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Abstract

Recently, attribute-based user authentications using user’s attributes such as the gender, the
profession and the date of birth have been used to ensure the secure access from the valid
user to network services. However, in these ID-based systems, Service Providers (SPs) can
identify the user, record the user’s behaviors, and extract the user’s profile. As a result, the
conventional systems may cause a serious privacy problem. As a cryptographic solution to
this privacy problem, an anonymous credential system has been intensively researched. This
system allows an issuer to issue a certificate to a user containing the user’s attributes. Then,
based on this certificate, the user can anonymously convince a verifier of the possession of
such a certificate, where only the selected attributes can be disclosed without revealing any
other information about the user’s privacy.

Previously, an anonymous credential system with constant-size proofs was proposed.
This system supports the proofs of the inner product relations on attributes to handle the
complex logical relations on attributes as the CNF (Conjunctive Normal Form) and DNF
(Disjunctive Normal Form) formulas. However, this system suffers from the computational
cost: the proof generation needs exponentiations whose number depends on the number of
the literals in OR relations.

In this thesis, firstly, we propose a pairing-based anonymous credential system with the
constant-size proofs for CNF formulas and the efficient proof generation. In the system, the
proof generation needs only multiplications whose number depends on the number of literals,
and thus it is more efficient than the previous system. The key idea of our construction is to
use a pairing-based extended accumulator, by which we can verify that multiple attributes
are included in multiple sets, all at once. This leads to the verification of CNF formulas
on attributes. Since the accumulator is mainly obtained through by multiplications, we
achieve the better computational cost. To show the practicality of the proposed system, we
implemented it using the fast pairing library. The experimental result shows that the proof
generation time and the verification time are less than one second even for 100, 000 literals
in OR relations. This indicates that our system is sufficiently practical.

Secondly, we propose an extension of the anonymous credential system with the constant-
size proofs for CNF formulas to reduce the public key size. The key idea behind the extension
is to separate the set of candidates into two sets. In the basic system, to ensure the correctness
of a value u in the verification, the issuer publishes signatures on all candidates of the value.
In our extension, we consider two values for the value u, u1 and u2 such that u = u1 + u2,
and signatures on u1 and u2 are separately published. In the attribute proof protocol, the
user proves the knowledge of the signatures on both u1 and u2, for the verification of the
accumulator. The experimental result shows that the public key size is reduced to 2

√
N

for the original size N , although the computational costs are increased by about 20%. We
consider it as a trade-off to reduce the public key size.
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Thirdly, we propose an efficiency improvement of the computational overhead based on
online/offline precomputation technique to reduce the online computational costs of the proof
generation in case of lots of AND relations in the proved CNF formulas. All exponentiations
that can be used for the accumulator and witness computations are executed in advance in
the precomputation algorithm. Thus, exponentiations in the online accumulator and witness
computations are excluded, and only multiplications are needed. The experimental result
shows that the computational costs of the proof generation in the case of using lots of AND
relations are greatly reduced than our basic system. Hence, it is practical for mobile users.

One future work is to propose a system allowing proofs beyond CNF formulas. Although
our proposed system focuses only on the CNF formulas, in some real applications, we may
need some other logical relations beyond CNF formulas, such as monotone relations or even
negations. Another future work is the implementation of our system on smart phones such
as Android devices.
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Chapter 1

Introduction

1.1 Backgrounds

In recent years, due to the wide-spread use of Internet and wireless networks, Web services
have become very popular all over the world. Users can access various kinds of Web services
even through small mobile devices from any place at any time. It is possible to use many
cloud applications such as Gmail, skype, twitter, YouTube, google Voice from a smartphone.
In such services, to ensure the secure access only from the valid user, a user authentication
is greatly required.

Currently, for the authentication, an electronic identity (eID) such as an eID card has
been often used. The eID is issued by a trusted organization such as a government, a
company or a university. The eID includes attributes of the user such as the gender, the
occupation and the date of birth. Indeed, in many commercial applications, an attribute-
based authentication is highly desired instead of the user authentication. For instance,
when distributing violent video contents, the service provider needs to deny any access from
the underage users by checking the age attribute in the eID, as illustrated in Fig. 1.1. In
the current eHealth networks [1], patients are assigned to multiple attributes which directly
reflect their symptoms, undergoing treatments, etc. Those life-threatened attributes must be
verified by authorized medical facilities, such as hospitals and clinics. When needing medical
services, patients have to be authenticated by showing their corresponding attributes in order
to take appropriate healthcare actions.

Figure 1.1: An example of eID applications.
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One of the serious issues of existing attribute-based authentication systems is the user’s
privacy. The eID may reveal the user’s identity and furthermore it reveals the full set of
user’s attributes during the authentication. In conventional ID-based authentications, a user
is registered in the server, where the attributes are stored in the database. During accessing
the service, a user is authenticated with his/her ID and password by the service provider (SP).
Then, the SP verifies the attributes of the corresponding ID from the database. However,
in this case, the SP can trace the user’s service history by linking the ID and extract the
user’s profile using his/her attributes. These privacy information may be managed in a
misbehavior way. Thus, the conventional authentication systems may cause serious privacy
issues. Therefore, an attribute-based authentication with the strong privacy protection is
in demand, where users can disclose only the minimal amount of the personal information
necessary for the service instead of his/her ID.

To address this privacy issue, anonymous credential systems [2, 3, 4, 5, 6] have been
intensively researched. In these systems, the user can anonymously convince a verifier about
the possession of the specified attributes included in the certificate, as shown in Fig. 1.2.
Each certificate is a proof of membership, qualification, or privilege, and contains users’
attributes. There are three entities in an anonymous credential system: an issuer, a user,
and an SP. A user is issued a certificate including the attributes certified by a trusted issuer.
To get the access to the service, the user can anonymously prove a relation on the certified
attributes to the SP without revealing his/her original identity.

Figure 1.2: Model of anonymous credential system.

In the proof protocol of the anonymous credential system, only the selected attributes
can be disclosed without revealing any other information about the users privacy. Proofs
of more complex relation on attributes are also available. The AND relation is used when
proving the possession of all of the multiple attributes. For example, the user can prove that
he/she belongs to the department and is a professor, when entering the room of examination
papers. The OR relation represents the proof for possession of one of multiple attributes.
For example, he/she can prove that he/she is a technical staff, an assistant, or a professor,
when using a copy machine in a laboratory. An implementation on a standard Java card is
shown in [7].
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In [3], Camenisch and Groß proposed an RSA-based anonymous credential system with
proofs for the AND and OR relation, where the proofs have constant size with respect to
the number of attributes. In [5], the pairing-based system with the constant-size proofs was
proposed to achieve the short data size by excluding the the RSA-related assumptions. The
pairing [8, 9, 10] is a bilinear map constructed in Elliptic Curve Cryptography (ECC), and a
recent key technique to achieve highly functional cryptosystem such as anonymous credential
systems. However, both systems have a drawback: They allow us to prove only simple AND
or OR relations on attributes. Namely, we cannot prove any combination of AND and OR
relations simultaneously.

In [6], a pairing-based system with the constant-size proofs was proposed, where inner-
product relations on attributes can be proved. This means that we can handle CNF (Con-
junctive Normal Form) or DNF (Disjunctive Normal Form) formulas on attributes via the
polynomial-based encoding shown in [11]. However, this system has a drawback of the com-
putational cost: The proof generation needs exponentiations whose number depends on the
number of the literals in OR relations. In usual cases that the formulas include OR relations
for lots of literals, the user devices with the limited computational power such as electronic
ID cards need long time for processing the authentication.

1.2 Contributions

In this dissertation, we propose a pairing-based anonymous credential system with constant
size of proofs, such that the combinations of AND and OR relations on attributes can be
proved as CNF (Conjunctive Normal Form) formulas [12, 13, 14]. In our system, the proof
generation cost is more efficient than the system in [6], since only multiplications whose
number depends on the number of literals are needed and the multiplication’s cost is much
more less than the exponentiation’s one. The key idea of this proposal is the use of a
pairing-based accumulator in [4, 5, 15], which outputs a constant-size value from a large set
of input values. We consider that the input values are assigned to attributes and utilize
a zero-knowledge-proof friendly signature scheme [16] to certify a set of attributes as the
accumulator. As the underlying anonymous credential system, our system is derived from the
group signature scheme [17], and utilizes zero-knowledge proof technique [18] to anonymously
prove the ownership of the certificate to the SP. We extend the efficient accumulators in [4, 5]
to handle the proof of the CNF formula for the construction. In our extended accumulator,
we can verify that multiple attributes are included in multiple sets, all at once. This leads
to the verification of CNF formulas on attributes, where a CNF formula consists of AND
relations of OR relations on users attributes. Let V` be the set of attributes in the `-th OR
clause in the proved CNF formula, and let U be the set of user’s certified attributes. To
prove the CNF formula using accumulator, an attribute value from U must be included in
each V`, i.e., U ∩ V` 6= ∅, all at once. To hold the CNF formula, there must be at least one
common attribute between the user attribute set U and the CNF clauses V`. One demerit of
our system is the increase of public parameters. This increase happens when the maximum
number of matched attribute (i.e., |V` ∩ U |) is large for multiple `.

Then, to confirm the practicality of our proposed system, we implemented our scheme
using the fast pairing and ECC (Elliptic Curve Cryptography) library [19, 20]. In our
implemented system, we measured the computational processing times. The experimental
results show that the proof generation time and the verification time depend on the size of

3



CNF formula. When we consider the size of CNF formula that is the maximum number of
OR clauses upto 50, the proof generation and the verification time are at most 215 ms and
339 ms, respectively. Even for large number of attributes in an OR clause (|V`| = 100, 000),
the proof generation time is only 228 ms and the verification time is only 371 ms. These
indicates that our system is sufficiently practical.

The compensation of our scheme is the increase of public parameters, which brings a
large communication cost to the system. Hence, to overcome this overhead, we propose an
extension to reduce the public key size. In the previous system, to ensure the correctness
of a value u in the verification, the issuer publishes signatures on all candidates of u. In
this extension, we consider two values u1 and u2 such that u = u1 + u2, and signatures on
u1 and u2 are separately published. This modification reduces the public key size to 2

√
N

for the original size N . However, this trick increases the computational costs by about 20%
compared to our previous system, which we consider as a trade off in order to reduce the
key size. In our implementation, the proving time and the verification time are less than 200
ms and 500 ms respectively in a usual PC, which is still practical.

Finally, we propose an efficiency improvement based on online/offline precomputation
technique to reduce the online computational costs of the proof generation in case of lots of
AND relations in the proved CNF formulas. In the precomputation, all exponentiations that
can be used for the accumulator and witness computations are executed in advance. Thus,
exponentiations in the online accumulator and witness computations are excluded, and only
multiplications are needed. The experimental result shows that the computational costs of
the online proof generation in the user side are greatly reduced than our previous system,
and hence it is practical for mobile users. One demerit of this proposal is the storage cost
for lots of precomputed values. But the current small mobile devices have sufficiently large
storage.

1.3 Contents of This Dissertation

The remaining of this dissertation is organized as follows.
In Chapter 2, we begin with preliminaries where all the building blocks of our anonymous

credential scheme are defined. This chapter reviews the mathematical fundamentals for this
dissertation which covers the introduction of the mathematical setting such as the groups,
bilinear maps and the basic of pairings. Then the complexity assumptions, the structure-
preserving signature and Groth-Sahai proofs that are used in this dissertation are illustrated.

In Chapter 3, we extend the accumulator to fit the CNF formulas, describe the construc-
tion idea and propose our scheme.

In Chapter 4, to show the practicality and effectiveness of our proposed scheme, we
explain the implementation and experiments.

In Chapter 5, we describe the construction idea of the extended algorithm to reduce the
public parameters, and explain the implementation and experiments.

In Chapter 6, we propose an improvement based on online-offline technique.
Finally, Chapter 7 concludes this dissertation with some future works.
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Chapter 2

Preliminaries

2.1 Setting of Mathematics

2.1.1 Groups

In this research, the implemented anonymous credential system is mainly constructed based
on the bilinear groups and bilinear map. Our scheme utilizes the following bilinear groups:

1. G1 and G2 are multiplicative cyclic groups of prime order p,

2. g1 and g2 are randomly chosen generators of G1 and G2, respectively.

2.1.2 Bilinear Maps

Throughout this dissertation, we also employ bilinear maps and use the following notations:

1. GT is a multiplicative cyclic group of order p.

2. e is an efficiently computable bilinear map e : G1 × G2 → GT with the following
properties:

(a) Bilinearity: for all u, u′ ∈ G1 and v, v′ ∈ G2, e(uu′, v) = e(u, v)e(u′, v) and
e(u, vv′) = e(u, v)e(u, v′), and thus for all u,∈ G1, v,∈ G2 and a, b ∈ Z, e(ua, vb) =
e(u, v)ab

(b) Non-degeneracy: e(g1, g2) 6= 1T , where 1T is the identity element of group GT .

2.2 Pairing-Based Cryptography

The underlying secure technique of the pairing-based cryptosystem is Elliptic Curve Cryp-
tography (ECC), which is based on Discrete Logarithm Problem known as ECDLP (Elliptic
Curve Discrete Logarithm Problem). In this research, our main concentration is anonymous
credential system by utilizing the group signature, ECC, and pairing.

The pairing-based cryptography [8, 9, 10] is a technique to construct a cryptosystem by
mapping between elements of two cryptographic groups of elliptic curve rational points into
another group of vectors in extension field. Usually, the two groups are in the same group,
and they may come from different groups. Here, pairing means a mapping from two rational

5



Figure 2.1: The research layers of cryptographies.

points in the same or different group to a vector in another group. In this dissertation, we
describe only the pairing notation and its classes related to our work.

2.2.1 Notation and Fundamental

Fundamentally, the underlying of pairing-based cryptography is an elliptic curve defined over
finite field Fp where is generally defined by:

E/Fp : y
2 = x3 + ax+ b ∧ a, b ∈ Fp. (2.1)

Fp and E/Fp denote a prime finite field and an elliptic curve over Fp. Additionally, a
set of Fp-rational points on the curve forms an additive abelian group E(Fp). This group
includes a special point called infinity point O and its order is denoted by #E(Fp). Let
us consider there exists a large prime r that divides #E(Fp) such that r does not divide
p. In addition, there exists a subgroup G[r] which has a smallest positive integer k called
embedding degree, such that r divides pk − 1 but does not divide pi − 1 ∧ 1 ≤ i < k. Let us
suppose the subgroup E[r] ∼= G[r]× G[r] of r-torsion points lies in the elliptic curve E(Fpk)
defined over Fpk [21].

2.2.2 Types of Pairing

The bilinear map can be efficiently implemented with the pairings. There are two types of
bilinear pairings, symmetric (G1 = G2) and asymmetric (G1 6= G2). The symmetric pairings
can be called as type-1 pairings [22, 23]. As commented in [23], at the 128-bit security
level, the asymmetric type is faster than the symmetric type. Thus, in this dissertation, we
concentrate on the use of the asymmetric type. There are two types of asymmetric pairing
on bilinear groups (G1,G2,GT ): asymmetric pairings for which an efficiently-computable
homomorphism between G1 and G2 is known are called as type-2 pairings and asymmetric
pairings for which no efficiently-computable homomorphism is known between G1 and G2 are
called type-3 pairings [22, 23], where homomorphism denotes the map between two groups
(i.e., G1 and G2).
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2.2.3 Tate Pairing

Let G1 and G2 be subgroups of the order r in E(Fp) and (Fpk), respectively, and G1 6= G2.
Let us say rational points P ∈ G1 and Q ∈ G2, Tate pairing is a map e : G1 × G2 → GT with
the following properties:

1. Bilinearity: e(P a, Qb) = e(P,Q)ab, where 0 ≤ a, b ≤ r; r: order of ECC of group G1,
G2, GT .

2. Non-degeneracy: e(P,Q) 6= 1.

2.2.4 Barreto-Naehrig Curve

Barreto-Naehrig curve or BN curve is a family of ordinary curves. BN curve was discovered
by Barreto and Naehrig in 2005 which is an elegant method in constructing elliptic curves
E(Fp) with embedding degree k = 12. Now, it becomes a well-known pairing-friendly curve
with embedding degree k = 12. Note that, a pairing-friendly curve is an elliptic curve which
has a small embedding degree and a large prime order subgroup. BN curve is a parameterized
curve with the following parameters:

p(x) = 36x4 − 36x3 + 24x2 − 6x+ 1, (2.2)

r(x) = 36x4 − 36x3 + 18x2 − 6x+ 1. (2.3)

2.2.5 Cross-Twisted χ-Based Ate (Xt-Xate) Pairing

This pairing is based on the GMP library [24]. The group order is 254 bits and the embed-
ding degree is 12 (Barreto-Naehrig curve [25, 26]). This pairing library gives the fast pairing
called “Cross-twisted χ-based Ate (Xt-Xate) pairing” with subfield-twisted curve [19, 27].
The number of iterations of Miller’s algorithm for the Xt-Xate pairing is about one-quarter
of the plain Tate pairing. In addition, using efficiently-computable endomorphism’s and
isomorphism’s, elliptic curve operations are accelerated [28, 29]. Thus, based on good prop-
erties of Barreto-Naehrig curve, this library accelerates not only pairings but also the other
elliptic curve operations together with Gauss Period Normal Bases (GNB).

This pairing library has capability to calculate a product of several pairings by multi-
pairing technique that has the following computational efficiencies.

1. N final exponentiations are bracketed.

2. Squarings in Miller’s algorithm are bracketed.

3. Montgomery trick is efficiently applied for elliptic curve doublings and additions.

The security level is equivalent to the 3000-bit RSA. The library is implemented by C
language due to the pursuit of the fastness.
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2.3 Complexity Assumptions

As in the underlying system [17], the security of our system is based on the DLIN (Decision
LINear) assumption [30], and the q-SFP (Simultaneous Flexible Pairing) assumption [16, 31].
We also adopt n-DHE (DH Exponent) assumption [4] for the accumulator and Symmetric
External Diffie-Hellman (SXDH) Assumption for Groth-Sahai (GS) Proofs [18]. Hereafter,
we use the notation a ∈R A as sampling a from the set A according to the uniform dis-
tribution. Firstly, we describe the measured running time related to some computational
algorithms. Here, we define the Probabilistic Polynomial Time (PPT) as a probabilistic
Turing machine that takes the random decisions.

Definition 1 (Decision Linear (DLIN) assumption) For all PPT algorithm A,

|Pr[A(g, ga, gb, gac, gbd, gc+d) = 1]− Pr[A(g, ga, gb, gac, gbd, gz) = 1]|

is negligible, where g ∈R G and a, b, c, d, z ∈R Zp.

Definition 2 (q- Simultaneous Flexible Pairing (q-SFP) assumption) For all PPT
algorithm A , the probability

Pr[A(gz, hz, gr, hr, a, ã, b, b̃, {(zj, rj, sj, tj, uj, vj, wj)}qj=1)

= (z∗, r∗, s∗, t∗, u∗, v∗, w∗) ∈ G7 ∧ e(a, ã)

= e(gz, z
∗)e(gr, r

∗)e(s∗, t∗) ∧ e(b, b̃)

= e(hz, z
∗)e(hr, u

∗)e(v∗, w∗)

∧z∗ 6= 1G ∧ z∗ 6= zj for all 1 ≤ j ≤ q]

is negligible, where (gz, hz, gr, hr, a, ã, b, b̃) ∈ G8 and all tuples {(zj, rj, sj, tj, uj, vj, wj)}qj=1

satisfy

e(a, ã) = e(gz, zj)e(gr, rj)e(sj, tj)

∧e(b, b̃) = e(hz, zj)e(hr, uj)e(vj, wj),

and 1G is the identity element of group G.

Definition 3 (n-Diffie Hellman Exponent (n-DHE) assumption) For all PPT algo-
rithm A , the probability

Pr[A(g, ga, . . . , gan , gan+2

, . . . , ga
2n

) = ga
n+1

]

is negligible, where g ∈R G and a ∈R Zp.

2.3.1 Symmetric External Diffie-Hellman (SXDH) Assumption

We assume the decisional Diffie-Hellman problem is hard in both of the groups G1 and G2,
which is known as the Symmetric External Diffie-Hellman (SXDH) Assumption.

Definition 4 (SXDH assumption) We say the SXDH assumption holds for GSXDH if for
all non-uniform polynomial time A and all b ∈ {1, 2}, we have

Pr[gk ← GSXDH(1)
k;α, t← Z∗

p : A(gk, αPb, tPb, αtPb = 1)]

≈ Pr[gk ← GSXDH(1)
k;α, t, r ← Z∗

p : A(gk, αPb, tPb, αrPb = 1)]

where gk = (Pb, G1, G2, GT , e,P1,P2).

8



2.4 Structure-Preserving Signatures (AHO signatures)

In our system, we utilize the structure-preserving signatures. In the structure-preserving
signatures, the verification keys, messages, and signatures are the elements of bilinear groups,
and the verification predicate is a conjunction of pairing products. Thus, the knowledge of
the signature and messages can be proved by Groth-Sahai proofs. As in [17], we adopt
the AHO (Abe, Haralambiev and Ohkubo) signature scheme in [16, 31]. Using the AHO
signature scheme, we can sign multiple group elements to obtain a constant-size signature.
In the construction, a single group element is signed, and thus we describe the case of single
message to be signed.

AHOKeyGen: Select bilinear groups G, T with a prime order p and a bilinear map e.
Select g,Gr, Hr ∈R G, and µz, νz, µ, ν, αa, αb ∈R Zp. Compute Gz = Gµz

r , Hz =
Hνz

r , G = Gµ
r , H = Hν

r , A = e(Gr, g
αa), B = e(Hr, g

αb). Output the public key as pk =
(G, T , p, e, g, Gr, Hr, Gz, Hz, G,H,A,B), and the secret key as sk = (αa, αb, µz, νz, µ, ν).

AHOSign: Given message M ∈ G to be signed together with sk, choose β, ε, η, ι, κ ∈R Zp,
and compute θ1 = gβ, and

θ2 = gε−µzβM−µ, θ3 = Gη
r , θ4 = g(αa−ε)/η,

θ5 = gι−νzβM−ν , θ6 = Hκ
r , θ7 = g(αb−ι)/κ.

Output the signature σ = (θ1, . . . , θ7).

AHOVerify: Given the message M and the signature σ = (θ1, . . . , θ7), accept these if the
following equations hold:

A = e(Gz, θ1) · e(Gr, θ2) · e(θ3, θ4) · e(G,M),

B = e(Hz, θ1) · e(Hr, θ5) · e(θ6, θ7) · e(H,M).

Under the q-SFP assumption [16, 31], this signature is existentially unforgeable against
chosen-message attack. This attack generates a pair of a secret key and the corresponding
public key, and runs the forging adversary given the public key. In the run, the adversary can
request a message, and the signing oracle responds the signature on the message. Finally,
the adversary outputs a message and the forged signature. If the signature is valid and a
signature on the outputted message has never been responded by the signing oracle, the
adversary wins this attack.

Using the re-randomization algorithm in [16, 31], this signature can be publicly ran-
domized to obtain another signature (θ′1, . . . , θ

′
7) on the same message. As a result, in the

following Groth-Sahai proof, (θ′i)i=3,4,6,7 can be safely revealed, while (θ′i)i=1,2,5 have to be
committed, as mentioned in [17].

2.5 Groth-Sahai (GS) Proofs

To prove the secret knowledge in relations of the bilinear maps, we utilize Groth-Sahai (GS)
Non-Interactive Witness Indistinguishable (NIWI) proofs [18]. The witness-indistinguishability
means that the proof does not reveal the witnesses (satisfying the proved relations) the prover
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has used. As in [17], we adopt the instantiation based on DLIN assumption. For the bilin-

ear groups, the proof system needs a Common Reference String (CRS) (~f1, ~f2, ~f3) ∈ (G3)3
for ~f1 = (f1, 1, g), ~f2 = (1, f2, g) for some f1, f2 ∈ G, where two types of CRS are used
separately for the construction and the security proofs. In the perfect soundness set-
ting, ~f3 = ~f ξ1

1 · ~f
ξ2
2 for ξ1, ξ2 ∈R Z∗

p . The commitment to an element X is computed as
~C = (1, 1, X) · ~f r

1 · ~f s
2 · ~f t

3 for r, s, t ∈R Z∗
p . In the perfect soundness setting, the commitment

~C = (f r+ξ1t
1 , f s+ξ2t

2 , Xgr+s+t(ξ1+ξ2)) is the linear encryption in [30], and thus it is extractable
using logg f1, logg f2. On the other hand, in the witness indistinguishability (WI) setting,
~f1, ~f2, ~f3 are linearly independent, and thus ~C is perfectly hiding. The DLIN assumption
implies the indistinguishability of two types of CRS.

To prove that the committed variables satisfy the pairing relations, the prover prepares
the commitments, and replaces the variables in the pairing relations by the commitments.
The GS proof allows us to prove the set of pairing product equations:

n∏
i=1

e(Ai, Xi) ·
n∏

i=1

n∏
j=1

e(Xi, Xj)
aij = t

for variables X1, . . . , Xn ∈ G and constants A1, . . . , An ∈ G, aij ∈ Zp, t ∈ T .

2.6 Summary

In this chapter, we have briefly reviewed the underlying fundamentals of this dissertation
including mathematical backgrounds (e.g., groups, bilinear maps, and pairing-based cryptog-
raphy), the complexity assumptions (e.g., Decision Linear assumption, Diffie-Hellman Ex-
ponent assumption and Symmetric External Diffie-Hellman assumption), and cryptographic
primitives (e.g., AHO signatures and Groth-Sahai Proofs).
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Chapter 3

Proposal of Efficient Proofs for CNF
Formulas on Attributes in
Pairing-Based Anonymous Credential
System

3.1 Introduction

In this chapter, we propose a pairing-based anonymous credential system with the constant
size of proofs, such that the combinations of AND and OR relations on attributes can be
proved as CNF formulas. In our system, the proof generation cost is more efficient than the
system in [6], since only multiplications are needed depending on the number of literals. We
extend the efficient accumulators in [4, 5] to handle the proof of the CNF formulas for the
construction. Using the accumulator, lots of attributes are accumulated to one value, and we
can verify that a value (or multiple values) is included in the accumulator. In the extended
accumulator, we can verify that multiple attributes are included in multiple sets, all at once.
This leads to the verification of CNF formulas on attributes. As the underlying anonymous
credential system, our system is derived from the group signature scheme [17], which adopts
structure-preserving signature in [31] as the certificate and Groth-Sahai proofs [18] as non-
interactive witness-indistinguishable proofs. As a result, our system is secure in the standard
model, as in [6]. In addition, due to the non-interactive proofs, our system is non-interactive
where a user can generate the proof on certified attributes by himself and the verifier can
verify the proof by himself, as in [6].

One demerit of our system is the increase of public parameters. Let V` be the set of
attributes in the `-th OR clause in the proved CNF formula, and let U be the set of user’s
certified attributes. This increase happens when the maximum of |V`∩U | is large for multiple
`. We demonstrate that the increase of the public parameters is not so huge in a likely
example of CNFs formula used in eID applications.
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3.2 Extended Accumulator for Inclusions in Multiple

Sets

In [4], an efficient pairing-based accumulator is proposed. The accumulator is generated
from a set of values, and we can verify that a single value is included in the set. In [5], the
extended version is proposed, where we can verify that multiple values are included in the
specified set, all at once. They furthermore extends the accumulator, where we can verify
that, for a set U , for all multiple sets V1, . . . , VL, a value from U is included in each V`, i.e.,
U ∩ V` 6= ∅, all at once. The verification of this type is applied to our construction of the
anonymous credential system with proofs for CNF formulas on attributes.

3.2.1 Proposed Construction

Let V1, . . . , VL be L subsets of {1, . . . , n}. Define V = (V1, . . . , VL). Let U be a subset of
{1, . . . , n} of size L′ satisfying U ∩ V` 6= ∅ for all 1 ≤ ` ≤ L. In the application of our
anonymous credential system, each V` is correspondent to the `-th OR clause in the proved
CNF formula. The number of OR clauses may be variable depending on the formula. On
the other hand, in the following accumulator, the number of V`, i.e., L, has to be fixed in the
setup phase. Thus, we consider the maximum of OR clauses used in the application, and
that L is set as the maximum. Similarly, the maximum of |V`| and the maximum of |U ∩ V`|
have to be fixed in the setup phase also. Let η` be the maximum of |V`| in each 1 ≤ ` ≤ L,
and let ζ` be the maximum of |U ∩ V`| in each 1 ≤ ` ≤ L.

Then, the following accumulator allows us to confirm U ∩ V` 6= ∅ for all 1 ≤ ` ≤ L, all at
once.

AccSetup: This is the algorithm to output the public parameters. Set c1 = 1. For
all l with 2 ≤ ` ≤ L, compute c` = (η`−1 + 1) · c`−1 and set C = (c1, . . . , cL).
We assume that (ηL + 1)cL < p. Select bilinear groups G, T with a prime order
p and a bilinear map e. Select g ∈R G. Select γ ∈R Zp, and compute and pub-
lish {ζ`}1≤`≤L, C, p,G, T , e, g, g1 = gγ

1
, . . . , gn = gγ

n
, gn+2 = gγ

n+2
, . . . , g2n = gγ

2n
and

z = e(g, g)γ
n+1

as the public parameters.

AccGen: This is the algorithm to compute the accumulator using the public parameters.
The accumulator accV of V is computed as

accV =
∏

1≤`≤L

(
∏
j∈V`

gn+1−j)
c` .

AccWitGen: This is the algorithm to compute the witness that U∩V` 6= ∅ for all 1 ≤ ` ≤ L,
using the public parameters. Given U , V , and the accumulator accV , the witness is
computed as W =

∏
i∈U

∏
1≤`≤L(

∏j 6=i
j∈V`

gn+1−j+i)
c` . Furthermore, the auxiliary param-

eters are computed as δ` = |U ∩ V`| for all 1 ≤ ` ≤ L.

AccVerify: This is the algorithm to verify that U ∩ V` 6= ∅ for all l with 1 ≤ ` ≤ L, using
the witness, the auxiliary parameters, and the public parameters. Given accV , U , W
and {δ`}1≤`≤L, set u = δ1c1 + . . .+ δLcL. Then, accept if

e(
∏

i∈U gi, accV)

e(g,W )
= zu, 1 ≤ δ` ≤ ζ`, forall1 ≤ ` ≤ L.
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Remark 1 The witness W can be efficiently computed by

W =
∏

1≤`≤L

(
∏
i∈U

j 6=i∏
j∈V`

gn+1−j+i)
c`

.

Remark 2 AccSetup and AccGen have to be divided into two algorithms. The reason of
the separation is as follows. In our application, AccSetup is used only one time for the key
generation. But AccGen can be used multiple times in attribute proof protocols for different
V = (V1, V2, ...), which corresponds to the proved formula.

3.2.2 Correctness and Security

We can show the correctness and the security as follows.

Theorem 1 Assume that AccSetup, AccGen, AccWitGen correctly compute all param-
eters. Then, AccVerify accepts U, accV ,W, {δ`}1≤`≤L that they outputs.

Proof. We have

accV =
∏

1≤`≤L

(
∏
j∈V`

gn+1−j)
c` ,

W =
∏
i∈U

∏
1≤`≤L

(

j 6=i∏
j∈V`

gn+1−j+i)
c` .

Thus, the left hand side of the verification equation is as follows.

e(
∏

i∈U gi, accV)

e(g,W )

=
e(
∏

i∈U gi,
∏

1≤`≤L(
∏

j∈V`
gn+1−j)

c`)

e(g,
∏

i∈U
∏

1≤`≤L(
∏j 6=i

j∈V`
gn+1−j+i)c`)

=
e(g,

∏
i∈U

∏
1≤`≤L(

∏
j∈V`

gn+1−j+i)
c`)

e(g,
∏

i∈U
∏

1≤`≤L(
∏j 6=i

j∈V`
gn+1−j+i)c`)

= e(g,
∏
i∈U

∏
1≤`≤L

(

j=i∏
j∈V`

gn+1−j+i)
c`).

Set δ` = |U ∩ V`| for 1 ≤ ` ≤ L. Then, the above expression is equal to e(g,
∏

1≤`≤L g
δ`c`
n+1) =

e(g, gn+1)
u = zu for u = δ1c1 + . . . + δLcL. Due to U ∩ V` 6= ∅ and δ` ≤ ζ`, we obtain

1 ≤ δ` ≤ ζ`, for all 1 ≤ ` ≤ L.

For proving the security of the accumulator, we prepare the following lemma.

Lemma 1 For any ¯̀ (2 ≤ ¯̀≤ L), c¯̀>
∑

1≤`≤¯̀−1 η` · c`.
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Proof. In case of ¯̀ = 2, c2 = (η1 + 1) · c1 > η1 · c1. For ¯̀≥ 3, we assume the case of ¯̀− 1,
that is c¯̀−1 >

∑
1≤`≤¯̀−2 η` · c`, and we will prove the case of ¯̀. Using the assumption and

c¯̀= (η¯̀−1 + 1) · c¯̀−1, we have

∑
1≤`≤¯̀−1

η` · c`

= η¯̀−1 · c¯̀−1 +
∑

1≤`≤¯̀−2

η` · c`

< η¯̀−1 · c¯̀−1 + c¯̀−1

= (η¯̀−1 + 1) · c¯̀−1

= c¯̀

Thus, for any ¯̀ (2 ≤ ¯̀≤ L), we obtain c¯̀ >
∑

1≤`≤¯̀−1 η` · c`.

Theorem 2 Under the n-DHE assumption, any adversary cannot output (U,V = {V`}1≤`≤L,W,{δ`}1≤`≤L)
where U, V1, . . . , VL are subsets of {1, . . . , n} and δ` ∈ Zp, on inputs {ζ`}1≤`≤L, C, p,G, T , e, g, g1,
. . . , gn, gn+2, ..., g2n and z satisfying the followings:

• AccVerify accepts U, accV ,W, {δ`}1≤`≤L,

• there exists some V` satisfying U ∩ V` = ∅.

Proof. Assume an adversary which outputs (U,V ,W, {δ`}1≤`≤L) s.t. AccVerify accepts
U, accV ,W and there exists some V` satisfying U ∩ V` = ∅. Since AccVerify accepts these,
for u = δ1c1 + . . .+ δLcL satisfying 1 ≤ δ` ≤ ζ`,

e(
∏

i∈U gi, accV)

e(g,W )
= zu = e(g, gn+1)

u,

where gn+1 = gγ
n+1

.

From accV =
∏

1≤`≤L(
∏

j∈V`
gn+1−j)

c` ,

e(
∏

i∈U gi,
∏

1≤`≤L(
∏

j∈V`
gn+1−j)

c`)

e(g,W )
= e(g, gn+1)

u,

e(g,
∏
i∈U

∏
1≤`≤L

(
∏
j∈V`

gn+1−j+i)
c`) = e(g,Wgn+1

u).

Thus, we have ∏
i∈U

∏
1≤`≤L

(
∏
j∈V`

gn+1−j+i)
c` = Wgn+1

u.

Here, let L1 ⊆ {1, . . . , L} be a set of ` s.t. V` includes an element of U , and let L2 ⊆
{1, . . . , L} be a set of ` s.t. V` includes no element of U . Let λ` be |U ∩ V`|. Then, we have
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∏
`∈L1

∏
i∈U

(
∏
j∈V`

gn+1−j+i)
c` ·

∏
`∈L2

∏
i∈U

(
∏
j∈V`

gn+1−j+i)
c` =Wgn+1

u,∏
`∈L1

∏
i∈U

(
∏

j∈V`,j 6=i

gn+1−j+i)
c` ·

∏
`∈L1

gn+1
λ`c`

·
∏
`∈L2

∏
i∈U

(
∏
j∈V`

gn+1−j+i)
c` = Wgn+1

u,∏
`∈L1

∏
i∈U

(
∏

j∈V`,j 6=i

gn+1−j+i)
c`

·
∏
`∈L2

∏
i∈U

(
∏
j∈V`

gn+1−j+i)
c` = Wgn+1

u−
∑

`∈L1
λ`c` (3.1)

By setting ∆ = u−
∑

`∈L1
λ`c`,

∆ =
∑

1≤`≤L

δ`c` −
∑
`∈L1

λ`c` =
∑
`∈L1

(δ` − λ`)c` +
∑
`∈L2

δ`c`.

Furthermore, separate L1 to L>
1 , L<

1 and L=
1 , where L>

1 consists of ` s.t. δ` > λ`, L<
1 consists

of ` s.t. δ` < λ`, and L=
1 consists of ` s.t. δ` = λ`. We can obtain

∆ =
∑
`∈L>

1

(δ` − λ`)c` +
∑
`∈L<

1

(δ` − λ`)c` +
∑
`∈L2

δ`c`.

Let ˜̀ be the maximum of ` s.t. ` /∈ L=
1 (i.e., ˜̀∈ L>

1 ,
˜̀∈ L<

1 , or
˜̀∈ L2).

Consider two cases.

(i) The first case is that ˜̀∈ L<
1 (i.e., δ˜̀< λ˜̀). Then, (δ˜̀− λ˜̀)c˜̀≤ −c˜̀. This is why

∆ ≤ −c˜̀+
∑
`∈L>

1

(δ` − λ`)c` +
∑

`∈L<
1 , 6̀=˜̀

(δ` − λ`)c` +
∑
`∈L2

δ`c`.

For ` ∈ L>
1 , due to λ` ≥ 1 and δ` ≤ ζ` ≤ η`, we have δ` − λ` < ζ` ≤ η`. For ` ∈ L<

1 , we
have δ` − λ` < 0, and for ` ∈ L2, we have δ` ≤ ζ` ≤ η`. Thus,

∆ < −c˜̀+
∑
`∈L>

1

η`c` +
∑
`∈L2

η`c`.

From Lemma 1, we have c˜̀ >
∑

`∈L>
1
η`c` +

∑
`∈L2

η`c`, and thus −c˜̀+
∑

`∈L>
1
η`c` +∑

`∈L2
η`c` < 0. Therefore, we can obtain ∆ < 0. On the other hand, we obtain

∆ =
∑

1≤`≤L

δ`c` −
∑
`∈L1

λ`c` > −
∑
`∈L1

η`c`,

due to δ` > 0 and λ` ≤ ζ` ≤ η`. From Lemma 1, we have
∑

`∈L1, 6̀=˜̀η`c` < c˜̀, and∑
`∈L1

η`c` < c˜̀+ η˜̀c˜̀ < (ηL + 1)cL < p.

Thus, ∆ > −p. Therefore, we have ∆ 6= 0 (mod p).
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(ii) The other case is that ˜̀∈ L>
1 (i.e., δ˜̀ > λ˜̀) or ˜̀∈ L2 (i.e., λ˜̀ = 0). Then, in case of

˜̀∈ L>
1 , due to (δ˜̀− λ˜̀)c˜̀≥ c˜̀, we obtain

∆ ≥ c˜̀+
∑

`∈L>
1 , 6̀=˜̀

(δ` − λ`)c` +
∑
`∈L<

1

(δ` − λ`)c` +
∑
`∈L2

δ`c`.

In case of ˜̀∈ L2, due to δ˜̀≥ 1, we obtain

∆ ≥ c˜̀+
∑
`∈L>

1

(δ` − λ`)c` +
∑
`∈L<

1

(δ` − λ`)c` +
∑

`∈L2, 6̀=˜̀

δ`c`.

In the both cases (i.e., ˜̀∈ L>
1 and ˜̀∈ L2), for any ` ∈ L>

1 , we have δ` − λ` > 0, and
for any ` ∈ L2, δ` > 0, and thus

∆ > c˜̀+
∑
`∈L<

1

(δ` − λ`)c`.

Due to ˜̀> ` for any ` ∈ L<
1 , from Lemma 1 and λ` − δ` < ζ` < η`,

c˜̀ >
∑
`∈L<

1

η`c` >
∑
`∈L<

1

(λ` − δ`)c`,

and thus
c˜̀+

∑
`∈L<

1

(δ` − λ`)c` > 0.

This is why we obtain ∆ > 0. On the other hand,

∆ ≤
∑

1≤`≤L

δ`c` =
∑

1≤`≤L−1

δ`c` + δLcL ≤
∑

1≤`≤L−1

η`c` + ηLcL.

From Lemma 1, ∆ ≤ (ηL + 1)cL < p. Therefore, in this case, also ∆ 6= 0 (mod p).

Thus, from equation (3.1), we obtain

gn+1 = (W−1 ·
∏
`∈L1

∏
i∈U

(
∏

j∈V`,j 6=i

gn+1−j+i)
c`

·
∏
`∈L2

∏
i∈U

(
∏
j∈V`

gn+1−j+i)
c`)1/∆,

due to ∆ 6= 0 (mod p).
For any i ∈ U and any j ∈ V` with ` ∈ L1 satisfying j 6= i, gn+1−j+i 6= gn+1. For any

i ∈ U and any j ∈ V` with ` ∈ L2, gn+1−j+i 6= gn+1, since such V` does not include elements in
U . Therefore, we can compute gn+1 given g1, . . . , gn, gn+2, . . . , g2n, which contradicts n-DHE
assumption.

Remark 3 Note that, in Theorem 2, the adversary is allowed to output δ` 6= |U ∩ V`|, since
the condition in AccVerify is only 1 ≤ δ` ≤ ζ`. This implies that, under the n-DHE
assumption, for any u′ = δ1c1 + · · · + δLcL s.t. u′ 6= u = |U ∩ V1|c1 + · · · + |U ∩ VL|cL and

1 ≤ δ` ≤ ζ`, the adversary cannot output (U,V, W, {δ`}1≤`≤L) s.t.
e(
∏

i∈U gi,accV )

e(g,W )
= zu

′
, when

there exists some V` satisfying U ∩ V` = ∅.
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3.3 Syntax and Security Model of Anonymous Creden-

tial System

We consider the non-interactive anonymous credential system, where a user can generate
the proof on certified attributes by himself/herself and the verifier can verify the proof by
himself/herself. This is similar to the group signature scheme [32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44], and thus our security model is derived from that of the group signature
scheme.

The security model of the group signature scheme consists of traceability, non-frameability,
and anonymity. The traceability means that once a group signature is opened, it identifies
a group member who joined the group. The non-frameability means that no one except a
group member can issue a valid group signature that can be identified to the member. In
this dissertation, since we concentrate on the function of the anonymous attribute proof, we
do not care about the tracing. Thus, in the following model, we omit the functions on the
tracing. This is why the non-frameability is omitted, and the traceability is replaced by the
similar requirement misauthentication resistance. The misauthentication resistance means
the soundness of the attribute proof. Note that the combination of the group signature
scheme [17] can achieve the tracing.

3.3.1 Syntax

The attribute value is indexed by an integer from {1, . . . , n}, where n is the total number
of attribute values. As in [5], all attribute values in all attribute types are indexed by using
the universal set {1, . . . , n}. We describe a CNF formula Ψ on attributes using the indexes
as follows: (a11∨a12∨ · · · )∧ (a21∨a22∨ · · · )∧ · · · with a11, a12, . . . , a21, a22, . . . ∈ {1, . . . , n}.
Each literal a11, a21, · · · means that the proving user owns the attribute of the index. Set
V1 = (a11, a12, . . .), V2 = (a21, a22, . . .), . . . , and VL = (aL1, aL2, . . .). Set U be the set of
attributes (indexes) of the proving user. We assume that |V`| has the upper bound, η`, for
all 1 ≤ ` ≤ L, and assume that the size of |U ∩ V`| has the upper bound, ζ`, for each
1 ≤ ` ≤ L. Also, we assume the maximum number of clauses in any CNF formula, L.
Although n is an assumptive upper bound of both |Vl| and |U ∩ Vl|, we need each maximum
number of |V`| and |U ∩ V`|, as η`, ζ`, respectively. This is because the efficiency of our
system depends on the sizes of η` and ζ`, and thus we want to set the sizes of η` and ζ` as
small values as possible.

The anonymous credential system consists of the following algorithms:

IssuerKeyGen: The inputs of this algorithm are n, L, η`, ζ` for all 1 ≤ ` ≤ L. The outputs
are issuer’s public key ipk and issuer’s secret key isk.

CertObtain: This is an interactive protocol between a probabilistic algorithmCertObtain-
Uk for the k-th user and a probabilistic algorithm CertObtain-I for an issuer, where
the issuer issues the certificate including the attributes to the user. CertObtain-Uk,
on input ipk and Uk ⊂ {1, . . . , N} that is indexes corresponding to the attribute values
of the user, outputs the certificate certk ensuring the attributes of the user. On the
other hand, CertObtain-I is given ipk, isk as inputs.

ProofGen: This probabilistic algorithm, on inputs ipk, Uk, certk, Ψ that is the predicate
on attributes to be proved, outputs the proof σ.
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Verify: This is a deterministic algorithm for verification. The input is ipk, a proof σ, and
the predicate Ψ. Then the output is ’valid’ if the attributes in Uk satisfy Ψ, or ’invalid’
otherwise.

3.3.2 Security Model

The security model consists of misauthentication resistance and anonymity. The misauthen-
tication resistance requirement captures the soundness of the attribute proof. This means
that an adversary A cannot forge a proof for a predicate, where the attributes of any user
corrupted by A do not satisfy the predicate. The anonymity requirement captures the
anonymity and unlinkability of proofs, as in the group signatures. The unlinkability is a
stronger anonymity. In linkable anonymous setting, the verier can collect the use history
of an anonymous user, since the verier can determine the sameness of the prover. Then,
the history may de-anonymize the prover by relating the dates or frequency. Also, if one
transaction is de-anonymized by some other method, all the transactions of the prover are
de-anonymized. Therefore, the unlinkability is needed.

Misauthentication Resistance.

Consider the following misauthentication resistance game.

Misauthentication Resistance Game: The challenger runs IssuerKeyGen, and obtains
ipk(issuer’s public key) and isk(issuer’s secret key). He provides A with ipk, and run
A. He sets CU with empty, where CU denotes the set of IDs of users corrupted by A.
In the run, A can query the challenger about the following issuing query:

C-Issuing: A can request the k-th user’s certificate on Uk. Then, A as the user
executes CertObtain protocol with the challenger as the issuer. The challenger
adds k to CU .

Finally, A outputs a predicate Ψ∗, and a proof σ∗.

Then, A wins if

1. Verify(ipk, σ∗,Ψ∗) = valid, and

2. for all k ∈ CU , Uk does not satisfy Ψ∗.

Misauthentication resistance requires that for all PPT A, the probability that A wins
the misauthentication resistance game is negligible.

Anonymity.

Consider the following anonymity game.

Anonymity Game: The challenger runs IssuerKeyGen, and obtains ipk, isk. He provides
A with ipk, isk, and run A. He sets HU with empty, where HU denotes the set of
IDs of users who are not corrupted by A. In the run, A can query the challenger, as
follows.
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H-Issuing: A can request the k-th user’s certificate on Uk. Then, A as the issuer executes
CertObtain protocol with the challenger as the user. The challenger adds k to HU .

Proving: A can request the k-th user’s proof on a predicate Ψ. Then, the challenger
responds the proof on Ψ of user k, if k ∈ HU .

During the run, as the challenge, A outputs a predicate Ψ∗, and two users k0 and k1,
such that both Uk0 and Uk1 satisfy Ψ∗. If k0 ∈ HU and k1 ∈ HU , the challenger chooses
φ ∈R {0, 1}, and responds the proof on Ψ∗ of user kφ. After that, similarly, A can make the
queries.

Finally, A outputs a bit φ′ indicating its guess of φ. If φ′ = φ, A wins. We define the
advantage of A as |Pr[φ′ = φ]− 1/2|.

Anonymity requires that for all PPT A, the advantage of A on the anonymity game is
negligible.

Remark 4 Ψ denotes each predicate queried in the proving query, and Ψ∗ denotes a predicate
in the attacker’s output.

3.4 Proposed Anonymous Credential System

3.4.1 Construction Idea

For the verification of CNF formulas, we use our extended accumulator. Consider the follow-
ing CNF formula: (a11∨a12∨. . .)∧(a21∨a22 . . .)∧. . ., where a11, a12 . . . a21, a22 . . .∈ {1, . . . , n}
means that the proving user owns the corresponding attribute. Set V1 = (a11, a12, . . .),
V2 = (a21, a22, . . .), ..., and VL = (aL1, aL2, . . .). Let U be the set of attributes (indexes) of
the proving user. Then, using the accumulator, we can confirm that U ∩ V` 6= ∅ for any V`.
This means that the attributes in U satisfies this CNF formula, since some attribute in U is
one of attributes in every OR clause expressed by V`.

Our construction is based on the anonymous credential system using the AHO signatures
and GS proofs. This is derived from the construction of a group signature scheme in [17],
which is secure in the standard model. In the underlying system, the certificate is an AHO
signature, where attributes of the user are unified to one element and embedded as

∏
i∈U gi,

to apply it to the verification of accumulator.

In our system, a part of accumulator verification,
e(
∏

i∈U gi,accV )

e(g,W )
= zu, can be proved

without revealing secret information by directly using the GS proof for the pairing relation.
However, the other part of the verification, 1 ≤ δ` ≤ ζ` where u = δ1c1 + . . . + δLcL, needs
another technique. We utilize the set membership proof technique [45] to prove this relation,
while hiding parameters δ`. Since δ` may indicate some secret information (i.e., |U ∩ V`|) of
the user, we need the zero-knowledge type of proof. As the preparation, the issuer publishes
signatures on g1

u for all u ∈ {
∑L

`=1 δ`c`|1 ≤ δ` ≤ ζ` for all 1 ≤ ` ≤ L}. In the attribute
proof, the user proves the knowledge of the signature on a committed value to convince the
verifier that the committed value is gu1 such that u satisfies the conditions.

To use the accumulator, L, which is the number of V`, has to be fixed. On the other
hand, in the CNF formula of the input, the number of clauses, L′ is less than or equal to
L. Then, we introduce a special attribute aSP that every user always owns. To the CNF
formula with L′ clauses, aSP is added such as the number of clauses becomes L. Namely,
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given formula Ψ = (a11 ∨ a12 ∨ · · · ) ∧ (a21 ∨ a22 ∨ · · · ) ∧ · · · (aL′1 ∨ aL′2 ∨ · · · ) is extended to
Ψ′ = (a11 ∨ a12 ∨ · · · ) ∧ (a21 ∨ a22 ∨ · · · ) ∧ · · · (aL′1 ∨ aL′2 ∨ · · · ) ∧ aSP ∧ · · · aSP. The literal
aSP is always true, this extended formula is the same as the original.

3.4.2 Proposed Construction

The details of this construction are described as follows.

IssuerKeyGen

The input of this algorithm consists of n, L, η`, and ζ` for all 1 ≤ ` ≤ L. This algorithm
executes AccSetup to obtain the public parameters of the extended accumulator, generates
key pairs of AHO signatures, generates CRS for GS NIWI proof, and prepares AHO signa-
tures on g1

u for all u ∈ {
∑L

`=1 δ`c`|1 ≤ δ` ≤ ζ` for all 1 ≤ ` ≤ L}. The outputs are ipk and
isk.

1. Select bilinear groups G, T with the same order p and the bilinear map e, and g ∈R G.

2. Generate public parameters of the extended accumulator: Set c1 = 1. For all 2 ≤ ` ≤
L, compute c` = (η`−1+1) · c`−1 and set C = (c1, . . . , cL). Select γ ∈R Zp, and compute

pkacc = (C, g1 = gγ
1

, . . . , gn = gγ
n

,

gn+2 = gγ
n+2

, . . . , g2n = gγ
2n

,

z = (g, g)γ
n+1

).

3. Generate two key pairs for the AHO signature:

pk
(d)
AHO= (G(d)

r ,H(d)
r ,G(d)

z ,H(d)
z ,G(d),H(d),A(d),B(d)),

sk
(d)
AHO= (α(d)

a ,α
(d)
b ,µ(d)

z ,ν(d)
z ,µ,ν),

for d = 0 and d = 1.

4. Generate a CRS for the GS NIWI proof: select ~f = (~f1, ~f2, ~f3), where ~f1 = (f1, 1, g),
~f2 = (1, f2, g), ~f3 = ~f ξ1

1 · ~f
ξ2
2 for f1, f2 ∈R G and ξ1, ξ2 ∈R Z∗

p .

5. For C, define set Φ = {u =
∑L

`=1 δ`c`|1 ≤ δ` ≤ ζ` for all 1 ≤ ` ≤ L}, where |Φ| =∏
1≤`≤L ζ`. For every u ∈ Φ, generate the AHO signature on gu1 , using sk

(0)
AHO. The

signature is denoted as σ̃u = (θ̃u1, . . . , θ̃u7).

6. Output the issuer public key

ipk = (p,G,T ,e,g,pk(0)
AHO,pk

(1)
AHO,pkacc,

~f ,{σ̃u}u∈Φ),

and the issuer secret key isk = (sk
(0)
AHO, sk

(1)
AHO).
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CertObtain

This is an interactive protocol between CertObtain-Uk (user) and CertObtain-I (issuer).
The common inputs of this protocol consists of ipk, and Uk that is the indexes of attribute
values of the user. The input ofCertObtain-I is isk. In this protocol, to the user, the issuer
sends a certificate certk including the AHO signature σk on Pk =

∏
i∈Uk

gi. We introduce a
special attribute value aSP. Every user has aSP. The output of User is certk .

1. CertObtain-I: Generate Pk =
∏

i∈Uk
gi.

2. CertObtain-I: Using sk(1)
AHO, generate an AHO signature σk = (θ1, . . . , θ7) on message

Pk. Return σk to CertObtain-Uk as the certificate.

3. CertObtain-Uk: Compute Pk =
∏

i∈Uk
gi, and verify the AHO signature σk on Pk.

Output certk = (Pk, σk).

ProofGen

The inputs of this algorithm are ipk, Uk, certk, and the CNF formula Ψ. For a given formula
Ψ = (a11 ∨ a12 ∨ · · · ) ∧ (a21 ∨ a22 ∨ · · · ) ∧ · · · (aL′1 ∨ aL′2 ∨ · · · ) with a11, a12, . . . , a21, a22,
. . . ∈ {1, . . . , n}, define V1 = {a11, a12, . . .}, V2 = {a21, a22, . . .}, VL = {aL1, aL2, . . .}. If
L′ < L, define VL′+1 = · · · = VL = {aSP}. This algorithm generates the GS NIWI proof
proving that Pk satisfies the accumulator verification for the accumulator accV indicating
the proved predicate Ψ, and proving Pk is signed as a AHO signature σk by the issuer’s
public key. In the accumulator verification, the GS proof for an AHO signature on gu1 is also
utilized.

1. Compute the accumulator:

accV =
∏

1≤`≤L

(
∏
j∈V`

gn+1−j)
c` .

2. Compute the witness

WV =
∏
i∈Uk

∏
1≤`≤L

(

j 6=i∏
j∈V`

gn+1−j+i)
c`

that Uk satisfies V for accV , and sets u = δ1c1 + . . .+ δLcL, where δ` = |Uk ∩ V`| for all
1 ≤ ` ≤ L.

3. Set τu = gu1 . From ipk, select the AHO signature σ̃u = (θ̃u1, . . . , θ̃u7) on the gu1 .

4. Compute GS commitments comPk
, comWV , comτu to Pk,WV , τu. Then, re-randomize

the AHO signature σk to obtain σ′
k = {θ′1, . . . , θ′7}, and compute GS commitments

{comθ′i
}i∈{1,2,5} to {θ′i}i∈{1,2,5}. Similarly, re-randomize the AHO signature σ̃u to obtain

σ̃′
u = {θ̃′u1, . . . , θ̃′u7}, and compute GS commitments {comθ̃′ui

}i∈{1,2,5} to {θ̃′ui}i∈{1,2,5}.
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5. Generate the GS proofs {πi}5i=1 s.t.

1T = e(Pk, accV) · e(g,WV)
−1 · e(τu, gn)−1, (3.2)

A(1) · e(θ′3, θ′4)−1 = e(G(1)
z , θ′1) · e(G(1)

r , θ′2) · e(G(1), Pk), (3.3)

B(1) · e(θ′6, θ′7)−1 = e(H(1)
z , θ′1) · e(H(1)

r , θ′5) · e(H(1), Pk), (3.4)

A(0) ·e(θ̃′u3, θ̃′u4)−1 = e(G(0)
z ,θ̃′u1)·e(G(0)

r , θ̃′u2)·e(G(0), τu), (3.5)

B(0) ·e(θ̃′u6, θ̃′u7)−1 = e(H(0)
z ,θ̃′u1)·e(H(0)

r , θ̃′u5)·e(H(0), τu), (3.6)

6. Output σ = ({θ′i}i=3,4,6,7, {θ̃′ui}i=3,4,6,7, comPk
,

comWV , comτu , {comθ′i
}i=1,2,5, {comθ̃′ui

}i=1,2,5, {πi}5i=1).

Equation (3.2) shows the verification relations of accumulator:

e(
∏

i∈Uk
gi, accV)

e(g,WV)
= e(gu1 , gn) = zu,

where Pk =
∏

i∈Uk
gi and τu = gu1 . The equations (3.3), (3.4) show the knowledge of the AHO

signature of Pk, i.e., the certificate certk. The equations (3.5), (3.6) shows the knowledge of
the AHO signature of τu. This ensures that 1 ≤ δ` ≤ ζ` where u = δ1c1 + . . .+ δLcL. Thus,
together with the equation (3.2), it ensures the verification of the accumulator. This is why
the verifier is ensured that Uk ∩ V` 6= ∅, i.e, attributes in Uk satisfies the CNF formula Ψ.

Verify

The inputs of this algorithm are ipk, the proof σ, and the CNF formula Ψ.

1. Compute the accumulator accV , as in ProofGen.

2. Accept σ, if the verifications of all GS proofs {πi}5i=1 are successful.

3.4.3 Security

We can prove the following security of our construction.

Theorem 3 The proposed system satisfies the misauthentication resistance under the secu-
rity of the AHO signatures and the extended accumulators.

Proof. To win the misauthentication resistance game, the adversary A must output a pred-
icate Ψ∗ and a proof σ∗ satisfying

1. Verify(ipk, σ∗,Ψ∗) = valid, and

2. for all k ∈ CU , Uk does not satisfy Ψ∗.

Let σ∗ = ({θ′∗i }i=3,4,6,7, {θ̃′
∗
ui}i=3,4,6,7, com

∗
Pk
, com∗

WV
, com∗

τu , {com
∗
θ′i
}i=1,2,5, {com∗

θ̃′ui
}i=1,2,5,

{π∗
i }5i=1). By utilizing the CRS for the perfect soundness setting, the GS commitments

com∗
Pk
, com∗

WV
, com∗

τu , {com
∗
θ′i
}i=1,2,5, {com∗

θ̃′ui
}i=1,2,5 are extractable, as mentioned in Sec-

tion 2.5. Thus, we can extract P ∗
k ,W

∗
V , τ

∗
u satisfying the equation (3.2) for accumulator

verification with acc∗V that is derived from Ψ∗, the re-randomized AHO signature σ′∗
k =
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{θ′∗1, . . . , θ′
∗
7} for P ∗

k satisfying the equations (3.3),(3.4), and the re-randomized AHO sig-

nature σ̃′∗
u = {θ̃′∗u1, . . . , θ̃′

∗
u7} for τ ∗u satisfying the equations (3.5),(3.6). Set τ ∗u = gu

∗
1 for

unknown u∗. From the equation (3.2), we obtain 1T = e(P ∗
k , acc

∗
V) · e(g,W ∗

V)
−1 · e(gu∗

1 , gn)
−1,

and thus the verification relation of our accumulator:

e(P ∗
k , acc

∗
V)

e(g,W ∗
V)

= zu
∗
.

We distinguish the following cases from each other.

• Type 1 forgeries. This is the case that the AHO signature on P ∗
k was never issued

to any corrupted user k (i.e., k ∈ CU).

• Type 2 forgeries. This is the case that the AHO signature on P ∗
k was issued to a

corrupted user k. In this case, we have two sub-cases:

a. The AHO signature of τ ∗u was never issued.

b. The AHO signature of τ ∗u was issued.

Using Type 1 and Type 2.a forgeries, we can obtain a forger against the AHO signatures,
as follows.

Type 1 forgeries. With the adversary A, simulate the misauthentication resistance game,
as follows. The public key of AHO signatures is given to the AHO signature forger.
This is set as pk

(1)
AHO in IssuerKeyGen. Choose and compute other parameters in ipk,

as in the real algorithm of IssuerKeyGen. Note that the CRS for the GS NIWI proof
~f is for the perfect soundness setting. Then, run A on ipk. In the misauthentication
resistance game, A can request C-Issuing queries. For the C-Issuing query on Uk,
compute Pk =

∏
i∈Uk

gi, and request the AHO signature on Pk to the signing oracle
of the AHO signatures. Respond the AHO signature as certk. Finally, A outputs a
predicate Ψ∗, and a proof σ∗. As mentioned above, we can extract the AHO signature
σ′∗

k on P ∗
k . In this case, since the AHO signature σ′∗

k was never issued for P ∗
k , this

implies the forgery against the AHO signature.

Type 2.a forgeries. Setting the given public key as pk
(0)
AHO and executing the similar way

to the case of Type 1 forgeries, we can obtain the forger against the AHO signature.

Using Type 2.b forgeries, we can obtain an adversary against the extended accumulator,
as follows.

Type2.b forgeries. The public parameters of the extended accumulator are given to this
accumulator adversary. Then, choose and compute other parameters in ipk, as the
real algorithm of IssuerKeyGen, and run A. In the run, each C-Issuing query
is responded as in the real algorithm, since sk

(0)
AHO and sk

(1)
AHO are generated as usual.

Finally, A outputs a predicate Ψ∗, and a proof σ∗. As mentioned above, we can extract
the AHO signature σ′∗

k on P ∗
k , and the AHO signature σ̃′∗

u on τ ∗u , together with witness
W ∗

V . In this case, the AHO signature σ′∗
k on P ∗

k was correctly issued to some corrupted
user k, and thus P ∗

k =
∏

i∈U∗
k
gi for U

∗
k and U∗

k does not satisfy Ψ∗. On the other hand,

the AHO signature on τ ∗u was correctly issued, and thus τ ∗u = gu
∗

1 for u∗ ∈ Φ. This
means u∗ = δ∗1c1 + · · · + δ∗LcL, and 1 ≤ δ∗` ≤ ζ` with all 1 ≤ ` ≤ L. This is why
AccVerify accepts U∗

k , acc
∗
V ,W

∗
V , {δ∗`}1≤`≤L. Therefore, we can forge the witness W ∗

V ,
when U∗

k does not satisfy Ψ∗ (i.e., U∗
k ∩ V` = ∅ for some `).
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Theorem 4 The proposed system satisfies the anonymity under the DLIN assumption.

Proof. Consider the sequence of games, as follows.

Game 1. This is the anonymity game for the proposed system. The challenger generates
ipk and isk using IssuerKeyGen algorithm, where the CRS is prepared for the per-
fect soundness setting. The challenger runs the adversary A with ipk, isk. A can
request H-Issuing queries and Proving queries. In the response of H-Issuing on Uk,
the challenger records certk. For Proving queries and the challenge, the challenger
responds using ipk and certk.

Game 2. In IssuerKeyGen algorithm, the challenger generates the CRS for the WI set-
ting. Namely, choose linear independent ~f1, ~f2, ~f3. The others are the same as Game
1.

Let S1, S2 denote the events that φ
′ = φ in Game 1, 2, respectively. In Game 2, the proof

of responded in the challenge consists of the GS commitments that are perfectly hiding in
the WI setting, the GS proofs that reveal no information about the underlying witness, and
the randomized AHO signatures {θ′i}i=3,4,6,7, {θ̃′ui}i=3,4,6,7 that are information-theoretically
independent of the signed messages and the remaining AHO signatures. Thus, we have
Pr[S2] = 1/2. On the other hand, |Pr[S1]−Pr[S2]| is negligible under the DLIN assumption,
as in [18]. Therefore, the advantage of A, i.e., |Pr[S1]− 1/2|, is negligible, which means that
the proposed system is anonymous.

3.4.4 Protection against Replay Attack

In the authentication, the re-use of the proof should be prevented. In our system, the proof
depends on the predicate, as the signature depends on the message. Thus, to prevent the re-
use, we can make the predicate including a random nonce, as follows. Consider T -bit nonce
b1 · · · bT with bt ∈ {0, 1}. Then, we introduce virtual attributes ã1,0, ã1,1, . . . , ãT,0, ãT,1. To
the original CNF formula Ψ, we append the following OR clause, (aSP ∨ ã1,b1 ∨ · · · ∨ ãT,bT ).
Since this clause includes aSP, this clause is meaningless in the attribute proof (i.e,. this
clause is satisfied anytime). On the other hand, an appended formula is different from other
appended formulas, due to the random nonce. In this method, the public parameters of
the accumulator for the virtual attributes are additionally required. The number of the
parameters is only 2T .

3.5 Design of Protocols

In this section, we describe the protocols of the eID application of our anonymous credential
system. The system model is shown in Fig. 3.1. At first, the issuer publishes the public key
ipk. Then, the user registers himself/herself along with a set of his/her particular attributes
U to the issuer for certification by using the CertObtain protocol via a secure channel
(¬∼®). The user, utilizing the issued certificate, requests a service to the Service Provider
(SP) (¯). Then, the SP specifies some attributes to the user that the SP wants to be proved
by the user (°). This specification forms the logical relation of CNF formula consisting of
AND and OR relations, depending on the SP’s requirement. Then, the user generates a
proof of knowledge for the possession of the certificate w.r.t. the specified attribute(s) and
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Figure 3.1: System model.

prove the proof to the SP (verifier) anonymously by using ProveGen and Verify (±). The
SP grants the user to access a requested service (²), if and only if the verification of user’s
proof is valid. In the anonymous credential system model, we can consider two types of
attributes for representation: one type is a small finite-set attribute such as the gender or
the occupation, and another type is a string attribute such as the full-name or the address.
An example of those attributes used in the eID is depicted in Table 3.1. We design our
protocols: the user registration and anonymous authentication as follows.

3.5.1 User Registration

Figure 3.2 shows the user registration through ObtainCert protocol. This protocol com-
prises the following two steps. In advance, the user has to fetch the issuer public key ipk,
for example by downloading it from the official web-site of issuer. We assume that there is
an existing access control application (e.g., based on username and password) to permit the
user to use a communication channel (which is out of scope of this dissertation). Then, the
user can use such channel to perform the ObtainCert protocol together with the issuer.

(1) Registration of user’s attributes.
The user requests the registration. He/she sends the set of his/her attributes, U for
certification (¬∼®).

(2) Issuing the certificate.

(a) The issuer computes the accumulator, certifies it into the certificate cert and
sends the cert to the user (®∼°).
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Table 3.1: Example of string and small finite-set attributes.

String Small Finite-set Example Values
1) full-name 8) gender male,female
2) address 9) day of birth 1–31
3) phone number 10) month of birth 1–12
4) identity number 11) year of birth 1930–2005
5) issuance date 12) marital status single,marriage
6) expiration date 13) nationality 193 recognized states
7) email address 14) hometown 200 allocated cities

15) city living 200 allocated cities
16) residence status citizen,imigrant,...
17) religion moslem,christian,...
18) blood type A,B,O,AB
19) occupation student,teacher,...
20) academic degree B.S.,M.S,Ph.D.,...
21) major science,economic,...
22) year of graduated 1970–2005
23) workplace 200 allocated cities
24) main language 100 allocated lang.
25) 2nd language 100 allocated lang.
26) topic of interest music,sport,...
27) favorite color red,green,blue,...
28) favorite music pop,rock,jazz,...
29) favorite sport baseball,tennis,...

Figure 3.2: User registration protocol.

(b) The user checks the validity of cert to ensure whether the cert was sent by the
legitimate issuer or not. If it is valid, the user outputs the users’ certificate cert
(±∼²).
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3.5.2 Anonymous Authentication

The anonymous authentication based on attributes is performed by using the ProveGen
and Verify. Figure 3.3 shows the authentication process to allow the user to access the
service provided by an SP through wireless networks. This protocol comprises the following
two steps. In this protocol, the user can prove his/her possession of particular attributes by
proving the given CNF formula of specific attributes.

Figure 3.3: Authentication protocol.

(1) Generation and transmission of a proof for possession of certificate.

(a) The user requests a service to the SP (service provider). Then, the SP provides
the user a CNF formula of the specified attributes. Depending on the SP’s re-
quirement, one or multiple attributes can be selected from the specified set of
attributes all at once. (¬∼­).

(b) By using cert and the selected attribute(s), the user generates the proof for the
possession of such attribute(s). This proof means that such selected attribute(s)
is (are) included in the certificate and is satisfied by the CNF formula. Then, he
shows the proof to the SP (®∼¯).

(2) Verification of a proof for possession of certificate.

(a) The SP verifies the proof. If it is valid, the SP grants the user to access the service
(resp. reject the service) (°∼±).

(b) The verification result is displayed in the web browser of the user which indicates
either accept or reject to access the service (²).
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3.6 Comparisons

We compare our system with the system in [6] that allows us to prove inner product relations
on attributes. Since both systems achieve constant-size proofs, we mainly concentrate on
the computational costs for generating the proofs.

As mentioned in [6], using the inner product relations and suitable attribute encoding,
CNF formulas (also DNF formulas) can be expressed (the encoding is shown in [11]). As
the encoding, a polynomial is used. Consider the polynomial f(x) = cdx

d + · · · + c0x
0 and

the coefficients vector ~p = (cd, . . . , c0). In the system of [6], the user’s attribute is expressed
by ω ∈ Zp. Let ~ω = (ωd mod p, . . . , ω0 mod p). Using the inner product proof system,
the user can prove ~ω · ~p = 0. This means that f(ω) = cdω

d + · · · + c0ω
0 = 0. In the

computations of the system, each element of the vector is set as the exponent on some base
parameter. This means that an exponentiation for each element is needed, and thus the
computational cost depends on the size of the vector. In the encoding of OR relation, for
example, (x = a1)∨ (x = a2) can be encoded as the univariate polynomial (x−a1) · (x−a2).
The case of more literals is similar. Let d be the number of attribute values that are used
in the OR relation. Then, this encoding needs d coefficients and the vector size becomes d.
Thus, the computational cost of the proof is d exponentiations. Consider a CNF formula
such that the `-th OR clause has d` literals (1 ≤ ` ≤ L), where L is the number of OR
clauses. Then, by the encoding for AND relation in [11], the computational cost becomes∑

1≤`≤L d` exponentiations.
In our system, the computations of accV and WV need only O(d) multiplications, while

L exponentiations by c` are needed. In cases that some OR clauses have lots of literals, the
cost of our system is much more efficient than the system [6].

On the other hand, our system has disadvantages against the system [6]: The inner
product proofs can be converted to the proofs of DNF formulas, while our system cannot
support the DNF formulas directly. In some applications, DNF formulas may be better.
Another disadvantage is the public key size. In our scheme, we need to publish signatures
for set Φ, where the size |Φ| is

∏
1≤`≤L ζ`. The size may become large based-on application.

To show the effectiveness of our system, we discuss a concrete application. Consider the
eID application as mentioned in Introduction. In such an application, a user often proves
the following CNF formula on user’s attributes.

gender = male ∧ birth year ∈ {1900, . . . , 1992}

∧profession ∈ {student, teacher, professor, . . .} ∧ · · · .
Namely, for each attribute type, the user’s attribute value is included in a set of attribute
values. This example considers that a service provider grasps user’s profile that can be useful
for marketing, while serious private data are concealed. By the OR relation of birth year, the
user proves that he/she is adult, but the concrete age is concealed. As in this example, for the
proof including OR relations with lots of literals, the system [6] needs heavy computations
of

∑
1≤`≤L d` exponentiations. On the other hand, as shown above, our system has the

additional public key size. However, in this eID application, ζ` (i.e., the maximum of |U∩V`|)
can be 1 for the attribute types such that the user owns a single attribute value such as gender
and birth year. For the attribute types such as the user owns multiple attribute values such
as the professions, ζ` can be more than 1. Most attribute types are former, and for the latter
type, a user does not own lots of attribute values. Thus, in this application, the public key
size depending on

∏
1≤`≤L ζ` is not so huge.
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3.7 Summary

In this chapter, we propose and describe a pairing-based anonymous credential system with
the constant-size proofs of CNF formulas using our extended accumulator. Our system
has the great advantage that the proof generation cost is more efficient than the system
[6], since only multiplications are needed whose number depends on the number of literals.
The compensation is the increase of public parameters. We demonstrate that, for the CNF
formulas that can be often used in eID applications, the increase is not so huge.
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Chapter 4

Implementation and Evaluation of an
Anonymous Credential System with
Constant-Size Proofs on CNF
Formulas and Efficient Proof
Generations

4.1 Introduction

In Chapter 3, we proposed a pairing-based anonymous credential system with the constant-
size proofs for CNF formulas, where the proof generation cost is more efficient than the
system in [6], since only multiplications are needed depending on the number of literals.
However, since the proposed system has never been implemented yet, the practicality in the
current PC environment is unknown. Thus, the evaluation based on the implementation is
required.

In this chapter, we implement our system using a fast pairing library. In the pairing-
based construction, the pairing calculation’s cost is dominant, compared to other operations
such as multiplications and exponentiations in the underlying Elliptic Curve Cryptosystem
(ECC). We adopt the pairing library in [19] where the pairing can be computed fast using
“Cross-twisted χ-based Ate (Xt-Xate) pairing.”

To evaluate the practicality of our implemented system, we measured the processing time
in the proof protocol and the data size of the proof. In the measurements, we are changing
parameters such as the maximum number of OR clauses in the proved CNF formula and
the number of the user’s own attributes. From the results of the measurements, we confirm
that the proof size is constant w.r.t. the parameters, and the verification time is constant
and very fast (about 300 ms in a usual PC). However, the result shows that the time of
the proof generation in the prover increases non-linearly, when the maximum number of OR
clauses and the number of the user’s attribute increase simultaneously. In case that both the
numbers are less than 30, the processing time is less than about 1 sec., and thus our system
is practical. In case of more numbers, it is inefficient. The reduction of the processing time
is one of our future works.

In the implemented system, the public key size also depends on the parameters: the total
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number of attributes, and the number of attributes matched between the user’s attribute
set and clauses in the CNF formula. Then, we measured the data size of the public key,
when changing these parameters. The results show that the public key size greatly increases
when these parameters increase. In case of 10,000 attributes, the size amounts to more than
3 MBytes. In case that the matched number increases, the public key size increases. The
reduction is shown in Chapter 5.

4.2 Outline of Cryptographic Construction

Generally, the anonymous credential system can be constructed as follows. The certificate is
a cryptographic digital signature, where multiple attribute values are signed. The signature is
denoted as Sign(a1, a2, . . . , ak) that is the signing function on attribute values a1, a2, . . . , ak.
By using a zero-knowledge proof technique, the user can prove only the knowledge that
he/she owns Sign(a1, a2, . . . , ak), where the attributes can be secret.

In [31], a signature scheme using a bilinear map called pairings is proposed. By using
zero-knowledge proofs for pairings in [18] called GS (Groth-Sahai) proofs, the knowledge of
the signature can be proved. Thus, our system adopts the signatures and zero-knowledge
proofs.

To obtain the constant-size proof, multiple attributes in the user and the proved formula
have to be compressed. For the compression, our system utilizes a cryptographic technique,
an accumulator. A basic accumulator is generated from a set of values. We can verify that
a single value is included in the set. In our construction, an extended accumulator is used,
where we can verify that, for a set U , for all multiple sets V1, . . . , VL, a value from U is
included in each V`, i.e., U ∩ V` 6= ∅, all at once. Consider the following CNF formula:

(a11 ∧ a12 ∧ . . .) ∨ (a21 ∧ a22 . . .) ∨ . . .

where a11, a12 . . . a21, a22 . . .∈ {1, . . . , n} means that the proving user owns the corresponding
attribute. Set V1 = (a11, a12, . . .), V2 = (a21, a22, . . .) . . . and VL = (aL1, aL2, . . .). Set U be
the set of attributes (indexes) of the proving user. Then, using the accumulator, we can
confirm that U ∩ V` 6= ∅ for any V`. This means that the attributes in U satisfies this CNF
formula, since some attribute in U is one of attributes in every OR clause expressed by V`.
The attributes of U are compressed to one value, and the CNF formulas V1 . . . , VL are also
compressed.

In the verification of the accumulator, the relation u = |U ∩ V1|c1 + · · · + |U ∩ VL|cL
has to be proved, where u is an integer parameter output from the pairing relation of the
accumulator, and c1, . . . , cL are public parameters that are computed in the key generation
of the accumulator. However, values |U ∩ V1|, . . . , |U ∩ VL| have to be secret, since these
values reveal some information on U (user’s attributes). In our system, in IssuerKeyGen,
the issuer generates signatures for all candidates of u. Due to U ∩V` 6= ∅, and the maximum
ζ` of |U ∩V`|, the set of the candidates is Φ = {u =

∑L
`=1 δ`c`|1 ≤ δ` ≤ ζ` for all 1 ≤ ` ≤ L}.

Namely, the issuer generates signatures for all the elements of this set, which are included
in the public key, ipk. In AttributeProof, the user proves the knowledge of a signature
of u generated in the accumulator, where the GS proof brings the zero-knowledge, i.e., u is
secret.

However, this trick brings the communication cost to the system. The size of |Φ| is∏
1≤`≤L ζ`. The public key size increases by |Φ| signatures. This cost is evaluated later based

on the implementation.

31



4.3 Implementation

In this section, we describe the implementation of our proposed anonymous credential sys-
tem. To show the practicality of our system, we implemented the system and measured the
computational overhead.

4.3.1 Utilized Pairing Library

The construction of the implemented anonymous credential system is mainly based on the
bilinear groups and bilinear map. We utilize the library based on “Cross-twisted χ-based
Ate (Xt-Xate) pairing” [19] with 254-bit group order and the embedding degree is 12. The
security level is equivalent to the 128-bit AES. The library is based on the GMP library and
implemented by C language due to the pursuit of the fastness.

4.3.2 Instantiation of GS Proof

For the implementation, we need to instantiate the GS zero-knowledge proof [18] concretely.
Based on the utilized pairing and cryptographic assumption, there are three types of instan-
tiations. Since we utilize asymmetric pairing from the viewpoint of efficiency, we adopt the
GS proof based on the SXDH assumption for the asymmetric pairing.

The GS proof deals with any pairing equation to be proved, but the size of the proof
is relatively large in case of the general pairing equation. For one pairing equation, four
G1-elements and four G2-elements are needed. On the other hand, in the simplified relation
called linear equation, the size is reduced to only two G1-elements. In the implemented
system, there are five pairing equations to be proved. Among them, four equations are for
proving the knowledge of signatures [31], which are linear equations. The other equation is
for the verification of the accumulator. The accumulator is verified by the following pairing
equation:

1GT
= e(PU , accV) · e(g,WV)

−1 · e(τu, gn)−1,

where PU ,WV , τu are secret parameters and the others are public parameters. In the linear
equation, the first inputs must be public parameters and the second inputs must be secret
ones. In our implementation, the above equation is modified as follows:

1GT
= e(accV , PU) · e(g,WV)

−1 · e(gn, τu)−1.

From the property of the bilinear map, the modification is valid. This modification allows
us to utilize the GS proof of the linear equation to reduce the proof size.

4.4 Experiments for Evaluations

In this section, we present the experimental results to show the effectiveness and practicality
of our proposed scheme. To assume the mobile environments, we measured the computation
time and the data sizes of this scheme using a desktop PC for both the signer and the verifier.
The environments of the experiments are shown in Table 4.1. For measuring the time, we
utilize gettimeofday sec() method that is a JAVA API.
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Table 4.1: Environments of implementation and experiments.
CPU Intel Core2 Duo (3GHz)

Memory 3.9 GBytes
OS Ubuntu 12.04 (kernel Linux-3.2.0-59-generic)

Compiler GCC-4.5.2
Library GMP-5.0.2 (Multiple Precision Arithmetic Library)

ELiPS (Pairing Library)

In this experiment, we suppose the eID application that is mentioned in Chapter 1. In
the application, we can consider the popular example of the following CNF formula:

gender = male ∧ birth year ∈ {1900, . . . , 1992}

∧profession ∈ {student, teacher, professor, . . .} ∧ · · · .
This example means that a service provider grasps the user’s profile that can be useful for
marketing, while serious private data are concealed. By the OR relation of birth year, the
user proves that he is an adult, but the concrete age is concealed. In the measurements, we
evaluate the dependency on L (the number of clauses), |V`| (the size of a clause), ζ` (the size of
|U ∩ V`|). Thus, we performed three types of measurements: Measurement 1, Measurement
2 and Measurement 3. In each measurement, except for the changed parameters, we set
L = 10, |V`| = 10, ζ` = 1.

4.4.1 Measurement 1

In Measurement 1, we measured the processing time of Attribute Proof protocol for the
user and verifier, in case of changing the maximum number of OR clauses (L) in the proved
CNF formula. In this measurement, for simplicity, we set L = |U |. This is a popular setting
in the eID application. As the above example, an OR clause is set up for a single attribute
type of the user, such as the gender and birth year. Thus, it is likely that the maximum
number of clauses is similar to the number of user’s attributes. The measured times on the
variation of L (also, |U |) are shown in Fig. 4.1. This figure shows that the user time increases
non-linearly w.r.t. L. On the other hand, the verification time is constant and about 300 ms.
This is because the verification consists of only the verification of the GS proofs, whose cost
does not depend on the size of U, V1, . . . , VL and L. The size of proof sent between the user
and verifier in AttributeProof protocol is also constant for L, and concretely 3.8 Kbytes
only. Therefore, the verification time and the size indicate the practicality of our system.
On the other hand, the user time is practical in case of L ≤ 30, but inefficient in case of
L > 30.

To explore why the user time increases, we measured the detailed processing time of
user in the AttributeProof protocol. The proof generation in the user consists of three
parts: the accumulator computation, the witness computation, and the GS proof generation.
Fig. 4.2 shows the processing time in each part. The figure shows that the accumulator com-
putation is very fast, compared to the others, and the variation is linear w.r.t. L, because
the computation consists of only multiplications and the loop depending on L is once. The
GS proof generation is constant as in the verification, but needs more time than the accu-
mulator computation, since the generation needs the exponentiations. On the other hand,
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Figure 4.1: Processing times of AttributeProof for prover and verifier.

the processing time for the witness computation increases greatly and non-linearly w.r.t. L,
because the witness computation requires two loops depending on L (i.e, L and |U |). If U
contains more than L elements, the time increases more. Hence, to reduce the time of the
witness computation is one of our future works.

Figure 4.2: Detailed processing times in prover.
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4.4.2 Measurement 2

Next, we target the dependency on |V`| (i.e., the number of literals in an OR clause in the
predicate). The processing time is almost constant, although the user time is changing from
160 ms – 200 ms. In this case, the witness computation in the prover does not influence the
processing time so much, since the loop depending on |V`| is once and thus the variation of
the processing time is similar to that in the accumulator computation. On the other hand,
|V`| influences the size of the issuer public key, ipk. Thus, in Measurement 2, the size of ipk
is measured for different sizes of V1. Fig. 4.3 shows the variation of the size of ipk. From
this figure, we can confirm that the size of ipk increases almost linearly w.r.t. the sizes of
V1. This is because the increase of |V`| means the increase of the number of attributes, and
thus the increase of public parameters of the accumulator. In case of |V1| = 10,000 and
keeping the sizes of other V` as 10, the size of ipk is more than 3 MBytes. Hence, our future
modification will cover the reduction of ipk size in such a lots of literals.

Figure 4.3: Size of ipk for size of V1.

4.4.3 Measurement 3

Finally, we target the dependency on ζ` (i.e., |U ∩ V`|). In this case, the variation of ζ` does
not influence the processing time at all, but it impacts on the size of ipk. Thus, in this
measurement, when we change ζ`, we measured the size of ipk. The results of Measurement
3 are shown in Table 4.2. This table shows that ipk size increases when each ζ` increases.
Here we consider four different cases of ζ` and the values of rest of the ζ` is 1 (i.e., ζ5 ∼ ζ10
= 1). When ζ1 = 5, ζ2 = 10, ζ3 =15 and ζ4 = 20, the size of ipk amounts to more than 7
MBytes. However, in the eID applications, ζ` tends to be 1 for most attribute types. In the
above example, a user owns a single birth year and thus |U ∩V`| = 1. For the attribute type
of profession, a user may own multiple professions such as a Ph.D student and a company
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researcher. In this case, it may be |U ∩ V`| = 2. However, usually the maximum number
|U ∩ V`| is not so large.

Table 4.2: Size of ipk for ζ`
ζ1 ζ2 ζ3 ζ4 Size of ipk (KBytes)

5 1 1 1 45
5 10 1 1 86
5 10 15 1 539
5 10 15 20 7516

4.5 Summary

In this chapter, we show the implementation of the anonymous authentication system which
is proposed in Chapter 3. The experimental measurements show the practicality of the
proposed system in case that the parameters L, |V`| are not so large. The future works
include the reduction of the witness computation time and the reduction of ipk size in case
of large parameters. The reduction in case of larger ζ` (the number of matched attributes
between user’s attribute set and the clause in the CNF formula) is shown in Chapter 5.
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Chapter 5

Extension for Public-Key Size
Reduction

5.1 Introduction

In Chapter 3, we proposed an anonymous credential system with the constant size of proofs
for CNF formulas. In the proposed system, the proof generation cost is smaller than the
similar existing system in [6], since only multiplications depending on the number of literals
are needed. One demerit of our previous system is the increase of public parameters, which
brings a large communication cost to the system.

Hence, in this chapter, we propose an extension to reduce the public key size and evaluate
the efficiency based on an implementation. In the previous system, to ensure the correctness
of a value u in the verification, the issuer publishes signatures on all candidates of u, which
causes the pubic key size increase. In our extension, we consider two values u1 and u2 s.
t. u = u1 + u2, and signatures on u1 and u2 are separately published. This modification
reduces the public key size to 2

√
N for the original size N . However, this trick increases the

computational cost by about 20%, compared to our previous system. For our implementa-
tion, the proving and verification times are less than 200 ms and 500 ms respectively in a
usual PC, which is still practical.

5.2 Previous Anonymous Credential System for CNF

Formulas and the Problem

Generally, the anonymous credential system can be constructed as follows. The certificate is
a cryptographic digital signature, where multiple attribute values are signed. The signature
is denoted as Sign(a1, a2, . . . , ak) that is a signing function on attribute values a1, a2, . . . , ak.
By using a zero-knowledge proof technique, the user can prove only the knowledge that he
owns Sign(a1, a2, . . . , ak), where the attributes can be secret.

In [31], a signature scheme using a bilinear map called pairings is proposed. By using
zero-knowledge proofs for pairings in [18] called GS (Groth-Sahai) proofs, the knowledge
of the signature can be proved. Thus, this system adopts this group signatures and zero-
knowledge proofs.

To obtain the constant-size proof, multiple attributes in the user and the proved formula
have to be compressed using an accumulator. In the accumulator, it can be verified that, for
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a set U , for all multiple sets V1, . . . , VL, a value from U is included in each V`, i.e., U ∩V` 6= ∅,
all at once. Consider the following CNF formula:

(a11 ∧ a12 ∧ . . .) ∨ (a21 ∧ a22 . . .) ∨ . . .

where a11, a12 . . . a21, a22 . . .∈ {1, . . . , n}. Set V1 = (a11, a12, . . .), V2 = (a21, a22, . . .) and
Vl = (al1, al2, . . .). Set U be the set of attributes (indexes) of the proving user. Then, using
the accumulator, we can confirm that U ∩ V` 6= ∅ for any V`. This means that the attributes
in U satisfy this CNF formula, since some attribute in U is one of the attributes in every
OR clause expressed by V`. The attributes of U are compressed to one value, and the CNF
formulas V1 . . . , VL are also compressed.

The accumulator is verified by

e(PU , accV)

e(g,W )
= zu (5.1)

where PU and accV are the accumulated values of U and V`’s, W is the witness value,
g and z are public parameters, and e is the pairing function. Furthermore, the relation
u = |U ∩ V1|c1 + · · · + |U ∩ VL|cL has to be proved, where c1, . . . , cL are public parameters
that are computed in the key generation of the accumulator.

Values |U ∩ V1|, . . . , |U ∩ VL| have to be secret, since the values reveal some information
on U (user’s attributes). For the zero-knowledge proof, the set membership proof of [45]
is adopted as follows. In advance, the issuer generates signatures for all candidates of u.
Assuming ζ`, that is the maximum of |U ∩ V`|, the set of the candidates is Φ = {u =∑L

`=1 δ`c`|1 ≤ δ` ≤ ζ` for all 1 ≤ ` ≤ L}. Namely, the issuer generates signatures for all
elements of this set, which are included in the public key. In the attribute proof protocol,
the user proves the knowledge of a signature of u generated in the accumulator, where the
GS proof brings the zero-knowledge, i.e., u is secret.

However, this trick brings the communication costs to the system. The size |Φ| is∏
1≤`≤L ζ`. The public key size increases by |Φ| signatures.

5.3 Proposed Extended System to Reduce Public-Key

Size

In our previous system, the bottleneck was the large public key size. To overcome this
problem, we will extend this system. The idea behind the extension is to separate the

candidates of the set Φ into two sets of Φ1 and Φ2. We consider Φ1 = {u1 =
∑L̃

`=1 δ`c`|1 ≤
δ` ≤ ζ` for all 1 ≤ ` ≤ L̃} and Φ2 = {u2 =

∑L
`=L̃+1 δ`c`|1 ≤ δ` ≤ ζ` for all L̃ + 1 ≤ ` ≤ L},

where L̃ is set such that |Φ1| ' |Φ2|. If all the values of ζ` are equal, then L̃ is set such that
L̃ = dL

2
e. Then, the issuer generates signatures for all the candidates of sets Φ1 and Φ2, where

the signatures are generated using the public key for Φ1 and the key for Φ2 independently.
In the attribute proof protocol, the user proves the knowledge of the signatures on both u1

and u2, used in the accumulator verification in the GS proof. The accumulator is verified by
the following pairing equation:

e(PU , accV)

e(g,W )
= zu1 · zu2 = zu1+u2 .
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Since the signatures on u1 and u2 ensure u1 = |U ∩ V1|c1 + · · · + |U ∩ VL̃|cL̃ and u2 =
|U ∩ VL̃+1|cL̃+1 + · · · + |U ∩ VL|cL, the above relations imply equation (5.1). Thus the
accumulator relation is correct. The size of |Φ1| is

∏
1≤`≤L̃ ζ` and that of |Φ2| is

∏
L̃+1≤`≤L ζ`,

which greatly reduces the size of signatures. Therefore, the public key size is also greatly
reduced than the previous system.

5.3.1 Proposed Construction of Extended System

The details of the construction of the extended system are described as follows:

IssuerKeyGen

n, L, η, and ζ` are given for all 1 ≤ ` ≤ L.

1. Select bilinear groups G and T with the same order p and the bilinear map e, and
g ∈R G.

2. Generate the public parameters of the extended accumulator: for all 1 ≤ ` ≤ L,
compute c` = (η + 1)`−1 and set C = (c1, . . . , cL). Select γ ∈R Zp, and compute

pkacc = (C, g1 = gγ
1

, . . . , gn = gγ
n

,

gn+2 = gγ
n+2

, . . . , g2n = gγ
2n

,

z = (g, g)γ
n+1

).

3. Generate two key pairs for the AHO signature:

pk
(d)
AHO = (G(d)

r , H(d)
r , G(d)

z , H(d)
z , G(d), H(d), A(d), B(d)),

sk
(d)
AHO = (α(d)

a , α
(d)
b , µ(d)

z , ν(d)
z , µ, ν),

where d ∈ {0, 1}.

4. Generate a CRS for the GS NIWI proof: select ~f = (~f1, ~f2, ~f3), where ~f1 = (f1, 1, g),
~f2 = (1, f2, g), ~f3 = ~f ξ1

1 · ~f
ξ2
2 for f1, f2 ∈R G and ξ1, ξ2 ∈R Z∗

p .

5. For C and L̃ = dL
2
e, define Φ1 = {u1 =

∑L̃
`=1 δ`c`|1 ≤ δ` ≤ ζ` for all 1 ≤ ` ≤ L̃}

and Φ2 = {u2 =
∑L

`=L̃+1 δ`c`|1 ≤ δ` ≤ ζ` for all L̃ + 1 ≤ ` ≤ L}, where |Φ1| =∏
1≤`≤L̃ ζ` and |Φ2| =

∏
L̃+1≤`≤L ζ`. For every u1 ∈ Φ1 and u2 ∈ Φ2, generate the AHO

signatures on gu1
1 and gu2

1 . The signatures are denoted as σ̃u1 = (θ̃u11, . . . , θ̃u17) and
σ̃u2 = (θ̃u21, . . . , θ̃u27) respectively.

6. Output the issuer public key

ipk = (p,G, T , e, g, pk(0)
acc, pk

(1)
acc, pkAHO, ~f , {σ̃u1}u1∈Φ1 ,

{σ̃u2}u2∈Φ2)

and the issuer secret key isk = (sk
(0)
AHO, sk

(1)
AHO).
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CertObtain

This is an interactive protocol between CertObtain-Uk (user) and CertObtain-I (issuer).
The common inputs of this protocol consist of ipk and Uk that are the indexes of attribute
values of the user. The input of CertObtain-I is isk. We introduce a special attribute
value aSP. Every user has aSP.

1. CertObtain-I: Generate Pk =
∏

i∈Uk
gi.

2. CertObtain-I: Using sk(1)
AHO, generate an AHO signature σk = (θ1, . . . , θ7) on message

Pk. Return σk to CertObtain-Uk as the certificate.

3. CertObtain-Uk: Compute Pk =
∏

i∈Uk
gi, and verify the AHO signature σk on Pk.

Output certk = (Pk, σk).

ProofGen

The inputs are ipk, Uk, certk, and the CNF formula Ψ. For the given formula Ψ = (a11 ∨
a12 ∨ · · · )∧ (a21 ∨ a22 ∨ · · · )∧ · · · (aL′1 ∨ aL′2 ∨ · · · ) with a11, a12, . . . , a21, a22, . . . ∈ {1, . . . , n},
define V1 = {a11, a12, . . .}, V2 = {a21, a22, . . .}, Vl = {al1, al2, . . .}. If L′ < L, define VL′+1 =
· · · = VL = {aSP}.

1. Compute the accumulator:

accV =
∏

1≤`≤L

(
∏
j∈V`

gn+1−j)
c` .

2. Compute the witness:

WV =
∏
i∈Uk

∏
1≤`≤L

(

j 6=i∏
j∈V`

gn+1−j+i)
c`

Uk satisfies V for accV , and sets u1 = δ1c1 + . . .+ δL̃cL̃ and u2 = δL̃+1cL̃+1 + . . .+ δLcL,
where δ` = |Uk ∩ V`| for all 1 ≤ ` ≤ L.

3. Set τu1 = gu1
1 and τu2 = gu2

1 . From ipk, select the AHO signatures σ̃u1 = (θ̃u11, . . . , θ̃u17)
on the gu1

1 and σ̃u2 = (θ̃u21, . . . , θ̃u27) on the gu2
1 .

4. Compute the GS commitments comPk
, comWV , comτu1

, comτu2
to Pk,WV , τu1 , τu2 . Then,

re-randomize the AHO signature σk to obtain σ′
k = {θ′1, . . . , θ′7}, and compute GS com-

mitments {comθ′i
}i∈{1,2,5} to {θ′i}i∈{1,2,5}. Similarly, re-randomize the AHO signature

σ̃u1 to obtain σ̃′
u1

= {θ̃′u11, . . . , θ̃
′
u17}, and σ̃u2 to obtain σ̃′

u2
= {θ̃′u21, . . . , θ̃

′
u27},and

compute GS commitments {comθ̃′u1i
}i∈{1,2,5} to {θ̃′u1i}i∈{1,2,5} and {comθ̃′u2i

}i∈{1,2,5} to
{θ̃′u2i}i∈{1,2,5}.
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5. Generate the GS proofs {πi}9i=1 s.t.

1T = e(Pk, accV) · e(g,WV)
−1

·e(τu1 , gn)
−1 · e(τu2 , gn)

−1, (5.2)

A(1) · e(θ′3, θ′4)−1

= e(G(1)
z , θ′1) · e(G(1)

r , θ′2) · e(G(1), Pk), (5.3)

B(1) · e(θ′6, θ′7)−1

= e(H(1)
z , θ′1) · e(H(1)

r , θ′5) · e(H(1), Pk), (5.4)

A(0) ·e(θ̃′u13, θ̃
′
u14)

−1

= e(G(0)
z ,θ̃′u11)·e(G(0)

r , θ̃′u12)·e(G(0), τu1), (5.5)

B(0) ·e(θ̃′u16, θ̃
′
u17)

−1

= e(H(0)
z ,θ̃′u11)·e(H(0)

r , θ̃′u15)·e(H(0), τu1), (5.6)

A(1) ·e(θ̃′u23, θ̃
′
u24)

−1

= e(G(0)
z ,θ̃′u21)·e(G(0)

r , θ̃′u22)·e(G(0), τu2), (5.7)

B(1) ·e(θ̃′u26, θ̃
′
u27)

−1

= e(H(0)
z ,θ̃′u21)·e(H(0)

r , θ̃′u25)·e(H(0), τu2). (5.8)

6. Output σ = ({θ′i}i=3,4,6,7, {θ̃′u1i}i=3,4,6,7, {θ̃′u2i}i=3,4,6,7, comPk
, comWV , comτu1

, comτu1
,

{comθ′i
}i=1,2,5, {comθ̃′u1i

}i=1,2,5, {comθ̃′u2i
}i=1,2,5, {πi}9i=1).

The equation (5.2) shows one of verification relations of accumulator:

e(
∏

i∈Uk
gi, accV)

e(g,WV)
= e(gu1

1 .gu2
1 , gn) = zu1+u2 ,

where Pk =
∏

i∈Uk
gi, τu1 = gu1

1 and τu2 = gu2
1 . Equations (5.3), (5.4) show the knowledge

of the AHO signature of Pk, i.e., the certificate certk. Equations (5.5), (5.6) show the
knowledge of the AHO signature of τu1 . The equations (5.7), (5.8) show the knowledge of
the AHO signature of τu2 . This ensures that 1 ≤ δ` ≤ ζ where u1 = δ1c1 + . . . + δL̃cL̃ and
u2 = δL̃+1cL̃+1 + . . .+ δLcL. Thus, together with equation (5.2), it ensures the verification of
the accumulator. This is why the verifier is ensured that Uk ∩ V` 6= ∅, i.e, attributes in Uk

satisfies the CNF formula Ψ.

Verify

The inputs are ipk, the proof σ, and the CNF formula Ψ.

1. Compute the accumulator accV , as in ProofGen.

2. Accept σ, if the verifications of all GS proofs {πi}9i=1 are successful.

5.3.2 Further Extension

As a further extension, more separations of the candidates of set Φ can be considered. If the
elements of set Φ is separated into more than two, the public key size is supposed to be more
smaller than the current. But the overhead can increase the computational cost by about
20% ∼ 30% than the current system. Still, the computational time will remain practical in
the current general PCs.
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Table 5.1: Environments of implementation and experiments.
CPU Intel Core2 Duo (3GHz)

Memory 3.9 GBytes
OS Ubuntu 12.04 (kernel Linux-3.2.0-59-generic-pae)

Compiler GCC-4.5.2
Library GMP-5.0.2 (Multiple Precision Arithmetic Library)

ELiPS (Pairing Library)

Table 5.2: Experimental Results for equal values of ζ`.
Previous System Extended System

Public-Key Size 31 MB 0.3 MB
Proving Time 125 ms 151 ms

Verification Time 340 ms 479 ms
Proof Size 3.9 KB 5.6 KB

5.4 Implementation and Experiments

As in Chapter 4, we utilize the fast pairing library for the implementation.

5.4.1 Experimental results and evaluations

The environments of the implementation and experiments are shown in Table 5.1. In this
scheme, our goal is to reduce the public key size. On the other hand, in the extended system,
the attribute proof needs additional computational cost. Hence, to prove our goal and to
show the practicality of our system, we measured the processing time of the attribute proof
protocol and the data size in the implemented system.

We suppose the eID application as in Chapter 4. Similarly, we can consider the popular
example of the following CNF formula:

gender = male ∧ birth year ∈ {1900, . . . , 1992}

∧profession ∈ {student, teacher, professor, . . .} ∧ · · · .

By the OR relation of birth year, the user proves that he is adult, but the concrete age is
concealed. In the measurements, we evaluate the dependency on ζ` (the size of |U ∩ V`|)
in case of the same value of ζ` and different values of ζ`. Thus, we performed two types of
measurements: Measurement 1, and Measurement 2.

5.4.2 Measurement 1

In measurement 1, we measured the processing time and data size of Attribute Proof
protocol for the user and verifier, in case of the same value of ζ` (the size of |U ∩ V`|). In
this measurement, we set L = 15, |V`| = 10, ζ` = 2 for all l, and |U | = 16.

Table 5.2 shows the experimental results of the public key size, the processing time of
proving and verification in the attribute proof protocol, and the proof size in the measurement
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Table 5.3: Experimental Results for unbalanced values of ζ`.
Previous System Extended System

Public-Key Size 14 MB 0.4 MB
Proving Time 149 ms 179 ms

Verification Time 335 ms 483 ms
Proof Size 3.9 KB 5.6 KB

1. From this table, we can confirm that the public key size is greatly reduced. The public
key size of our previous system is 31 MB, the extended system needs only 0.3 MB. Compared
to |Φ| = 215 = 32, 768, |Φ1| = 28 = 256 and |Φ2| = 27 = 128. The extended system reduces
the public-key size by 2

√
N , where N is the number of signatures in previous system. From

Table 5.2, we can find that the proving time, the verification time and the proof size are
increased by about 20%, compared to those of the previous system, which is a trade off to
reduce the public key size. This is because, in our extended system, we use two proofs of
signatures for set Φ1 and Φ2. Previously, it was only one for the set Φ. Hence, the processing
time and the proof size have increased by about 20% than the previous system.

However, still the proving and verification times are only 179 ms and 479 ms respectively
and they are sufficiently practical in the current general PCs.

5.4.3 Measurement 2

In measurement 2, we measured the processing time and data size of Attribute Proof
protocol in case of the unbalanced values of ζ` (the size of |U ∩V`|). In this measurement, we
set L = 20, |V`| = 10, ζ1 = 5, ζ2 = 10, ζ3 = 15, ζ4 = 20, ζ5 = 1, . . . , ζ20 = 1, and |U | = 21.
In this case, L̃ = 2, and |Φ1| = 50 and |Φ2| = 300, compared to |Φ| = 15, 000.

Table 5.3 shows the experimental results of the measurement 2. From this table, we can
confirm that the public key size is also greatly reduced in the unbalanced case. The public
key size of our previous system is 14 MB, whereas the extended system needs only 0.4 MB.
From Table 5.3, we can find that the proving time, the verification time and the proof size
are increased by about 20%, compared to those of the previous system. However, still the
processing time is sufficiently practical in the current general PCs.

5.5 Summary

In this chapter, we proposed an extension of an anonymous credential system with the
constant-size proofs for CNF formulas to reduce the long public key. The experimental
result shows that the public key size is reduced to 2

√
N for the original number of signatures

of N . The computational costs are increased by about 20%, which we considered as a trade
off in order to reduce the public key size.
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Chapter 6

Offline/Online Technique for
Efficiency Improvement

6.1 Introduction

In our proposed system in Chapter 3, a user can prove a CNF formula on the certified
attributes anonymously. The eID application of the system can be used in mobile environ-
ments, and thus the efficiency of clients is important. In the previous chapters, we target
the case with lots of OR relations. On the other hand, in this chapter, we consider the case
with lots of AND relations. This is because, in some real application services, formulas with
lots of AND relations are used. For instance, when utilizing user’s address as the attribute,
it consists of hierarchical names such as the country, the city, the prefecture, the street and
so on, as shown in Fig. 6.1. In such a case, we need to consider formulas with lots of AND
relations such as:

address = japan ∧ okayama ∧ okayama− shi ∧ tsushima · · ·

.

Figure 6.1: Hierarchy of address attributes.

In our accumulator, the number of exponentiations depends on the number of AND
relations. In mobile applications, the exponentiation cost may cause a delay. Therefore, to
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reduce the computational overhead, we propose a system with a less online computation for
the client in the case of lots of AND relations. Some parts of computations are executed
offline in advance. The compensation is the increase of the storage to store the offline
computed values.

6.2 Proposed Construction

We introduce an online/offline technique using the offline precomputation of some public
parameters to reduce the amount of the online computation. In the precomputation, the
exponentiations of all patterns used for the accumulator, accV and witness, WV computations
are offline executed in advance.

In the accumulator and witness computations, the computations of (gn+1−j)
c` are needed.

In this improved system, a separated offline algorithm computes all the parameters of gc`j for
1 ≤ j ≤ 2n except j = n + 1 and for 1 ≤ l ≤ L in advance. Then, the computed gc`j s are
stored in a file. In ProofGen, the signer can access the file and can use the parameter gc`j
to generate the accV and WV values without an exponentiation cost. In the basic system of
Chapter 3, the computations of accV and WV require L exponentiations of cl, which brings
a processing cost. By the precomputation, the computations of accV and WV need only
multiplications depending on the size of CNF clauses, |Vl| and the number of OR clauses
in proved CNF formula, L. To compute gc`j , we do not need any secret parameters, and
thus this offline precomputation can be executed by any party. When the precomputations
are executed in the issuer, the precomputed values gc`j are distributed to the user as public
parameters.

The construction of our proposed online/offline system is similar to our basic system in
Chapter 3, except the offline public parameter computation. Hence, we omit the detailed
construction of the same protocol here. This construction is given bellow.

6.2.1 IssuerKeyGen

The construction of this protocol is the same as that in our basic system in Chapter 3.
n, L, η`, and ζ` for all 1 ≤ ` ≤ L are given. This algorithm executes AccSetup to
obtain the public parameters of the extended accumulator, generates key pairs of AHO
signatures, generates CRS for GS NIWI proof, and prepares AHO signatures on g1

u for all
u ∈ {

∑L
`=1 δ`c`|1 ≤ δ` ≤ ζ` for all 1 ≤ ` ≤ L}.

6.2.2 CertObtain

This is an interactive protocol between CertObtain-Uk (user) and CertObtain-I (issuer).
The common inputs of this protocol consist of ipk and Uk that are the indexes of attribute
values of the user. The input ofCertObtain-I is isk. In this protocol, to the user, the issuer
sends a certificate certk including the AHO signature σk on Pk =

∏
i∈Uk

gi. The construction
and mechanishm of this protocol is also the same as our basic system in Chapter 3.

6.2.3 Offline Precomputation

This algorithm, given ipk, computes all the parameters with exponentiations for the accu-
mulator and witness. The inputs of this algorithm are n, L, gj, hj and c`. This algorithm
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generates gc`j and hc`
j for all 1 ≤ j ≤ 2n except j = n+ 1 and for all 1 ≤ l ≤ L and outputs

Ω1 = gc`j and Ω2 = hc`
j . In ProofGen, this precomputed parameters Ω1 and Ω2 are used to

compute the accumulator and witness value.

6.2.4 ProofGen

In this algorithm, the inputs are ipk, Uk, certk, the CNF formula Ψ, and the precomputed
Ω1, Ω2. For a given formula Ψ = (a11∨a12∨· · · )∧(a21∨a22∨· · · )∧· · · (aL′1∨aL′2∨· · · ) with
a11, a12, . . . , a21, a22, . . . ∈ {1, . . . , n}, define V1 = {a11, a12, . . .}, V2 = {a21, a22, . . .}, . . . , Vl =
{al1, al2, . . .}. If L′ < L, define VL′+1 = · · · = VL = {aSP}. This algorithm generates the GS
NIWI proof proving that Pk satisfies the accumulator verification for the accumulator accV
indicating the proved predicate Ψ, and proving Pk is signed as a AHO signature σk by the
issuer’s public key. In the accumulator verification, the GS proof for an AHO signature on
gu1 is also utilized.

Here, step 1 and step 2 are modified. The rests from step 3 are the same as in Chapter 3.
Using precomputed Ω1 and Ω2, step 1 and step 2 are as follows:

1. Compute the accumulator:

accV =
∏

1≤`≤L

(
∏
j∈V`

gl,n+1−j)

2. Compute the witness

WV =
∏
i∈Uk

∏
1≤`≤L

(

j 6=i∏
j∈V`

gl,n+1−j+i)

that Uk satisfies V for accV , and sets u = δ1c1 + . . .+ δLcL, where δ` = |Uk ∩ V`| for all
1 ≤ ` ≤ L.

This technique completely reduces the exponentiation costs of the ProofGen protocol in
online scheme, since only the multiplication cost is needed. Hence, this scheme is much more
efficient.

6.2.5 Verify

The construction of this protocol is the same as that in our basic system in Chapter 3.

6.3 Implementation and Experimental Evaluations

To evaluate the effectiveness of our proposed improvement, we implemented our scheme.
The environments of the implementation and experiments are shown in Table 6.1.

Our target is to reduce the computational cost of the online computations in ProofGen
protocol. On the other hand, the extended system needs some overhead storage. Hence, to
show the practicality of our system, we measured the processing times of the ProofGen
and Verify and the data sizes of the precomputed Ω1 and Ω2 in the implemented system.
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Table 6.1: Environments of implementation and experiments.
CPU Intel Core2 Duo (3GHz)

Memory 3.9 GBytes
OS Ubuntu 12.04 (kernel Linux-3.2.0-59-generic-pae)

Compiler GCC-4.5.2
Library GMP-5.0.2 (Multiple Precision Arithmetic Library)

ELiPS (Pairing Library)

In this chapter, we suppose the same eID application in Chapter 1. In this application, we
can consider an example of the following CNF formula:

gender = male ∧ birth year ∈ {1900, . . . , 1992}

∧profession ∈ {student, teacher, professor, . . .}

∧address ∈ {japan ∧ okayama ∧ okayama− shi ∧ tsushima . . .} ∧ . . .

This example means that a user’s proved CNF formula may consist of many AND relations.
In the experiment, we evaluate the dependency on the size of the proved CNF formula L,
10 ≤ L ≤ 50. For the other parameters we set |V`| = 10 for the half of V ′

` s and |V`| = 1 for
the others. We set ζ` = 1 for all l and consider n = 231 as the total number of attributes
value. In this measurement, for simplicity, we set |U | ≥ L which is a popular setting for the
eID application, and concretely set |U | = L+ 1.

6.3.1 Processing Time

Figure 6.2: Processing times of ProofGen and Verify.
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In our experiment, we measured the computational time of ProofGen andVerify. After
measuring the processing time, we compare it with our previous system in Chapter 3. The
comparisons are shown in Fig. 6.2. This figure shows that the prover/user time in ProofGen
is significantly reduced than that of our previous system in Chapter 3. On the other hand,
the verification time also decreases slightly. This result of the greatly reduced ProofGen
time is very meaningful in the mobile environment.

Figure 6.3: Comparison of detailed processing times in Prover.

To examine the effectiveness of the online/offline technique, we measured the detailed
processing time of ProofGen as shown in Fig. 6.3. We can confirm the accumulator compu-
tation and witness computation are greatly reduced from the previous system in Chapter 3.
The GS proof generation time is the same of our basic system.

6.3.2 Data Size

Table 6.2: Size of precomputed values.
L Ω1 + Ω2

10 224 KB
20 888 KB
30 2008 KB
40 3584 KB
50 4710 KB

We measured the size of the precomputed values Ω1 and Ω2 as shown in Table 6.2. In
case of L = 50, the size is more than 4 MB. However, in the current smartphones, the
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storage cost of more than 4 MB is not so serious. Thus, in such a mobile environment, our
improvemnet is sufficiently practical.

6.4 Summary

In this chapter, we proposed and implemented the online/offline technique to reduce the
computational costs of ProofGen. By precomputing all candidates of gc`n+1−j, exponentia-
tions in the online accumulator and witness computations are excluded. The experimental
result shows that the computational costs are greatly reduced than our previous system in
Chapter 3. The demerit is the storage cost. However the current small mobile devices have
huge storage space. Hence, the demerit of storage is not so serious in the current mobile
situation.
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Chapter 7

Conclusion and Future Works

In this dissertation, we studied the privacy-enhancing attribute authentication systems with
faster authentication times.

Firstly, we proposed an anonymous credential system with the constant-size proofs of
CNF formulas. Using our extended pairing-based accumulator, the proof generation cost is
more efficient than the system in [6], since only multiplications depending on the number of
literals are needed. The compensation is the increase of public parameters. We demonstrated
that, for CNF formulas that can be often used in eID applications, this increase is not so
huge.

Secondly, to show the practicality of our system, using the fast pairing library, we im-
plemented the system and measured the computational process times. The experimental
result shows that the proof generation time and verification time depend on the size of CNF
formula. Even for the size of |V`| = 100,000, the proof generation time is only 228 ms and
the verification time is only 371 ms. This indicates that our system is sufficiently practical.

Thirdly, we proposed an extension of an anonymous credential system with the constant-
size proofs for CNF formulas to reduce the public key size. The experimental result shows
that the public key size is reduced to 2

√
N for the original sizeN , although the computational

costs are increased by about 20%, which we consider as a trade-off to reduce the public key
size.

Finally, we proposed and implemented the online/offline precomputation technique to
reduce the online computational costs of the proof generation in case of lots of AND relations
in the proved CNF formulas. The experimental result shows that the computational costs
are greatly reduced than our system in Chapter 3. The demerit is the storage cost for lots of
precomputed values. However, since the current small mobile devices have sufficiently large
storage, the requirement of storage is not so serious.

One future work is to propose a system allowing proofs beyond CNF formulas. Although
our proposed system focuses only on the CNF formulas, in some real applications, we may
need some other logical relations beyond CNF formulas, such as monotone relations or even
negations. Another future work is the implementation of our system on smart phones such
as Android devices.
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