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MODULAR DIFFERENTIAL EQUATIONS WITH

REGULAR SINGULARITIES AT ELLIPTIC POINTS

FOR THE HECKE CONGRUENCE SUBGROUPS

OF LOW-LEVELS

Yuichi Sakai and Kenichi Shimizu

Abstract. In this paper, we give explicit expressions of modular differ-
ential equations with regular singularities at elliptic points for the Hecke
subgroups of level 2, 3, and 4, and their solutions expressed in terms of
the Gauss hypergeometric series. We also give quasimodular-form solu-
tions for some modular differential equations.

1. Introduction

In general, a definition of modular differential equations of second-order
on the upper half-plane is as follows. For a Fuchsian group of finite covolume
Γ ⊂ SL2(R) and a rational number k, we consider a second-order linear
differential equation with regular singularities:

(1) f ′′(τ) +A(τ)f ′(τ) +B(τ)f(τ) = 0,

where τ is a variable in the upper half-plane, the symbol ′ stands for a differ-
ential operator with respect to 2πiτ , and A(τ) and B(τ) are meromorphic
functions on the upper half-plane, which are at most of polynomial growth
in Im(τ)−1 in a neighrborhood of every cusp of Γ. Then, we call Eq. (1) a
modular differential equation of weight k for Γ if its solution space is invari-
ant under the weight k action of Γ, namely, if f(τ) is a solution of Eq. (1),

then (cτ + d)−kf
(aτ + b

cτ + d

)
is also a solution for any

(
a b
c d

)
∈ Γ. Note that

this condition does not depend on a choice of branches of (cτ +d)−k because
the differential equation is linear.

Historically, Kaneko and Koike in [4] constructed various modular-form
solutions of a certain modular differential equation of second-order, whose
coefficient functions A(τ) and B(τ) are holomorphic on the upper half-plane.
It was originally studied in [7] in connection to supersingular j-polynomials.
This differential equation has a property that the space of solutions is invari-
ant under the action of the modular group SL2(Z), and modular solutions
in [4] are all expressed in terms of the Gauss hypergeometric polynomials.
Later, Tsutsumi in [12] studied a larger class of second-order differential
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equations, and called it “modular differential equations” of second-order,
which allows regular singularities at elliptic points of SL2(Z), and described
modular solutions also in terms of hypergeometric series.

In this paper, because we are particularly interested in the case of the
Hecke congruence subgroups, we consider modular differential equations
of second-order with regular singularities at elliptic points for the Hecke
subgroup Γ0(N) (N = 2, 3, and 4). The result in [12] essentially uses the
property that SL2(Z) is a non-compact arithmetic triangular group. From
Takeuchi’s result in [8], all the Hecke congruence subgroups having a similar
property, namely, being non-compact arithmetic triangular groups are only
Γ0(N) (N = 2, 3, and 4), except for SL2(Z). Therefore, for these groups, it
is natural to seek modular differential equations of second order with regular
singularities at elliptic points because we expect to get a result similar to
the case of SL2(Z). Also, we give modular solutions explicitly in some cases,
and quasimodular solutions for some of these modular differential equations.
Because the proof of our results in this paper is similar to [5, 6, 12], we give
only its sketch.

2. Normal forms

We define functions which will be needed in the sequel. For this pur-
pose and for readers’ convenience, we give the following: the expression of
necessary forms (forms), all of their zero points (up to equivalence) (zeros),
Hauptmodul of the field of the modular functions (Hauptmodul), and struc-
ture of the space (we denote Mk) of modular forms of weight k (structure).
We also give analogs of the discriminant functions, which are

∆1(τ) = η(τ)24, ∆2(τ) =
η(2τ)16

η(τ)8
, ∆3(τ) =

η(3τ)9

η(τ)3
, ∆4(τ) =

η(4τ)8

η(2τ)4
,

where η(τ) = q
1

24

∏∞
n=1(1− qn) is the Dedekind eta function, and q = e2πiτ .

Here, the “analog” has the following properties:

(i) a logarithmic derivative of ∆N (τ) (N = 1, 2, 3, and 4) with respect to

2πiτ is equal to E
(N)
2 (τ), the Eisenstein series of weight 2 at i∞ for the

Hecke congruence subgroup of level N , i.e., E
(N)
2 (τ) = (log∆N (τ))′,

(ii) it has zero points only on the cusp i∞.

From these properties, we also have the following transformation formula:

(2) E
(N)
2

(aτ + b

cτ + d

)
= (cτ + d)2E

(N)
2 (τ) +

6c(cτ + d)

πi[SL2(Z) : Γ0(N)]

for

(
a b
c d

)
∈ Γ0(N). Hereinafter, N denotes the levels 2, 3, or 4.
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Case of SL2(Z). (k: positive even integer)

forms and zeros: Eisenstein series of weight 4 and 6:

E4(τ) = 1 + 240

∞∑

n=1

(
∑

d|n

d3)qn, a simple zero at ρ
(1)
1 = −1

2
+

√
3

2
i,

E6(τ) = 1− 504
∞∑

n=1

(
∑

d|n

d5)qn, a simple zero at ρ
(2)
1 = i.

Hauptmodul and structure:

j1(τ) =
E4(τ)

3

∆(τ)
, Mk(SL2(Z)) =

⊕

4v+6w=k
v,w≥0

CEv
4E

w
6 .

Case of N = 2. (k: positive even integer)

forms and zeros:

H2(τ) =1 + 24

∞∑

n=1

(∑

d|n
d:odd

d

)
qn, a simple zero at ρ2 = −1

2
+

i

2
.

Hauptmodul and structure:

j2(τ) =
H2(τ)

2

∆2(τ)
, Mk(Γ0(2)) =

⊕

2v+4w=k
v,w≥0

CHv
2∆

w
2 .

Case of N = 3. (k: positive integer)

forms and zeros:

I3(τ) =1 + 6

∞∑

n=1

(∑

d|n

(
d

3

))
qn, a simple zero at ρ3 = −1

2
+

i

2
√
3
.

Hauptmodul and structure:

j3(τ) =
I3(τ)

3

∆3(τ)
, Mk(Γ0(3),

( ·
3

)k

) =
⊕

v+3w=k
v,w≥0

CIv3∆
w
3 .

Remark 1. We use
( ·
·

)
to denote the Legendre symbol.
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Case of N = 4. (k: positive half integer)

forms and zeros:

θ(τ) =
∑

n∈Z

qn
2

, θ(τ)4 has a simple zero at − 1

2
.

Hauptmodul and structure:

j4(τ) =
θ(τ)4

∆4(τ)
, Mk(Γ0(4), χk) =

⊕

v

2
+2w=k

v,w≥0

Cθv∆w
4 ,

where χk =
(−1

·

)k

if k is an odd integer, otherwise χk is trivial.

Furthermore, the table of all elliptic points and cusps (up to equivalence)
is a following:

SL2(Z) Γ0(2) Γ0(3) Γ0(4)

elliptic points ρ
(1)
1 , ρ

(2)
1 ρ2 ρ3 None

cusps ∞ 0, ∞ 0, ∞ 0, −1
2 , ∞

Then, we get the following from the above information.

Theorem 1. Any modular differential equation of weight k for Γ0(N) which
has regular singularities only at elliptic points for Γ0(N) is given by

(3) f ′′(τ) +A(N)(τ)f ′(τ) +B(N)(τ)f(τ) = 0,

where

A(2)(τ) = −k + 1

2
E

(2)
2 (τ) +

α2H2(τ)
2 + β2∆2(τ)

H2(τ)
,(4)

A(3)(τ) = −2(k + 1)

3
E

(3)
2 (τ) +

α3I3(τ)
3 + β3∆3(τ)

I3(τ)
,

A(4)(τ) = −(k + 1)E
(4)
2 (τ) + α4θ(τ)

4 + β4∆4(τ)

and

B(2)(τ) =
k(k + 1)

16
E

(2)
2 (τ)2 − k

4

α2H2(τ)
2 + β2∆2(τ)

H2(τ)
E

(2)
2 (τ)(5)

+
γ2H2(τ)

4 + δ̃2H2(τ)
2∆2(τ) + ε2∆2(τ)

2

H2(τ)2
,
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B(3)(τ) =
k(k + 1)

9
E

(3)
2 (τ)2 − k

3

α3I3(τ)
3 + β3∆3(τ)

I3(τ)
E

(3)
2 (τ)

+
γ3I3(τ)

6 + δ̃3I3(τ)
3∆3(τ) + ε3∆3(τ)

2

I3(τ)2
,

B(4)(τ) =
k(k + 1)

4
E

(4)
2 (τ)2 − k

2
(α4θ(τ)

4 + β4∆4(τ))E
(4)
2 (τ)

+ γ4θ(τ)
8 + δ̃4θ(τ)

4∆4(τ) + ε4∆4(τ)
2

with some constants αN , βN , γN , δ̃N , εN ∈ C.

Proof. Because this proof is completely parallel to Theorem C in [12], we
give its sketch only for the case of Γ0(2), other cases being similarly proved.

Because any elliptic point for Γ0(2) is equivalent to ρ2, by the definition

of regular singular points, the functions H2(τ) ·A(2)(τ) and H2(τ)
2 ·B(2)(τ)

are holomorphic on the upper half plane. The modularity of the space of
solutions for Eq. (3) gives

(6) A(2)
(aτ + b

cτ + d

)
= (cτ + d)2A(2)(τ)− k + 1

πi
c(cτ + d)

and

B(2)
(aτ + b

cτ + d

)
= (cτ+d)4B(2)(τ)− k

2πi
c(cτ+d)3A(2)(τ)+

k(k + 1)

(2πi)2
c2(cτ+d)2.

From the quasimodular property of E
(2)
2 (τ) as well as the holomorphy of

H2(τ) · A(2)(τ), we conclude from Eq. (6) that the function

H2(τ)
(
A(2)(τ) +

k + 1

2
E

(2)
2 (τ)

)

is a holomorphic modular form of weight 4 for Γ0(2). Because the space of
modular forms of weight 4 for Γ0(2) is spanned by H2(τ)

2 and ∆2(τ), we
have Eq. (4) for some α2, β2 ∈ C. Similarly, the function

H2(τ)
2
(
B(2)(τ)− k(k + 1)

16
E

(2)
2 (τ)2

)
+

k

4
E

(2)
2 (τ)H2(τ)(α2H2(τ)

2+β2∆2(τ))

is a holomorphic modular form of weight 8 for Γ0(2), thus contained in the
space spanned by H2(τ)

4, H2(τ)
2∆2(τ) and ∆2(τ)

2. Therefore we have Eq.

(5) for some γ2, δ̃2, ε2 ∈ C. �

If f(τ) is a solution of a modular differential equation in Theorem 1,
then we can see that the product of f(τ) and a suitable power of ∆N (τ)

is a solution for the modular differential equation D(N)
k (αN , βN , δN , εN ) (its

definition is below). In other words, we can shift it to the space of solutions

for D(N)
k by a power of ∆N (τ). Therefore, without loss of generality, we also
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assume that the modular differential equation has a power series solution of
the form 1 + h1q + h2q

2 + · · · (hn ∈ C). Under this assumption, we reduce
the number of parameters by one and obtain the following normalized form
of the modular differential equation.

Theorem 2. If a modular differential equation (3) of weight k for Γ0(N)
has regular singularities only at elliptic points for Γ0(N) and has a power

series solution of the form 1 + h1q + h2q
2 + · · · , then the equation is given

as

D(N)
k (αN , βN , δN , εN ) : f ′′(τ) +A(N)(τ)f ′(τ) +B(N)(τ)f(τ) = 0,

where A(N)(τ) is the same in Theorem 1, and

B(2)(τ) =
k(k + 1)

4
E

(2)
2 (τ)′ − k

4

(α2H2(τ)
2 + β2∆2(τ))

′

H2(τ)

+
∆2(τ)(δ2H2(τ)

2 + ε2∆2(τ))

H2(τ)2
,

B(3)(τ) =
k(k + 1)

3
E

(3)
2 (τ)′ − k

3

(α3I3(τ)
3 + β3∆3(τ))

′

I3(τ)

+
∆3(τ)(δ3I3(τ)

3 + ε3∆3(τ))

I3(τ)2
,

B(4)(τ) =
k(k + 1)

2
E

(4)
2 (τ)′ − k

2
(α4θ(τ)

4 + β4∆4(τ))
′

+∆4(τ)(δ4θ(τ)
4 + ε4∆4(τ))

with some constants αN , βN , δN , εN ∈ C, δN = δ̃N − ξ2N · k(k + 1 − αN ),
ξN = [SL2(Z) : Γ0(N)].

Proof. Using the relations

4E
(2)
2 (τ)′ = E

(2)
2 (τ)2 −H2(τ)

2 + 64∆2(τ),

2H2(τ)
′ = H2(τ)E

(2)
2 (τ)−H2(τ)

2 + 64∆2(τ),

3E
(3)
2 (τ)′ = E

(3)
2 (τ)2 − I3(τ)(I3(τ)

3 − 27∆3(τ)),

3I3(τ)
′ = I3(τ)E

(3)
2 (τ)− I3(τ)

3 + 27∆3(τ),

2E
(4)
2 (τ)′ = E

(4)
2 (τ)2 − θ(τ)4(θ(τ)4 − 16∆4(τ)),

4θ(τ)′ = θ(τ)(E
(4)
2 (τ)− θ(τ)4 + 16∆4(τ)),

and the characteristic polynomial of Eq. (3) at q = 0, we can check it. �
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3. Hypergeometric solutions of modular differential

equations

The Gauss hypergeometric differential equation is defined by

(7) x(1− x)
d2y

dx2
+

(
γ − (α+ β + 1)x

)dy
dx

− αβy = 0

where α, β, γ ∈ C. If γ, α − β and γ − α − β are not integers, the two
functions

(8) F (α, β, γ;x) and x1−γF (α− γ + 1, β − γ + 1, 2− γ;x)

give linearly independent solutions around x = 0, where the Gauss hyper-
geometric series F = 2F1 is defined by

F (α, β, γ;x) =

∞∑

n=0

(α)n(β)n
(γ)n

xn

n!
,

where (α)n = α(α + 1) · · · (α+ n− 1). The series F (α, β, γ;x) is a solution
of Eq. (7) when γ is not a non-positive integer. When α and γ (resp. β and
γ) are negative integers with α > γ (resp. β > γ), F (α, β, γ;x) becomes a
polynomial.

In a following theorem, we give the conditions that modular differential
equations with regular singularities at elliptic points for Γ0(N) have hyper-
geometric solutions.

Theorem 3. For given αN , βN , δN , εN ∈ C, put

s2 =
1

128

(
64α2 + β2 −

√
(64α2 + β2)2 − 256δ2 − 4ε2

)
, r2 =

k − 4s2
2

,

s3 =
1

54

(
27α3 + β3 −

√
(27α3 + β3)2 − 108δ3 − 4ε3

)
, r3 = k − 3s3,

s4 =
1

32

(
16α4 + β4 −

√
(16α4 + β4)2 − 64δ4 − 4ε4

)
, r4 = 2k − 4s4,

c2 = α2 −
k − 1

2
, c3 = α3 −

2k − 1

3
, c4 = α4 − k,

and let a2 and b2 be the solutions of the equation

X2 +
(
r2 +

β2
64

− 1

2

)
X +

r2
4

(
r2 +

β2
32

− 1
)
+

ε2
4096

= 0,

a3 and b3 the solutions of the equation

X2 +
(2r3

3
+

β3
27

− 1

3

)
X +

r3
9

(
r3 +

β3
9

− 1
)
+

ε3
729

= 0,

and a4 and b4 the solutions of the equation

X2 +
(r4
2

+
β4
16

)
X +

r4
16

(
r4 +

β4
4

)
+

ε4
256

= 0.
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Suppose either (i) cN is not an integer, or (ii) aN and cN are negative inte-

gers with aN > cN , or (iii) bN and cN are negative integers with bN > cN .

Then, the differential equation D(2)(α2, β2, δ2, ε2) has two linearly indepen-

dent solutions

Hr2
2 (H2

2 − 64∆2)
s2F

(
a2, b2, c2;

64

j2

)

and

Hr2
2 (H2

2 − 64∆2)
s2F

(
a2 − c2 + 1, b2 − c2 + 1, 2 − c2;

64

j2

)(64
j2

)1−c2

near i∞, and the differential equation D(3)(α3, β3, δ3, ε3) has two linearly

independent solutions

Ir33 (I33 − 27∆3)
s3F

(
a3, b3, c3;

27

j3

)

and

Ir33 (I33 − 27∆3)
s3F

(
a3 − c3 + 1, b3 − c3 + 1, 2 − c3;

27

j3

)(27
j3

)1−c3

near i∞, and the differential equation D(4)(α4, β4, δ4, ε4) has two linearly

independent solutions

θr4(θ4 − 16∆4)
s4F

(
a4, b4, c4;

16

j4

)

and

θr4(θ4 − 16∆4)
s4F

(
a4 − c4 + 1, b4 − c4 + 1, 2 − c4;

16

j4

)(16
j4

)1−c4

near i∞.

Proof. We describe a sketch of the proof in the case for Γ0(2), other cases
being similar and left to the reader.

We transform the Gauss hypergeometric equation (7) by a change of vari-

able into the equation D(2)(α2, β2, δ2, ε2). Putting x = 64/j2(τ), Eq. (7) is
transformed into the equation

g′′(τ) +
((2c2 − 1)H2(τ)

2 + 43(1− 2a2 − 2b2)∆2(τ)

2H2(τ)
− 1

2
E

(2)
2 (τ)

)
g′(τ)

− 43a2b2
∆2(τ)

H2(τ)2
(H2(τ)

2 − 64∆2(τ))g(τ) = 0.

Secondly, by changing the unknown

g(τ) = H2(τ)
−r2(H2(τ)

2 − 64∆2(τ))
−s2f(τ),
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the above differential equation transforms into f(τ):

(9) f ′′(τ) + Ã(2)(τ)f ′(τ) + B̃(2)(τ)f(τ) = 0,

where l = 2r2 + 4s2, and

Ã(2)(τ) =
( l − 1

2
+ c2

)
H2(τ)−

l + 1

2
E

(2)
2 (τ)

+ 32(1− 2a2 − 2b2 − 2r2)
∆2(τ)

H2(τ)
,

B̃(2)(τ) =
l(l + 1)

4
E(2)(τ)′ − l

4

( l − 1

2
+ c2

)(H2(τ)
2)′

H2(τ)

− l

4
· 32(1 − 2a2 − 2b2 − 2r2)

∆2(τ)
′

H2(τ)

+ (64s22 − 64(a2 + b2 − c2)s2 − 16(2a2 + r2)(2b2 + r2))∆2(τ)

+ 1024(2a2 + r2)(2b2 + r2)
∆2(τ)

2

H2(τ)2
.

Comparing the coefficients of D(2)(α2, β2, δ2, ε2) with those of Eq. (9), we
can get this theorem. Setting x = 27/j3(τ) and g(τ) = I3(τ)

−r3(I3(τ)
3 −

27∆3(τ))
−s3f(τ) for the case of N = 3, x = 16/j4(τ) and g(τ) =

θ(τ)−r4(θ(τ)4 − 16∆4(τ))
−s4f(τ) for the case of N = 4, we can check it

similarly. �

From this theorem, giving a suitable condition about αN , βN , δN , εN ,

and k, D(N)
k (αN , βN , δN , εN ) have modular-form solutions of weight k. The

following is an example:

Example . Assume δ2 = ε2 = 0. Suppose k is a positive even integer.

(i) When k ≡ 0 (mod 4) and if α2 − k−1
2 is a negative integer with the

additional condition k > 2(1+2α2), the equation D(2)
k (α2, β2, 0, 0) has

the modular form

H2(τ)
k

2F
(
−k

4
,−k − 2

4
− β2

64
, α2 −

k − 1

2
;

64

j2(τ)

)

of weight k for Γ0(2) as a solution. In particular, the case of β2 = 0,
this is a modular form solution when k ≡ 2 (mod 4).

To prove this, we only need to check that the hypergeometric series in
each expression becomes a polynomial if the assumption is satisfied, and
that the expression is indeed a holomorphic modular form,which is easily
seen.

Remark 2. In [3], the special case (α2 = β2 = 0) of Example (i) is treated.
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4. Quasimodular solution for D(N)
k (αN , βN , δN , εN )

In the previous section, we found that modular differential equations had
modular-form solutions expressed in terms of hypergeometric series. When,
however, the condition of Theorem 3 is not satisfied, e.g., when cN is a non-
positive integer we cannot consider F (aN , bN , cN ;x) in general and we do not
know whether the modular differential equation have modular solutions. But
even in this case, with a suitable condition, we can have some “quasimodu-
lar” forms as solutions. (See [4, 5, 6, 10].) These solutions correspond to the
condition that cN is a non-positive integer. We will give some quasimodular

forms as solutions of modular differential equations D(N)
k (αN , βN , δN , εN ).

First, we define the sequences of polynomials P
(N)
n (X), Q

(N)
n (X),

P
(N∗)
n (X), and Q

(N∗)
n (X) by

P
(N)
0 (X) = P

(N∗)
0 (X) = 1, P

(N)
1 (X) = P

(N∗)
1 (X) = X,

Q
(N)
0 (X) = Q

(N∗)
0 (X) = 0, Q

(N)
1 (X) = Q

(N∗)
1 (X) = 1,

P
(N)
n+1(X) = XP (N)

n (X) + µ(N)
n P

(N)
n−1(X) (n ≥ 1),

Q
(N)
n+1(X) = XQ(N)

n (X) + µ(N)
n Q

(N)
n−1(X) (n ≥ 1),

P
(N∗)
n+1 (X) = XP (N∗)

n (X) + µ(N∗)
n P

(N∗)
n−1 (X) (n ≥ 1),

Q
(N∗)
n+1 (X) = XQ(N∗)

n (X) + µ(N∗)
n Q

(N∗)
n−1 (X) (n ≥ 1),

where the constants µ
(N)
n and µ

(N∗)
n are given by

µ(2)
n = 4

(
4 +

1

n

)(
4− 1

n+ 1

)
, µ(2∗)

n = 4
(
4− 1

n

)(
4 +

1

n+ 1

)
,

µ(3)
n = 3

(
3 +

1

n

)(
3− 1

n+ 1

)
, µ(3∗)

n = 3
(
3− 1

n

)(
3 +

1

n+ 1

)
,

µ(4)
n = 4

(
2 +

1

n

)(
2− 1

n+ 1

)
, µ(4∗)

n = 4
(
2− 1

n

)(
2 +

1

n+ 1

)
.

Theorem 4.

(a) Suppose that k = ξN · n− 1(n = 1, 2, . . .). Then the form

K(N)
n =

√
∆NA

n−1
P

(N)
n−1

( ZN√
∆NA

)
V ′
N −

√
∆NA

n
Q

(N)
n−1

( ZN√
∆NA

)

is a quasimodular form of weight k + 1 and depth 1 for Γ0(N) whose

order of zero at i∞ is n, and is a solution of D(N)
k ((k + 1)/ξN , 0, 0, 0),
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where

ZN =





H2
2 − 128∆2 if N = 2,

I33 − 54∆3 if N = 3,

θ4 − 32∆4 if N = 4,

∆NA =





∆2(H
2
2 − 64∆2) if N = 2,

∆3(I
3
3 − 27∆3) if N = 3,

∆4(θ
4 − 16∆4) if N = 4,

VN =





H2/24 if N = 2,

I3/6 if N = 3,

(log θ)/2 if N = 4.

(b) Suppose that k = ξN · n+ 1(n = 1, 2, . . .). Then the form

K(N∗)
n =

√
∆NA

n−1
P

(N∗)
n−1

( ZN√
∆NA

)
(V ∗

N )′ −
√
∆NA

n
Q

(N∗)
n−1

( ZN√
∆NA

)
W ∗

N

is a quasimodular form of weight k + 1 and depth 1 for Γ0(N) whose

order of zero at i∞ is n, and is a solution of D(N)
k ((k+ 3)/ξN , lN , 0, 0),

where

V ∗
N =





−(H2
2 − 128∆2)/80 if N = 2,

−(I33 − 54∆3)/36 if N = 3,

−(θ4 − 32∆4)/24 if N = 4,

W ∗
N =





2E
(2)
2

2
−H2 if N = 2,

2E
(3)
2

2
− I23 if N = 3,

2E
(4)
2

2
− θ4 if N = 4,

l2 = −64, l3 = −36, and l4 = −32.

Proof. We can establish that K
(N)
n and K

(N∗)
n are solutions of each modular

differential equation by induction on n. By looking at the exponent of each
modular differential equation, we can easily find the order of zero at i∞ of
the solution is as stated. More detailed proof is given in [5], and the other
cases can be shown similarly, hence we omit them. �

Remark 3. For the case of Γ0(2), (a) in Theorem 4 was proved by Kaneko-
Koike in [5].
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