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Non-small cell lung cancer (NSCLC) harboring an activating mutation within the epidermal growth 
factor receptor (EGFR) was defined as a clinically distinct molecular group.  These lesions show onco-
gene addiction to EGFR and dramatic responses to the EGFR tyrosine kinase inhibitors (TKIs).  
Several large Phase III trials have shown that EGFR-TKIs improved the progression-free survival of 
patients with EGFR mutant NSCLC compared to conventional chemotherapy.  However,  the long-term 
effectiveness of EGFR-TKIs is usually limited because of acquired drug resistance.  To overcome this 
resistance to EGFR-TKIs,  it will be essential to identify the specific mechanisms underlying the resis-
tance.  Many investigators have attempted to identify the mechanisms using preclinical models and 
drug-resistant clinical samples.  As a result,  several mechanisms have been showed to be responsible 
for the resistance,  but not all of the relevant mechanisms have been uncovered.  In this review,  we 
provide an overview of mechanisms underlying drug-resistance to EGFR-TKIs,  focusing on results 
obtained with preclinical models,  and we present some possible strategies to overcome the EGFR-TKI 
resistance.
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ung cancer continues to be the leading cause of 
death among patients with malignant tumors 

worldwide [1].  Many patients are diagnosed after the 
cancer has already spread to distant sites or directly 
beyond the primary site,  resulting in an inoperable 
stage.  In 2004,  mutations in the epidermal growth 
factor receptor (EGFR) that cause oncogene addiction 
to EGFR were discovered in non-small cell lung can-
cer (NSCLC) [2,  3].  Because these mutations are 
strongly associated with sensitivity to EGFR-tyrosine 
kinase inhibitors (TKIs),  a great deal of knowledge 

has been uncovered in regard to both EGFR and other 
genes in the EGFR family and their downstream 
genes.
　 EGFR-TKIs have exhibited significant antiprolif-
erative effects against NSCLC with EGFR-activating 
mutations in preclinical studies [2,  3] and their use in 
the treatment of NSCLC patients has also resulted in 
prolonged progression-free survival (PFS) in random-
ized Phase III studies [4-7].  However,  patients with 
EGFR mutations who initially respond to EGFR-TKIs 
eventually acquire resistance,  which is a critical 
problem in the treatment of patients with advanced 
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NSCLC.  Several mechanisms are believed to be 
responsible for intrinsic and acquired resistance to 
EGFR-TKIs,  including secondary EGFR T790M and 
minor mutations,  MET amplification,  and activation of 
the MET/HGF axis,  acquiring an epithelial to mesen-
chymal transition (EMT) signature,  and transforma-
tion from NSCLC into small cell lung cancer (SCLC) 
[8-13].  More recently,  AXL kinase activation,  loss 
of the EGFR-mutant allele,  and emergence of cancer-
stem cell (CSC)-like properties have been reported as 
possible mechanisms of resistance [14-16].  However,  
it is likely that additional mechanisms remain to be 
identified.
　 In this review,  we focus on the NSCLCs harboring 
EGFR-activating mutations,  and we summarize the 
mechanisms of drug sensitivity and resistance to 
EGFR-TKIs.  We also describe some possible molecu-
larly targeted strategies for further improving the 
outcomes of NSCLC patients with EGFR-activating 
mutations.

EGFR-activating Mutations in NSCLC

　 EGFR (ErbB1) is a member of the ErbB trans-
membrane receptor family,  which includes ErbB2 
(HER2/neu),  ErbB3 (HER3),  and ErbB4 (HER4).  
These receptors have similar structures and consist of 
three domains: an extracellular domain,  a transmem-
brane domain,  and an intracellular domain.  The 
extracellular domain has a ligand-biding region,  and 
several ligands including EGF bind here.  The ligand 
binding causes receptor homo- or hetero-dimerization 
between EGFR and other ErbB family members at the 
cell surface,  followed by internalization of the dimerized 
receptor.  The receptor dimerization results in auto-
phosphorylation of the intracellular EGFR tyrosine 
kinase domain.  Subsequently,  the phosphorylated 
tyrosine kinase stimulates an intracellular signal 
transduction cascade through several downstream 
pathways (including the Ras-Raf-MEK-ERK,  PI3K-
AKT-mTOR,  and JAK-STAT3 pathways),  leading to 
cell proliferation and apoptosis (Fig.  1) [17,  18].
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Fig. 1　 Signaling pathways and mechanisms of acquired resistance to EGFR-TKIs in EGFR-mutated NSCLC.  (1) EGFR T790M muta-
tions and other less common mutations.  (2) Kinase switches and bypass signaling mechanisms.  (3-5) Other possible mechanisms related 
to acquired EGFR-TKI resistance.  mut,  mutation; RTK,  receptor tyrosine kinase; SCLC,  small-cell lung cancer; EMT,  epithelial to 
mesenchymal transition; CSC,  cancer-stem cell.



　 When a mutation occurs in exons that encode the 
EGFR tyrosine kinase protein (i.e.,  exons 18-21),  
EGFR is activated ligand-independently,  leading to 
carcinogenesis [2,  3].  About 80ｵ－90ｵ of these 
EGFR mutations are either short in-frame deletions in 
exon 19 or point mutations that result in a substitu-
tion of arginine for leucine at codon 858 (L858R) in 
exon 21 [19].  Approximately 3ｵ of the mutations 
occur at codon 719,  resulting in the substitution of 
glycine to cysteine,  alanine or serine (G719X) in exon 
18.  Another approx.  3ｵ are in-frame insertion muta-
tions in exon 20 [19].  These EGFR-activating muta-
tions are most common in patients with adenocarci-
noma histology,  women,  never-smokers,  and individuals 
of Asian ethnicity; approx.  40ｵ of lung adenocarci-
noma patients in Japan have an EGFR mutation [20-
22].  EGFR mutations have also been detected in 
normal small bronchial and bronchiolar epithelium 
obtained from sites adjacent to tumors,  suggesting 
that the EGFR mutations are early events in the 
pathogenesis of lung adenocarcinomas [23,  24].
　 Cancer cells with mutant EGFR are physiologically 
dependent on the continued activity of specifically 
activated or overexpressed oncogenes for the mainte-
nance of their malignant phenotype,  in a phenomenon 
called ʻoncogene addictionʼ [25].  This addiction,  at 
the same time,  results in a greater sensitivity to 
small-molecule inhibitors that target the kinase domain 
of EGFR.  In first-line treatment,  EGFR inhibitors 
showed approx.  75ｵ response rate in patients with 
typical EGFR mutations.  Randomized trials have also 
demonstrated improved PFS for EGFR-mutant patients 
receiving EGFR-TKIs compared to chemotherapy 
[4-7].

Molecular Mechanisms in Resistance to  
EGFR-TKI

　 Primary resistance to EGFR-TKIs. There 
are some cancer cell populations that exhibit intrinsic 
resistance to EGFR-TKIs although they have EGFR-
activating mutations.  Multiple clinical trials have 
shown a disease control rate of approx.  90ｵ for 
patients with EGFR mutations,  suggesting that 10ｵ 
of the patients harboring EGFR mutations are intrin-
sically resistant to EGFR-TKIs [4-7].  Some molecu-
lar mechanisms of this primary resistance have been 
uncovered in recent research.

1. EGFR-TKI-resistant mutations. It has been shown 
that the most prevalent EGFR exon 20 insertion muta-
tion,  which accounts for up to 4ｵ of all EGFR muta-
tions,  is resistant to reversible (gefitinib and erlotinib) 
and irreversible (neratinib,  afatinib,  and dacomitinib) 
EGFR-TKIs in preclinical models and clinical samples 
[26,  27].  Another mutation that contributes to pri-
mary TKI resistance is T790M,  a point mutation that 
results in the substitution of methionine for threonine 
at codon 790 in exon 20.  They show TKI resistance 
through steric hindrance to EGFR-TKIs in crystal 
structure analyses or by increased affinity for adenos-
ine triphosphate (ATP) [8,  28].  T790M has been 
identified as a minor clone in treatment-naïve tumor 
specimens with EGFR-activating mutations [29-31].  
Su et al.  reported that T790M was detected in 2.8ｵ 
by direct sequencing,  25.2ｵ by matrix-assisted laser 
desorption ionization-time of flight mass spectrometry 
(MALDI-TOF MS),  and 34.2ｵ by next-generation 
sequencing (NGS) in TKI-naïve NSCLC tumors har-
boring EGFR-activating mutations [31].
2. EGFR signal-related alteration. Some EGFR 
signal-related gene alterations have been reported to 
contribute to primary EGFR-TKI resistance.  It has 
been reported that EGFR mutations and PIK3CA 
mutations could co-occur and result in EGFR-TKI 
resistance [32-34].  PIK3CA mutations have also 
been shown to be acquired after EGFR-TKI treatment 
and to induce acquired TKI resistance [13].  Loss of 
phosphatase and tensin homolog (PTEN) similarly 
contributes to primary resistance to EGFR-TKIs 
[34,  35].  The pro-apoptotic protein BIM is known to 
be a mediator of TKI-induced apoptosis,  and it is 
upregulated in some EGFR mutant cancer cells [36].  
The inhibition and downregulation of BIM expression 
promoted intrinsic resistance to EGFR-TKIs in a 
preclinical model and clinical samples [37].  A recent 
report suggests that a genetic polymorphism in BIM 
results in alternative splicing and altered BIM func-
tion,  which may contribute to intrinsic TKI resistance 
[38].
3. Non-EGFR signal-related alteration. Hepatocyte 
growth factor (HGF),  a ligand of MET receptor 
tyrosine kinase,  was reported to induce the EGFR-
TKI resistance of cancer cells harboring EGFR muta-
tions by restoring the PI3K-AKT signaling pathway 
via the phosphorylation of MET [12].  HGF was 
overexpressed in approx.  30ｵ primary resistant 
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NSCLC harboring EGFR mutations,  suggesting the 
activation of the MET signal pathway through HGF 
stimulation might be associated with primary TKI 
resistance.
　 Acquired resistance to EGFR-TKIs. All 
patients with EGFR mutations who initially respond to 
the first-generation EGFR-TKIs gefitinib or erlotinib 
ultimately develop acquired resistance to EGFR-TKIs 
over time (median 6-12 months).  Acquired resistance 
to EGFR-TKIs is strongly associated with patient 
mortality,  and thus further investigations of the 
mechanisms of acquired resistance to EGFR-TKIs are 
of great importance.
1. EGFR T790M “gatekeeper” mutation and other less 
common mutations. The most common mutation 
associated with acquired resistance to EGFR-TKIs is 
EGFR T790M,  a secondary point mutation in exon 20 
[8,  9].  T790M is associated with over 50ｵ of ade-
nocarcinoma cases with acquired resistance [13,  39].  
EGFR T790M is analogous to the ABL T315I,  KIT 
T670I,  and ALK L1196M “gatekeeper” mutations 
observed in imatinib-resistant chronic myelogenous 
leukemia,  gastrointestinal stromal tumors (GISTs),  
and crizotinib-resistant NSCLCs,  respectively [40-
42].  Interestingly,  among patients with acquired 
resistance to EGFR-TKIs,  although the molecular 
basis is unclear,  the presence of T790M is associated 
with a favorable prognosis relative to acquired resis-
tance via other processes [43].  Other less common 
mutations associated with EGFR-TKI resistance 
include EGFR D761Y (in TKI-naïve and acquired-
resistant tumors) [30,  44],  L747S [45],  and T854A 
[46].
2. “Kinase switch” and bypass signaling mechanisms.
Acquired resistance to EGFR-TKIs can develop 
through a “kinase switch” mechanism.  One major 
bypass signaling is the MET,  the receptor of HGF.  
MET amplification was observed in 5ｵ-20ｵ of tumor 
samples with acquired resistance to EGFR-TKIs [10,  
11,  13,  47].  The cancer cells with MET amplifica-
tion undergo a kinase switch through an ErbB3-
mediated activation of downstream PI3K-AKT signal-
ing that bypasses the inhibited EGFR [10,  11].  
Other bypass signaling tracts through HER2 amplifica-
tion [48],  CRKL amplification [49],  MAPK1 amplifi-
cation [50],  PIK3CA mutations [13],  and BRAF 
mutations [51] have been described as possible 
mechanisms of acquired EGFR-TKI resistance.  

Moreover,  in several preclinical models,  the loss of 
IGF binding proteins (IGFBPs) with the subsequent 
activation of IGF1R signaling [52],  FGFR1 activa-
tion through FGF2 autocrine [53],  increased FAS 
expression and NFκB pathway activation [54],  and 
upregulation of integrin beta1 [55] caused by EGFR-
TKI treatment have also been reported to result in 
acquired EGFR-TKI resistance.
3. Phenotypic change: small-cell transformation and 
EMT. Examinations of re-biopsied samples 
revealed that phenotypic changes could occur and be 
responsible for acquired resistance after EGFR-TKI 
treatment.  Some studies observed the transformation 
from NSCLC to small-cell lung cancer (SCLC) after 
EGFR-TKI treatment [13,  56].  These tumors main-
tained the EGFR-activating mutation with the expres-
sion of neuroendocrine markers and,  surprisingly,  
they responded to conventional chemotherapy for 
SCLC.
　 Another well-known phenotypic change related to 
acquired resistance involves EMT.  EMT is a phenom-
enon in which cells with epithelial phenotypes acquire 
mesenchymal characteristics,  and EMT plays an 
important role in cancer metastasis and drug resis-
tance.  In preclinical models and clinical samples,  
EMT features were observed after the acquisition of 
resistance to EGFR-TKIs [13,  16,  57-59].  The 
activation of several pathways including the TGF-β
-IL-6 [60],  Slug [61],  Notch-1 [62],  and PDGFR 
[63] pathways were reported to be associated with 
EMT and EGFR-TKI resistance.  Possible mecha-
nisms such as Axl upregulation [14] and MED12 
downregulation [64] were reported as key molecules 
in EMT-related EGFR-TKI resistance.  In addition,  
we reported the relation between epigenetic alteration 
and EGFR-TKI treatment [16].  We showed that the 
CpG island hypermethylation-associated silencing of 
the miR-200 family in acquired resistance to EGFR-
TKI cells with EMT features.
4. Loss of activating mutation. We and another 
group reported that the loss of the activated EGFR 
mutant allele could result in acquired EGFR-TKI 
resistance [15,  16].  We established an EGFR-TKI-
resistant cell line using the EGFR-mutated and -ampli-
fied cell line HCC827 under exposure to a high con-
centration of gefitinib,  and the results revealed that 
the cells showed a progressive decrease in the EGFR-
mutated and -amplified allele through the course of 
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passages.  We confirmed in clinical samples obtained 
from before and after EGFR-TKI failure that the 
EGFR 19del mutation had disappeared in recurrent 
tumors [16].
5. Stem-cell like transformation and other mecha-
nisms. We have established many cell lines with 
acquired EGFR-TKI resistance under different cell 
culture conditions,  and these cell lines showed that the 
manner of drug exposure could influence the mecha-
nism of their acquired resistance [16].  In general,  
drug-resistant cell lines were established under a 
stepwise escalation of concentration.  However,  we 
established the EGFR-TKI-resistant cell lines under 
an initially high concentration of EGFR-TKI (but 
similar to the plasma concentration after an oral 
administration of EGFR-TKIs).  As a result,  some 
established resistant cells under a high concentration 
of EGFR-TKI showed CSC-like features with EMT 
features (including CSC-related marker upregulation),  
increased side-population,  and self-renewal capability 
(Fig.  2).  The cells showed extremely high drug resis-
tance to not only multiple EGFR-TKIs but also con-
ventional chemotherapeutic agents.
　 CSCs have been attracting interest as a source of 
cancer cells,  and the significance of stem cell-like 
properties in lung cancer has been investigated in both 

basic and clinical research [65-67].  Many of the 
relationships between CSCs and EGFR-TKI resis-
tance remain unclear and the biological meaning of 
CSC-related markers such as ALDH1A1,  ABC-
transporters ABCB1 and ABCG2,  and CD44 is 
unknown.  Further research is needed to obtain addi-
tional clarification.

Overcoming Molecular Mechanisms of 
Resistance to EGFR-TKIs

　 The first-generation EGFR-TKIs gefitinib and 
erlotinib have been used as first-line or second-line 
therapy for advanced EGFR-mutant NSCLCs,  although 
sequential drug resistance has been inevitable.  Many 
investigators have attempted to delay or overcome this 
resistance through preclinical examinations and clini-
cal trials,  and some promising strategies have been 
reported.
　 Beyond progressive disease (PD) strategies 
and the re-challenge of TKIs. The repetitive 
use of EGFR-TKIs in EGFR-mutant patients with 
acquired resistance to gefitinib or erlotinib might be 
clinically beneficial in select patients.  Several reports 
have demonstrated that patients who acquire resis-
tance could re-respond to EGFR-TKIs after a drug 
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holiday [68,  69].  A prospective trial is being  
conducted to test whether an EGFR-TKI in addition 
to chemotherapy beyond progression is better than 
chemotherapy alone at the time of resistance 
(NCT01544179).
　 Next-generation kinase inhibitors and the 
blockade of bypass signaling. To delay or 
overcome EGFR-TKI resistance,  second- and third-
generation EGFR-TKIs which are more potent than 
first-generation TKIs and could affect other recep-
tors/pathways are being developed.  Second-generation 
irreversible EGFR-TKIs such as afatinib (BIBW-
2992) and dacomitinib (PF-299804) are ATP mimetics 
that covalently bind to the Cys-797 of EGFR,  and 
they are reported to be able to inhibit T790M in cis to 
EGFR activating mutation at lower concentrations than 
first-generation TKIs in preclinical models.  In addi-
tion,  third-generation EGFR inhibitors such as 
WZ-4002,  CO-1686,  and AZD-9291 have been 
developed as EGFR inhibitors specifically selected to 
target EGFR mutations with T790M [70-72].  Several 
prospective clinical trials evaluating these drugs are 
currently ongoing.  At the same time,  T790M status 
is becoming important to predict patient response.  
Therefore,  an examination of the T790M status in 
addition to EGFR-activating mutation before and dur-
ing EGFR-TKI treatment is important.  It will also be 
necessary to establish methods to repeatedly quanti-
tate the T790M population using noninvasive tech-
niques such as a circulating DNA analysis (the so-
called “liquid-biopsy“).
　 Other approaches to overcome resistance are 
combination treatment with TKIs and other conven-
tional chemotherapies,  antibodies,  and immunothera-
pies.  The combination of both irreversible EGFR-
TKI BIBW-2992 and the EGFR-specific antibody 
cetuximab was reported to induce the dramatic shrink-
age of erlotinib-resistant tumors harboring the T790M 
mutation,  because together BIBW-2992 and cetux-
imab efficiently depleted both phosphorylated and total 
EGFR [73].  Such strategies like this method block-
ing both the intracellular and the extracellular domains 
of the EGFR,  a so-called “vertical blockade”,  might 
be an additional strategy to effectively overcome 
EGFR-TKI resistance.
　 As mentioned above,  acquired EGFR-TKI resis-
tance can develop through kinase switches and alterna-
tive bypass signal activations.  The blockade of each 

activated signal consonant with individual resistant 
cells could contribute to the delay and overcoming of 
acquired resistance.  In this sense,  the most promising 
strategy in preclinical modes may be the dual use of 
MET and EGFR-TKIs in cells with MET amplifica-
tion [10,  74].
　 Novel agents against EGFR-TKI resistance:  
epigenetic drugs,  immuno-gene therapy,  and 
others. It has been reported that epigenetic alter-
ations are a key determinant in the maintenance of 
cancer cells,  especially with high-level resistance to 
cytotoxic therapy and potent tumorigenic capacity 
[75].  Among these epigenetic alterations,  DNA 
methylation and chromatin deacetylation are the most 
fundamental alterations.  Whereas genetic alterations 
are usually fixed in the genome,  epigenetic alterations 
are potentially reversible,  offering a therapeutic 
opportunity.  Histone deacetylate (HDAC) is an enzyme 
that regulates chromatin remodeling and is crucial in 
the epigenetic regulation of various genes.  In pre-
clinical studies,  HDAC inhibitors such as trichostatin 
A and vorinostat (SAHA) showed an anti-tumor effect 
in EGFR-TKI resistant cells due to BIM polymor-
phism [76] and CSC-like features [16].
　 Heat shock protein (HSP) 90 inhibitors may also 
overcome EGFR-TKI resistance.  A number of signal-
ing molecules in the EGFR pathway are processed for 
activation and degradation by the HSP family of 
enzymes.  Because the increased expression of these 
HSP clients mediates resistance to EGFR inhibitor 
therapy,  HSP90 inhibitors represent a promising 
class of agents [77-79].  In addition,  we found that 
the proteasome inhibitor bortezomib had an anti-tumor 
effect in both parental and acquired EGFR-TKI-
resistant cells harboring T790M,  MET amplification,  
and CSC-like features in a preclinical model [16].
　 In a recent preclinical study,  we demonstrated that 
gene therapy using REIC/Dkk-3-expressing adenovi-
rus vector (Ad-REIC) showed a potent anti-tumor 
effect in many NSCLC cells,  even after they harbored 
acquired resistance to EGFR-TKIs [80].  A clinical 
trial to test the anti-tumor effect of Ad-REIC against 
NSCLC showing resistance to conventional drugs is in 
preparation.  This new type of therapeutic strategy 
that may not target EGFR or other oncogene path-
ways could be a breakthrough to overcome EGFR-
TKI resistance.
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Conclusions

　We provided an overview of drug resistance mecha-
nisms in EGFR-TKI treatment and presented some 
possible strategies to overcome EGFR-TKI resis-
tance.  Both cancer cell autonomous mechanisms and 
the tumor microenvironment could contribute to pri-
mary and acquired EGFR-TKI resistance.
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