be a full subcategory of NG0. A functor T : C0 →
NG0 is called enriched (or continuous) if the map

T : map0(X,X ′)→ map0(T (X), T (X ′)),

which assigns T (f) to every f , is a pointed continuous map.

Note that if f is constant, then so is T (f).

Definition 2.3. An enriched functor T is called linear if for any pair of a
pointed space X, a sequence

T (A)→ T (X)→ T (X ∪ CA)

induced by the cofibration sequence A → X → X ∪ CA, is a homotopy
fibration sequence.
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Example 2.4. Let AG : CW0 → NG0 be the functor which assigns to a
pointed CW-complex (X,x0) the topological abelian group AG(X) gener-
ated by the points of X modulo the relation x0 ∼ 0. Then AG is a linear
enriched functor. (see [SYH])

Theorem 2.5. ([SYH, Th 6.4]) A linear enriched functor T defines a gen-

eralized homology {hn(X,T )} satisfying

hn(X,T ) =

{

πnT (X), n ≥ 0

π0T (Σ
−nX), n < 0.

Next we introduce the notion of a bilinear enriched functor, and describe
a passage from a bilinear enriched functor to generalized cohomology and
generalized homology theories. We assume that C′

0
satisfies the same con-

ditions of C0.

Definition 2.6. Let C0 and C′
0
be full subcategories of NG0. A bifunctor

F : Cop
0
×C′

0
→ NG0 is a function which

(1) to each objects X ∈ C0 and Y ∈ C′
0
assigns an object F (X,Y ) ∈

NG0;
(2) to each f ∈ map0(X,X ′), g ∈ map0(Y, Y

′) assigns a continuous map
F (f, g) ∈ map0(F (X ′, Y ), F (X,Y ′)).

F is required to satisfy the following equalities:
(a) F (1X , 1Y ) = 1F (X,Y );
(b) F (f, g) = F (1X , g) ◦ F (f, 1Y ) = F (f, 1Y ′) ◦ F (1X′ , g);
(c) F (f ′ ◦ f, 1Y ) = F (f, 1Y ) ◦F (f ′, 1Y ), F (1X , g′ ◦ g) = F (1X , g′) ◦F (1X , g).

Definition 2.7. A bifunctor F : Cop
0
×C0 → NG0 is called enriched if the

map

F : map0(X,X ′)×map0(Y, Y
′)→ map0(F (X ′, Y ), F (X,Y ′)),

which assigns F (f, g) to every pair (f, g), is a pointed continuous map.

Note that if either f or g is constant, then so is F (f, g).

Definition 2.8. For any pairs of pointed spaces (X,A) and (Y,B), F is
bilinear if the sequences

(1) F (X ∪ CA, Y )→ F (X,Y )→ F (A,Y )
(2) F (X,B)→ F (X,Y )→ F (X,Y ∪ CB),

induced by the cofibration sequences A → X → X ∪ CA and B → Y →
Y ∪ CB, are homotopy fibration sequences.

Example 2.9. Let T : NG0 → NG0 be a linear enriched functor, and let
F (X,Y ) = map0(X,T (Y )) for X,Y ∈ NG0. Then F : NG

op
0 ×NG0 →

NG0 is a bilinear enriched functor.
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Theorem 2.10. ([SYH, Th 7.4]) A bilinear enriched functor F defines a

generalized cohomology {hn(−, F )} and a generalized homology {hn(−, F )}
such that

hn(Y, F ) =

{

π0F (Sn, Y ) n ≥ 0

π0F (S0,Σ−nY ) n < 0,
hn(X,F ) =

{

π0F (X,Sn) n ≥ 0

π−nF (X,S0) n < 0,

hold for any X ∈ C0 and Y ∈ C′
0
.

Proposition 2.11. ([SYH]) If X is a CW -complex, we have hn(X,F ) =
Hn(X,S) and hn(X,F ) = Hn(X,S), the generalized homology and cohomol-

ogy groups with coefficients in the spectrum S = {F (S0, Sn) | n ≥ 0}.

2.2. Čech cohomology and Steenrod homorogy groups. We recall
that the Čech cohomology group of X with coefficients group G is defined
to be the colimit of the singlular cohomology groups

Ȟ
n
(X,G) = lim−→λ

Hn(XČ
λ , G),

where λ runs through coverings ofX andXČ
λ is the Čech nerve corresponding

to λ., i.e. v ∈ XČ
λ is a vertex of XČ

λ corresponding to an open set V ∈ λ. On
the other hand, the Steenrod homology group of a compact metric space X
is defined as follows. As X is a compact metric space, there is a sequence
{λi}i≥0 of finite open covers of X such that λ0 = {X}, λi is a refinement

of λi−1, and X is the inverse limit lim←−i
XČ

λi
. According to [F], the Steenrod

homology group of X with coefficients in the spectrum S is defined to be
the group

Hst
n (X,S) = πnholim←−−−λi

(XČ
λi
∧ S)

where holim←−−− denotes the homotopy inverse limit. (See also [KKS] for the

definition without using subdivisions.)

2.3. Vietoris and Čech nerves. For each X ∈ NG0, let λ be an open
covering of X. According to [P], the Vietoris nerve of λ is a simplicial
set in which an n-simplex is an ordered (n + 1)-tuple (x0, x1, · · · , xn) of
points contained in an open set U ∈ λ. Face and degeneracy operators are
respectively given by

di(x0, · · · , xn) = (x0, x1, · · · , xi−1, xi+1, · · · , xn)

and

si(x0, x1, · · · xn) = (x0, x1, · · · xi−1, xi, xi, xi+1, · · · , xn), 0 ≤ i ≤ n.

We denote the realization of the Vietoris nerve of λ by Xλ. If λ is a re-
finement of µ, then there is a canonical map πλ

µ : Xλ → Xµ induced by the
identity map of X.
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The relation between the Vietoris and the Čech nerves is given by the
following Proposition due to Dowker.

Proposition 2.12. ([Do]) The Čech nerve XČ
λ and the Vietoris nerve Xλ

have the same homotopy type.

According to [Do], for arbitrary topological space, the Vietoris and Čech
homology groups are isomorphic and the Alexander-Spanier and Čech co-
homology groups are isomorphic.

3. Proof of Theorem 1.1

Let T be a linear enriched functor. We define a bifunctor F̌ : NG
op
0 ×NGC0

→ NG0 as follows. For X ∈ NG0 and Y ∈ NGC0, we put

F̌(X,Y ) = lim−→λ
map0(Xλ, holim←−−−µi

T (Y Č
µi
)),

where λ is an open covering of X and {µi}i≥0 is a set of finite open covers
of Y such that µ0 = {Y }, µi is a refinement of µi−1, and Y is the inverse

limit lim←−i
Y Č
µi
.

Given based maps f : X → X ′ and g : Y → Y ′, we define a map

F̌(f, g) ∈ map0(F̌(X
′, Y ), F̌(X,Y ′))

as follows. Let ν and γ be open covering of X ′ and Y ′ respectively, and let
f#ν = {f−1(U) | U ∈ ν} and g#γ = {g−1(V ) | V ∈ γ}. Then f#ν and g#γ
are open coverings of X and Y respectively. By the definition of the nerve,

there are natural maps fν : Xf#ν → X
′

ν and gγ : Y Č
g#γ
→ (Y ′)Čγ . Hence we

have the map

T (gγ)
fν : T (Y Č

g#γ)
X′

ν → T ((Y ′)Čγ )
X

f#ν

induced by fν and gγ . Thus we can define

F̌(f, g) = lim−→ν
holim←−−−γ

T (gγ)
fν : F̌(X ′, Y )→ F̌(X,Y ′).

Theorem 1.1. The functor F̌ is a bilinear enriched functor.
First we prove that the sequence

F̌(X ∪CA,Z)→ F̌(X,Z)→ F̌(A,Z)

induced by the sequence A → X → X ∪ CA, is a homotopy fibration se-
quence. Let λ be an open covering of X ∪ CA, and let λX , λCA and λA

be the coverings of X, CA and A consisting of those U ∈ λ such that U
intersects with X, CA, and A, respectively. We need the following lemma.

Lemma 3.1. We have a homotopy equivalence

(X ∪ CA)Čλ ≃ XČ
λX
∪ C(AČ

λA
).
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Proof. By the definition of the Čceh nerve, we have (X ∪ CA)Čλ = XČ
λX
∪

(CA)ČλCA
. Since

XČ
λX
∪ (CA)ČλCA

≃ XČ
λX
∪ AČ

λA
× I ∪ (CA)ČλCA

,

and since (CA)ČλCA
≃ ∗, we have

XČ
λX
∪ (CA)ČλCA

≃ XČ
λX
∪ C(AČ

λA
).

Hence we have (X ∪ CA)λ ≃ XČ
λX
∪ C(AČ

λA
). �

By Proposition 2.12 and Lemma 3.1, the sequence

AλA
→ XλX

→ (X ∪CA)λ

is a homotopy cofibration sequence. Hence the sequence

[(X ∪CA)λ, Z]→ [XλX
, Z]→ [AλA

, Z]

is an exact sequence for any λ. Since the nerves of the form λX (resp. λA)
are cofinal in the set of nerves of X (resp. A), we conclude that the sequence

F̌(X ∪CA,Z)→ F̌(X,Z)→ F̌(A,Z)

is a homotopy fibration sequence.
Now we show that the sequence F̌(Z,A) → F̌(Z,X) → F̌(Z,X ∪ CA) is

a homotopy fibration sequence. By the linearity of T , the sequence

T (AČ
λA

)→ T (XČ
λX

)→ T ((X ∪ CA)Čλ )

is a homotopy fibration sequence. Since the fibre T (AČ
λA

) is homeomorphic
to the inverse limit

lim←−(∗ → T ((X ∪ CA)Čλ )← T (XČ
λX

)),

we have

lim←−(∗ → holim←−−−λ
T ((X ∪ CA)Čλ )← holim←−−−λX

T (XČ
λX

))

≃ lim←− holim←−−−λ
(∗ → T ((X ∪ CA)Čλ )← T (XČ

λX
))

≃ holim←−−−λ
lim←−(∗ → T ((X ∪ CA)Čλ ) ← T (XČ

λX
))

≃ holim←−−−λ
T (AČ

λA
).

This implies that the sequence

holim←−−−λA

T (AČ
λA

)→ holim←−−−λX

T (XČ
λX

)→ holim←−−−λ
T ((X ∪ CA)Čλ )

is a homotopy fibration sequence, hence so is F̌(Z,A)→ F̌(Z,X)→ F̌(Z,X∪
CA).



92 KOHEI YOSHIDA

Next we prove the continuity of F̌. Let F (X,Y ) = map0(X,holim←−−−µi

T (Y Č
µi
)),

so that we have F̌(X,Y ) = lim−→λ
F (Xλ, Y ). We need the following lemma.

Lemma 3.2. The functor F is an enriched bifunctor.

Proof. Let F1(Y ) = holim←−−−µi

T (Y Č
µi
) and F2(X,Z) = map0(X,Z), so that we

have F (X,Y ) = F2(X,F1(Y )). Clearly F2 is continuous.

LetG1 be the functor which maps Y to holim←−−−µi

Y Č
µi
. Since T is enriched, F1

is continuous if so is G1. It suffices to show that the map G′
1 : map0(Y, Y

′)×

holim←−−−µi

Y Č
µi
→ holim←−−−λj

(Y ′)Čλj
, adjoint to G1, is continuous for any Y and Y ′.

Given an open covering λ of Y
′

, let pnλ be the natural map holim←−−−λ
(Y ′)Čλ →

map0(∆
n, (Y ′)Čλ ). Then G′

1 is continuous if so is the composite

pnλ ◦G
′
1 : map0(Y, Y

′)× holim←−−−µi

Y Č
µi
→ map0(∆

n, (Y ′)Čλ )

for every λ ∈ Cov(Y ′) and every n. Here we may assume by [SYH, Proposi-

tion 4.3] that map0(∆
n, (Y ′)Čλ ) is equipped with the compact open topology.

Let (g, α) ∈ map0(Y, Y
′)× holim←−−−µi

Y Č
µi
, and let WK,U ⊂ map0(∆

n, (Y ′)Čλ ) be

an open neighborhood of pnλ(G
′
1(g, α)), where K is a compact set of ∆n and

U is an open set of (Y ′)Čλ .

Let us choose simplices σ of Y Č
g♯λ

with vertices g−1(U(σ, k)), where U(σ, k) ∈

λ for 0 ≤ k ≤ dimσ. Let

O(σ) =
⋂

0≤k≤dimσ U(σ, k) ⊂ Y ′.

Let us choose a point yσ ∈
⋂

0≤k≤dimσ g
−1(U(σ, k)), then g(yσ) ∈ O(σ). Let

W1 be the intersection of all Wyσ,O(σ).
There is an integer l such that

µl > µl > g#λ

where µl is a closed covering {V |V ∈ µl} of Y . Thus for any U ∈ µl, there
is an open set VU ∈ g#λ such that U ⊂ g−1(VU ). Since Y is a compact set,
U is compact. Let W2 be the intersection of WU,VU

, and let W = W1 ∩W2.

Since µl > g#λ, we have

pnλ(G
′
1(g, α)) = (gλ)∗(π

µl

g#λ
)∗p

n
µl
α.

where (gλ)∗ and (πµl

g#λ
)∗ are induced by gλ : Y Č

g#λ
→ (Y ′)Čλ and πµl

g#λ
: Y Č

µl
→

Y Č
g#λ

, respectively. Let

W ′ = (pnµl
)−1(WK,(π

µl

g#λ
)−1(gλ)−1(U)).
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Then W ×W ′ is a neighborhood of (g, α) in map0(Y, Y
′)× holim←−−−µi

Yµi
. To

see that pλ ◦G
′
1 is continuous at (g, α), we need only show that W ×W ′ is

contained in (pλ ◦ G
′
1)

−1(U). Suppose (h, β) belongs to W ×W ′. Since W
is contained in W1, we have

yσ ∈ h−1(O(σ)) ⊂
⋂

0≤k≤dimσ h
−1(U(σ, k)).

This means that the vertices h−1(U(σ, k)) ∈ h♯λ, 0 ≤ k ≤ dimσ, determine
simplices σ′ of Yh♯λ each corresponding to each σ ⊂ Yg♯λ. Thus we have an
isomorphism

s : Y Č
h♯λ
→ Y Č

g♯λ
,

h−1(U(σ, k)) 7→ g−1(U(σ, k)).

Moreover since W is contained in W2, we have µl > h#λ.
Since the commutative diagram

Y Č
µl

//

  ❆
❆❆

❆❆
❆❆

❆
Y Č
g#λ

gλ // (Y ′)Čλ

Y Č
h#λ

hλ

<<③③③③③③③③③
s

OO

is commutative, we have the equation

pnλ ◦G
′
1(h, β)(K) = hλπ

µl

h#λ
(β)(K) = gλπ

µl

g#λ
(β)(K)

Since gλπ
µl

g#λ
(β)(K) is continued in U , so is pnλ ◦G

′
1(h, β)(K).

Thus pnλ ◦G
′
1 is continuous for all λ ∈ Cov(Y ′), and hence so is

G′
1 : map0(Y, Y

′)× holim←−−−µi

Y Č
µi
→ holim←−−−λj

(Y ′)Čλj
.

�

We are now ready to prove Theorem 1.1. For given pointed spaces X,
Y and a covering µ of X, let iµ denote the natural map F (Xµ, Y ) →
lim−→µ

F (Xµ, Y ). To prove the theorem, it suffices to show that the map

F̌
′
◦ (1× iλ) : map0(X,X ′)× F (X ′

λ, Y ) → map0(X,X ′)× lim−→λ
F (X ′

λ, Y )

→ lim−→µ
F (Xµ, Y )

which maps (f, α) to if♯λ(F (fλ, 1Y )(α)), is continuous for every covering λ
of X.

Let

Rλ : map0(X,X ′)→ lim−→µ
map0(Xµ,X

′
λ)
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be the map which assigns to f : X → X ′ the image of map0(X,X ′), fλ ∈
map0(Xf♯λ,X

′
λ) in lim−→µ

map0(Xµ,X
′
λ), and let Qλ be the map

lim−→µ
map0(Xµ,X

′
λ)× F (X ′

λ, Y )→ lim−→µ
F (Xµ, Y ),

[f, α] 7→ if♯λfλ ◦ α = if♯λ(F (fλ, 1Y )(α)).

Since we have F̌
′
◦ (1×iλ) = Qλ◦(Rλ×1), we need only show the continuity

of Qλ and Rλ. SinceQλ is induced by the maps map0(Xµ,X
′
λ)×F (X ′

λ, Y )→
F (Xµ, Y ), Qλ is continuous.

To see that Rλ is continuous, let WKf ,U be a neighborhood of fλ in

map0(Xf♯λ,X
′
λ), where Kf is a compact subset of Xf♯λ and U is an open

subset of X ′
λ. Since Kf is compact, there is a finite subcomplex Sf of Xf♯λ

such that Kf ⊂ Sf . Let τ fi , 0 ≤ i ≤ m, be simplexes of Sf . By taking
a suitable subdivision of Xf♯λ, we may assume that there is a simplicial

neighborhood N
τ
f
i
of each τ fi , 1 ≤ i ≤ m, such that Kf ⊂ Sf ⊂ ∪iNτ

f
i
⊂

f−1
λ (U).

Let {xik} be the set of vertices of τ fi and let W be the intersection of all
W{xi

k
},U

(τ
f
i
)′

where U
(τfi )′

is an open set of X ′
λ containing the set {f(xik)}.

Then W is a neighborhood of f . We need only show that Rλ(W ) ⊂
if#λ(WKf ,U ). Suppose that g belongs to W . Since {xik} is contained in

g−1(U
(τfi )′

) for any i, a simplex τ gi spanned by the vertices is contained in

Xg♯λ. Let S
g be the finite subcomplex of Xg♯λ consists of simplexes τ gi . By

the construction, Sf and Sg are isomorphic. Moreover there is a compact
subset Kg of Xg♯λ such that Kg and Kf are homeomorphic. On the other

hand, since g({xik}) ⊂ U
(τfi )′

, there is a simplex of X ′
λ having gλ(τ

g
i ) and

(τ fi )
′ as its faces. This means that gλ(τ

g
i ) ⊂ fλ(∪iNτ

f
i
). Thus we have

gλ(K
g) = ∪igλ(τ

g
i ) ⊂ fλ(∪iNτ

f
i
).

Let f ♯λ ∩ g♯λ be an open covering

{f−1(U) ∩ g−1(V ) | U, V ∈ λ}

of X. We regard Xf♯λ and Xg♯λ as a subcomplex of Xf♯λ∩g♯λ. Since
gλ|Xf♯λ∩g♯λ is contiguous to fλ|Xf♯λ∩g♯λ, we have a homotopy equivalence
gλ|Xf♯λ∩g♯λ ≃ fλ|Xf♯λ∩g♯λ. By the homotopy extension property of
gλ|Xf♯λ∩g♯λ : Xf♯λ∩g♯λ → X ′

λ and fλ : Xf♯λ → X ′
λ, gλ|Xf♯λ∩g♯λ extends to

map G : Xf♯λ → X ′
λ.

We have the relation G ∼ πf♯λ∩g♯λ
f♯λ

G = gλ|Xf♯λ∩g♯λ = πf♯λ∩g♯λ
g♯λ

gλ ∼

gλ, where ∼ is the relation of the direct limit. Moreover by G(Kf ) ⊂
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fλ(∪iNτ
f
i
) ⊂ U , we have [gλ] = [G] ∈ if#λ(WKf ,U). Hence Rλ is continuous,

and so is F̌
′
.

4. Proofs of Theorems 1.2 and 1.3

To prove Theorems 1.2 and 1.3, we need several lemmas.

Lemma 4.1. There exists a sequence λn
1 < λn

2 < · · · < λn
m < · · · of open

coverings of Sn such that :

(1) For each open covering µ of Sn, there is an m ∈ N such that λn
m is

a refinement of µ:
(2) For any m, Sn

λm
is homotopy equivalent to Sn.

Proof. We prove by induction on n. For n = 1, we define an open covering
λ1
m of S1 as follows. For any i with 0 ≤ i < 4m, we put

U(i,m) =

{

(cos θ, sin θ) |
(4i− 3)π

8m
< θ <

(4i+ 5)π

8m

}

.

Let λ1
m = {U(i,m)| 0 ≤ i < 4m}. Then the set λ1

m is an open covering of S1

and is a refinement of λ1
m−1. Clearly (S1)Č

λ1
m

is homeomorphic to S1, hence

S1
λ1
m

is homotopy equivalent to S1. Moreover for any open covering µ of S1,

there exists an m such that λ1
m is a refinement of µ. Hence the lemma is true

for n = 1. Assume now that the lemma is true for 1 ≤ k ≤ n−1. Let λ′n
m be

the open covering λn−1
m × λ1

m of Sn−1 × S1 and let λn
m be the open covering

of Sn induced by the natural map p : Sn−1 × S1 → Sn−1 × S1/Sn−1 ∨ S1.
Since Sn−1

λn−1
m

is a homotopy equivalence of Sn−1, we have

Sn
λn
m
≈ (Sn−1 × S1/Sn−1 ∨ S1)λn

m
≈ (Sn−1

λn−1
m
× S1

λm
)/(Sn−1

λn−1
m
∨ S1

λm
) ≈ Sn.

Thus the sequence λn
1 < λn

2 < · · · < λn
m < · · · satisfies the required condi-

tions. �

Lemma 4.2. hn(X, F̌) ∼= πnholim←−−−µ
T (XČ

µ ) for n ≥ 0.

Proof. By Lemma 4.1, we have an isomorphism

lim−→λ
[Sn

λ ,holim←−−−µ
T (XČ

µ )]
∼= [Sn,holim←−−−µ

T (XČ
µ )].
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Thus we have

hn(X, F̌) = π0 F̌(S
n,X)

= π0lim−→λ
map0(S

n
λ ,holim←−−−µ

T (XČ
µ ))

∼= lim−→λ
[S0,map0(S

n
λ ,holim←−−−µ

T (XČ
µ )]

∼= lim−→λ
[Sn

λ ,holim←−−−µ
T (XČ

µ )]

∼= [Sn,holim←−−−µ
T (XČ

µ )]

∼= πnholim←−−−µ
T (XČ

µ ).

�

Now we are ready to prove Theorem 1.2. Let X be a compact metric
space and let S = {T (Sk) | k ≥ 0}. Since X is a compact metric space,
there is a sequence {µi}i≥0 of finite open covers of X with µ0 = X and µi

refining µi−1 such that X = lim←−i
XČ

µi
holds. Let us denote XČ

µi
= XČ

i and

Xµi
= Xi if there is no possibility of confusion. According to [F], there is a

short exact sequence

0 // lim←−
1

i
Hn+1(X

Č
i ,S)

// Hst
n (X,S) // lim←−i

Hn(X
Č
i ,S)

// 0

whereHn(X,S) is the homology group of X with coefficients in the spectrum
S. (This is a special case of the Milnor exact sequence [MI].) On the other
hand, by [BK], we have the following.

Lemma 4.3. ([BK]) There is a natural short exact sequence

0 // lim←−
1

i
πn+1T (X

Č
i )

// πnholim←−−−i
T (Xi) // lim←−i

πnT (X
Č
i )

// 0.

By Proposition 2.11, we have a diagram

(4.1)

0 // lim
←−

1

i
Hn+1(X

Č
i
, S)

∼=

��

// Hst

n
(X, S) // lim

←−i
Hn(X

Č
i
, S) //

∼=

��

0

0 // lim←−
1

i
πn+1(T (X

Č
i
)) // πn(holim←−−−i

T (X Č
i
)) // lim←−i

πn(T (X
Č
i
)) // 0.

Hence it suffices to construct a natural homomorphism

Hst
n (X,S)→ πn(holim←−−−i

T (XČ
i ))

making the diagram (4.1) commutative.



STEENROD-ČECH HOMOLOGY-COHOMOLOGY THEORIES 97

Since T is continuous, the identity map X ∧ Sk → X ∧ Sk induces a
continuous map i′ : X ∧ T (Sk)→ T (X ∧ Sk). Hence we have the composite
homomorphism

Hst
n (X,S) = πnholim←−−−i(X

Č
i ∧ S)

∼= lim−→k
πn+k(holim←−−−i

(XČ
i ∧ T (Sk))

I
−→ lim−→k

πn+k(holim←−−−i
T (XČ

i ∧ Sk))

∼= πn(holim←−−−i
T (XČ

i ))

in which I = lim−→k
i′k∗ is induced by the homomorphisms

i′
k
∗ : πn+k(holim←−−−i

(XČ
i ∧ T (Sk))→ πn+k(holim←−−−i

T (XČ
i ∧ Sk)).

Clearly resulting the homomorphism Hst
n (X,S)→ πn(holim←−−−i

T (XČ
i )) makes

the diagram (4.1) commutative. Thus hn(X, F̌) is isomorphic to the Steen-
rod homology group coefficients in the spectrum S.

Finally, to prove Theorem 1.3 it suffices to show that hn(X, Č) is isomor-
phic to the Čech cohomology group of X.

By Lemma 4.1, we have a homotopy commutative diagram

· · ·
= // AG(Sn)

= //

≃

��

AG(Sn)
= //

≃

��

· · ·

· · · // AG(Sn
λn
m−1

)
≃ // AG(Sn

λn
m
) // · · · .

Hence we have AG(Sn) ≃ holim←−−−i
AG(Sn

λn
i
).

Thus we have

hn(X, Č) = π0Č(X,Sn)

= π0lim−→λ
map0(Xλ,holim←−−−µ

AG((Sn)Čµ ))
∼= [S0, lim−→λ

map0(Xλ, AG(Sn)]
∼= lim−→λ

[S0,map0(Xλ, AG(Sn)]
∼= lim−→λ

[S0 ∧Xλ, AG(Sn)]
∼= lim−→λ

[Xλ, AG(Sn)].

Hence hn(X, Č) is isomorphic to the Čech cohomology group of X.
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