
On the construction of generalized

homology-cohomology theories

by using bivariant functors

March, 2014

Kohei Yoshida

The Graduate School of

Natural Science and Technology

(Doctor Course)

OKAYAMA UNIVERSITY



Contents

1 Fundamental concepts 9

1.1 CW-complexes . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Homology groups and spectra . . . . . . . . . . . . . . . . . . 14
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Introduction

The homology groups are the standard tools of algebraic topology. Eilenberg

and Steenrod proved that homology was characterized on the category of

finite simplicial complexes by seven axioms known as the Eilenberg-Steenrod

axioms. They showed how to derive many of the properties of homology

directly from the axioms. As is well known, a generalized homology theory

is represented by a spectrum.

We call a topological space X numerically generated (or ∆-generated

in [Du]) if it has the final topology with respect to its singular simplexes.

Let NG be the category of numerically generated spaces and continuous

maps. Let NG0 be the category of pointed numerically generated spaces and

pointed continuous maps. In [SYH], we established a method for representing

generalized homology-cohomology theories by bivariant functors:

NGop
0 ×NG0 → NG0.

Let NGC0 be the subcategory of pointed numerically generated compact

metric spaces and pointed continuous maps. As an example of a bivariant

functor, in [Y], we constructed Steenrod-Čech homology-cohomology theories

by bivariant functors:

NGop
0 ×NGC0 → NG0.

This paper puts the contents of [SYH] and [Y] in order, and divided into

three chapters. In the first chapter, Chapter 1, we prepare some definitions

and theorems necessary for proving the Main theorem. We briefly recall basic

definitions and facts about CW -complexes, generalized homology, spectra,
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inverse limits, direct limits, homotopy inverse limits, Čech cohomology, and

Steenrod homology.

We introduce, following [SYH], the concept of enriched bifunctors and de-

scribe the passage from enriched bifunctors to generalized homology-cohomology

theories. For this purpose we utilize subcategory NG of topological spaces

which is convenient in the sense that it is complete, cocomplete, and Carte-

sian closed. Let NG0 be the full subcategory of Top0 consisting of nu-

merically generated spaces. Then NG0 is complete, cocomplete, and is

monoidally closed in the sense that there is an internal hom ZY satisfying a

natural bijection

homNG0(X ∧ Y, Z) ∼= homNG0(X,Z
Y ).

There exist a reflector ν : Top0 → NG0 such that the natural map νX → X

is a weak equivalence and a sequence of weak equivalences

Y X ← νmap0(X,Y )→map0(X, Y ),

where map0(X, Y ) is the set of pointed maps from X to Y equipped the

compact-open topology. Thus NG0 is eligible, from the viewpoint of ho-

motopy theory, as a convenient replacement for Top0. CW-complexes are

typical examples of such numerically generated spaces.

On the category Top0, generalized homology and cohomology theories are

usually constructed by using spectra. We present an alternative and more

category-theoretical approach to homology and cohomology theories which

is based on the notion of a linear enriched functor instead of a spectrum.

We replace the category Top0 by its full subcategory NG0. A bifunctor
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F : NGop
0 ×NG0 → NG0 is called enriched if the map

F : map0(X,X
′)×map0(Y, Y

′)→map0(F (X
′, Y ), F (X, Y ′)),

which assigns F (f, g) to every pair (f, g), is a pointed continuous map. Note

that if either f or g is constant, then so is F (f, g). A bifunctor F is bilinear

if two sequences

1. F (X ∪ CA, Sn)→ F (X,Sn)→ F (A, Sn),

2. F (Sn, A)→ F (Sn, X)→ F (Sn, X ∪ CA),

induced by the cofibration sequence A → X → X ∪ CA, are homotopy

fibrations.

A bilinear enriched functor F defines a generalized cohomology {hn(X,F )}

and a generalized homology {hn(X,F )} such that

hn(X,F ) =

π0F (S
n, X) n ≥ 0

π0F (S
0,Σ−nX) n < 0,

hn(X,F ) =

π0F (X,S
n) n ≥ 0

π−nF (X,S
0) n < 0.

As an example, consider the bilinear enriched functor F which assigns

to (X, Y ) the mapping space from X to the topological free abelian group

AG(Y ) generated by the points of Y . The Dold-Thom theorem says that if

X is a CW-complex then the groups hn(X,F ) and h
n(X,F ) are respectively

isomorphic to the singular homology and cohomology groups ofX. But this is

not the case for general X; there exists a space X such that hn(X,F ) (resp.
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hn(X,F )) is not isomorphic to the singular homology (resp. cohomology)

group of X.

The aim of Chapter 3 is to construct a bilinear enriched functor such that

for any spaceX the associated cohomology groups are isomorphic to the Čech

cohomology groups of X. Interestingly, it turns out that the corresponding

homology groups are isomorphic to the Steenrod homology groups for any

compact metrizable space X. Thus we obtain a bibariant theory which ties

together the Čech cohomology and the Steenrod homology theories.

Recall that the Čech cohomology group of X with coefficient group G is

defined to be the colimit of the singlular cohomology groups

Ȟ
n
(X,G) = lim−→λ

Hn(X Č
λ , G),

where λ runs through coverings ofX andX Č
λ , is the Čech nerve corresponding

to λ, i.e., v ∈ X Č
λ is a vertex of X Č

λ corresponding to an open set V ∈ λ. On

the other hand, the Steenrod homology group of a compact metric space X

is defined as follows. As X is a compact metric space, there is a sequence

{λi}i≥0 of finite open covers of X such that λ0 = {X}, λi is a refinement

of λi−1, and X is the inverse limit lim←−i
X Č

λi
. According to [F], the Steenrod

homology group of X with coefficients in the spectrum S is defined to be the

group

Hst
n (X, S) = πnholim←−−−λi

(X Č
λi
∧ S),

where holim←−−− denotes the homotopy inverse limit. (See also [KKS] for the

definition without using subdivisions.)

Let NGC0 be the subcategory of pointed numerically generated compact

metric spaces and pointed continuous maps. For given a linear enriched
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functor T : NG0 → NG0, let

F̌ : NGop
0 ×NGC0 → NG0

be a bifunctor which maps (X, Y ) to the space lim−→λ
map0(Xλ, holim←−−−µi

T (Y Č
µi
)).

Here λ runs through coverings ofX, andXλ is the Vietoris nerves correspond-

ing to λ ([P]). The main results of the paper can be stated as follows.

Theorem 1. The functor F̌ is a bilinear enriched functor.

Theorem 2. Let X be a compact metrizable space. Then hn(X, F̌) = Hn(X, S)

is the Steenrod homology group with coefficients in the spectrum S = {T (Sk)}.

In particular, let us take AG as T , and denote by

Č : NGop
0 ×NGC0 → NG0

the corresponding bifunctor F̌.

Theorem 3. For any pointed space X, hn(X, Č) is the Čech cohomology

group of X, and hn(X, Č) is the Steenrod homology group of X if X is a

compact metrlizable space.

Recall that the Steenrod homology group Hst is related to the Čech ho-

mology group of X by the exact sequence

0 // lim←−
1

λi

H̃n+1(X
Č
λi
) // Hst

n (X) // H̃n(X) // 0.

If X is a movable compactum then we have lim←−
1

λi

H̃n+1(X
Č
λi
) = 0, and hence

the following corollary follows.

Corollary 4. Let X be a movable compactum. Then hn(X, Č) is the Čech

homology group of X.
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Chapter 1

Fundamental concepts

1.1 CW-complexes

The reference is [H] and [M]. First we recall the definition of CW -complex.

Let X be a Hausdorff space and {eλ}λ∈Λ be subsets of X satisfying the

following conditions;

1. X = ∪λ∈Λeλ.

2. For each eλ, there is an integer nλ ≥ 0 and a map ϕλ from nλ-

dimensional ballDnλ to a closure set of eλ such that ϕλ(S
nλ−1) ⊂ eλ−eλ

and ϕλ|Dnλ−Snλ−1 : Dnλ − Snλ−1 → eλ is a homeomorphism.

3. Let Xq = ∪nµ≤qeµ. For each λ ∈ Λ,

eλ − eλ ⊂ Xnλ−1.

Then a pair (X, {eλ}λ∈Λ) is called a cell complex. The map ϕλ is called a

characteristic map for eλ, and we denote dim eλ = nλ. If dim eλ = n, then eλ
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is called an n-cell and denoted by enλ. X
n is called an n-skeleton of X. A cell

complex (A, {eλ}λ∈Λ′) is called a subcomplex of (X, {eλ}λ∈Λ) if and only if A

is a subspace of X and Λ′ is a subset of Λ. It is clear that for any subspace

A of X, if the condition “eλ ∩ A ̸= ∅ ⇒ eλ ⊂ A” is true, (A, {eλ}λ∈Λ′) is

a subcomplex of (X, {eλ}λ∈Λ). We write just a subcomplex A if there is no

possibility of confusion. It is clear that Xq is a subcomplex of X.

(X, {eλ}λ∈Λ) is called a finite complex if Λ is a finite set. A cell complex

X is called a locally finite complex if there is a finite subcomplex A such

that for any x ∈ X Int A contains x.

Since a finite subcomplex A is written as a finite union A = ∪eλ, obviously

A is a closed set of X.

Definition 1.1.1. Let X be a cell complex. X is a CW -complex if X has

the following properties;

(C) for any x ∈ X, there is a finite subcomplex A such that x ∈ A.

(W) X has a weak topology induced by a closed covering {eλ}λ∈Λ.

It is clear that the property (C) and the next property (C′) are equivalent.

(C′) for each cell eλ, there is a finite subcomplex A such that eλ ⊂ A.

Assume the property (C), then the property (W) and the next property (W′)

are equivalent

(W′) X has a weak topology induced by a closed covering of {X}.

In particular, by A∩Y = ∪eλ⊂A(eλ∩Y ) for a finite subcomplex A, if (W)

holds, so does (W′). Oppositely for each cell eλ, there is a finite subcomplex

A containing eλ such that eλ ∩ Y = eλ ∩ (A ∩ Y ). So if (W′) holds, so does

(W).
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Proposition 1.1.2. A locally finite complex X is a CW -complex.

Proof. Since X is a locally finite complex, it is clear that the property (C)

is satisfied. Next let Y be a subspace of X. Assume that for any finite

subcomplex A of X, and then A ∩ Y is a closed set of Y . For x ∈ X − Y ,

there is a finite subcomplex A such that x ∈ IntA. The element x is contained

in the open set IntA−A∩Y . Thus Y is a closed set, since X −Y is an open

set. Hence the property (W′) is satisfied.

Proposition 1.1.3. Let X be a CW -complex and Y a subcomplex of X.

Then Y is a closed subset of X and hence a CW -complex.

Proof. Let A be a finite subcomplex of X. Since A ∩ Y is a closed set of X,

A∩ Y is a finite subcomplex. Hence by the property (W′), Y is a closed set.

It is clear that Y satisfies the property (C). Next we show that Y is satisfies

the property (W′). We assume that Z ⊂ Y , and then B∩Z is a closed subset

of B for any finite subcomplex B of Y . A ∩ Z is a closed subset of A ∩ Y ,

since A ∩ Y is a finite subcomplex of Y . A ∩Z is a closed subset of A, since

Y is a closed subset of X. Hence Z is a closed subset of X. Z is a closed

subset of Y , since Z ⊂ Y . Hence Y satisfies (W′).

Proposition 1.1.4. For any compact set K of a CW -complex X, there is a

finite subcomplex A of X such that K ⊂ A.

Proof. Let {eλ}λ∈Λ be a set of cells of X. Define Λ′ by Λ′ = {λ ∈ Λ|K ∩eλ ̸=

∅}. Assume that Λ′ is an infinite set. For any λ ∈ Λ′, we choose an element

xλ ∈ K ∩ eλ. Define Y by Y = {xλ|λ ∈ Λ′}. Y is an infinite set, since Y

corresponds to Λ′.
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Let B be a subset of Y . For each cell eλ, e ∩ B is a finite set. Moreover

since eλ ∩ B is a finite set of Hausdorff space X, this set is closed. By the

condition (W), B is a closed subset of X. Hence Y is compact set, since Y is

a compact subsetK. Thus it contradicts the assumption, since Y is finite set.

Hence Λ′ is a finite set. For any λ ∈ Λ′, we can choose a finite subcomplex

Aλ by (C’). Define A by A = ∪λ∈Λ′Aλ. Since A is a finite subcomplex, we

have K ⊂ ∪λ∈Λ′eλ ⊂ A.

Theorem 1.1.5. Let X be a CW -complex, A a closed subset of X and X ′

a topological space. Then a map f : A→ X ′ is continuous if and only if the

restriction map f |(eλ ∩ A) is continuous for each cell eλ.

Proof. X has a weak topology induced by {eλ}. The proof since A has a

weak topology induced by {eλ ∩ A}.

Next we consider a geometric n-simplex

∆n = {(x1, . . . , xn) ∈ Rn|0 ≤ xi ≤ 1, 1 ≤ i ≤ n}.

For any vertices ei0 , · · · , eiq(i0 < · · · < iq) of ∆
n, we denote the q-cell com-

plex of characteristic map (ei0 , · · · , eiq) : ∆q → ∆n by the same symbol

(ei0 , · · · , eiq). The set {(ei0 , · · · , eiq)} gives a triangulation of ∆n. This tri-

angulation is called the standard triangulation of ∆n. We regard ∆n as

a CW -complex by the standard triangulation. A cell complex S is called a

finite simplicial complex if there is a subcomplexK of ∆n such thatK ∼= S.

A CW -complex X is called a simplicial complex, if each subcomplex of X

is a finite simplicial complex.
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More generally the definition of the abstract simplicial complex is given

as follows.

Definition 1.1.6. Let X be a finite set of elements a0, a1 · · · , called vertices,

together with a collection of subsets (ai0 , ai1 , · · · , ain) called simplexes. X is

called simplicial complex if for any simplexes σ, τ , the following two condi-

tion hold;

1. σ ∩ τ ∈ X,

2. “σ ∩ τ = ∅” or “σ ∩ τ ≤ σ and σ ∩ τ ≤ τ”

A simplicial complex X is given topology as a subspace of Rn. The

topological space is called the polyhedron of X, denoted by |X|. The upper

bound of dimensions of any simplex of X is called the dimension of X. We

denote the dimension of X by dimX. Then X is called finite dimensionnal

if dimX < ∞. A subset Y of X is called a subcomplex if Y is a simplicial

complex.

Proposition 1.1.7. Let X be a simplicial complex. Then |X| is a CW -

complex.

Proof. It is clear by the definition of a simplicial complex.

Definition 1.1.8. Let X and Y be simplicial complexes. Let

V = {v|v ∈ Λ},

W = {w|w ∈ Ω}

be the sets of verticies of X, Y respectively. A function f : X → Y is called

a simplicial mapping if f satisfies the following two properties:
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1. f is a map from V to W ;

2. if(v1, · · · , vn) is a simplex of X, then (f(v1), · · · , f(vn)) span a simplex of Y .

Assume that f is linear on each simplex, we can consider f to be the map

f : |X| → |Y |.

Definition 1.1.9. X is a isomorphic of Y if there is a simplicial mapping

f : X → Y such that f is a bijection.

Definition 1.1.10. Let X and Y be simplicial complexes. A map f : |X| →

|Y | is called a piecewise-linear mapping if f satisfies the following properties;

for each complex σ of X

1. f(σ) is a simplex of Y ,

2. f |σ is a linear map.

Definition 1.1.11. Let f be a one to one piecewise-linear mapping f : |X| →

|Y |. For each simplex τ of |Y |, assume that there is a finite set of sim-

plexes σ1, · · · , σn of |X| such that τ = ∪if(σi). Then a simplicial complex

{f(σ)| σ ∈ X} is called a subdivision of Y .

1.2 Homology groups and spectra

In this section, we recall the homology theory satisfying the Eilenberg-Steenrod

axioms and introduce the construction of homology theory by a spectrum.

The reference is [ES]. First we introduce the Eilenberg-Steenrod axioms

as follows. We denote by H∗ a collection of the next three correspondences.
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1. A pair (X,A) of topological spaces corresponds to an abelian group

Hq(X,A) for any integer q.

2. A continuous map f : (X,A)→ (Y,B) and an integer q correspond to

a homomorphism

fq : Hq(X,A)→ Hq(Y,B).

3. A pair (X,A) of topological spaces and an integer q correspond to a

homomorphism

∂q : Hq(X,A)→ Hq−1(A).

The functorH∗ is called a homology theory on the category of topological pairs

if H∗ satisfies the following seven axioms, where we regard X as (X, ∅).

1. 1∗ = 1, where 1 is an identity map.

2. if f : (X,A)→ (Y,B), g : (Y,B)→ (Z,C), then

(g ◦ f)∗ = g∗ ◦ f∗ : H∗(X,A)→ H∗(Z,C).

3. (Homotopy Axiom) Let f, f ′ : (X,A) → (Y,B). If f is homotopic to

f ′, then

f∗ = f ′
∗ : H∗(X,A)→ H∗(Y,B).

4. (Exactness) Let i : A → X, j : (X, ∅) → (X,A) be inclusion maps.

Then the sequence

· · · // Hq(A)
iq // Hq(X)

jq // Hq(X,A)
∂q // Hq−1(A) // · · ·

is exact.
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5. For a map f : (X,A)→ (Y,B),

f |A ◦ ∂q = ∂q ◦ fq : Hq(X,A)→ Hq−1(B).

6. (Excision Axiom) If an open set U in X satisfies that U ⊂ IntA, then

i∗ : H∗(X − U,A− U) ∼= H∗(X,A),

where i is an inclusion map.

7. (Dimension Axiom) Hq(pt) = 0, (q ̸= 0).

We call the axioms 1∼7 by the Eilenberg-Steenrod axioms. H0(pt) is called

the coefficient group. If one omits the Dimension axiom, then the remaining

Axioms define what is called a generalized homology theory. Similarly we

define the homology theory on the category of compact Hausdorff spaces.

Then a homology theory satisfying the Eilenberg-Steenrod axioms is char-

acterized by the coefficient group. Thus if H and H ′ are any two homology

theories on the category of compact Hausdorff spaces satisfying the axioms,

then for each homomorphism

φ : H0(pt)→ H′
0(pt)

of the coefficient groups, there is a natural transformation

ξ : H∗ → H ′
∗

which coincides with φ in degree 0. In particular, if φ is an isomorphism, the

homomorphisms

Hq(X,A)→ H ′
q(X,A)
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are bijective.

To construct a homology theory by a spectrum, we quote the following

definitions from [Sw].

Definition 1.2.1. A spectrum E is a collection

{(En, ∗) : n ∈ Z}

of CW -complexes such that the suspension SEn of En is a subcomplex of En+1

for all n ∈ Z. A subspectrum F ⊂ E consists of subcomplexes Fn ⊂ En such

that SFn ⊂ Fn+1.

Definition 1.2.2. A map f : E → F between spectra is a collection {fn :

n ∈ Z} of cellular maps fn : En → Fn such that fn+1|SEn = Sfn. The

inclusion i : F → E of subspectrum F ⊂ E is a function and if g : E → G is

a function then g|F = g ◦ i is also a function.

If E = {En} is a spectrum and (X, x0) is a CW -complex, we defined

a new spectrum E ∧ X as follows where ∧ is the smash product. We take

(E ∧X)n = En ∧X with the weak topology. Then by

S(E ∧X)n = S(En ∧X) = S1 ∧ (En ∧X) ∼= (S1 ∧ En) ∧X ⊂ En+1 ∧X,

E ∧X is again a spectrum.

Definition 1.2.3. For any map f : E → F of spectra we call the sequence

E
f // F

j // F ∪f CE

a special cofibre sequence. A general cofibre sequence is any sequence

G
g // H

h // K

17



for which there is a homotopy commutative diagram

G
g //

α

��

H
h //

β
��

K

γ

��
E

f // F
j // F ∪f CE

in which α, β, γ are homotopy equivalences, i.e. the diagram commutative

up to homogopy j ◦ f ◦ α ≃ j ◦ β ◦ g ≃ γ ◦ h ◦ g.

Definition 1.2.4. A subspectrum F ⊂ E is called cofinal if each cell in E

ultimately lies in F .

Lemma 1.2.5. Let E and H be spectra, F a subspectrum of E and G a

cofinal subspectrum of E ∧ {0}+ ∪ F ∧ I+, where I+ is a unit interval with

base point 0. Given a function g : G→ H, we can find a cofinal subspectrum

K of E ∧ I+ containing G and an extension of g to a function k : K → H.

Moreover, if G = E ∧ {0}+ ∪ F ∧ I+, we can choose K = E ∧ I+.

Lemma 1.2.6. Given a homotopy commutative diagram of functors of spec-

tra

G
g //

α
��

H
h //

β
��

K
k //

γ

��

G ∧ S1

α∧1
��

G′ g′ // H ′ h′
// K ′ k′ // G′ ∧ S1

where the rows are cofibre sequences, we can find a functor γ : K → K ′ such

that the resulting diagram is homotopy commutative.

Then by Lemmas 1.2.5 and 1.2.6, we have the next proposition.

Proposition 1.2.7. If

G
g // H

h // K

18



is a cofibre sequence, then for any spectrum E the sequences

[E,G] g∗
// [E,H]

h∗
// [E,K]

and

[G,E] [H,E]
g∗

oo [E,K]
h∗

oo

are exact.

Proof. Since h ◦ g ≃ 0, it follows h∗ ◦ g∗ = 0. Suppose that f : E → H

satisfies h∗[f ] = 0. We apply Lemma 1.2.6 to the diagram

E //

f
��

E ∧ I //

h
��

E ∧ S1 1 //

k
��

E ∧ S1

f∧1
��

H
h // K // G ∧ S1 g∧1 // H ∧ S1

where h : E ∧ I → K is a null homotopy of h ◦ f . We obtain a map

k : E ∧ S1 → G ∧ S1 such that (g ∧ 1) ◦ k ≃ f ∧ 1. From the natural

equivalence

σ : [E,G]→ [E ∧ S1, G ∧ S1]

we get a map k′ : E → G such that k ≃ k′ ∧ 1. Then we have

(g ◦ k′) ∧ 1 = (g ∧ 1) ◦ (k′ ∧ 1) ≃ (g ∧ 1) ◦ k ≃ f ∧ 1.

Since σ : [E,H]→ [E ∧ S1, H ∧ S1] is injective, it follows that

g ◦ k′ ≃ f.

Further g∗ ◦ h∗ = 0 follows from h ◦ g ≃ 0. Suppose given f : H → E

such that g∗[f ] = 0. We apply Lemma 1.2.6 to the diagram

G
g // H

h //

f
��

K //

f ′

��

G ∧ S1

0 // E
1 // E // 0
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to obtain a map f ′ : K → E such that f ′ ◦ h ≃ f ′; that is, h∗[f ′] = [f ].

For any spectrum E = {En} we can define ΣE to be the spectrum with

ΣEn = En+1, n ∈ Z. We can iterate Σn = Σ◦Σn−1, n ≥ 2, but Σ also has an

inverse Σ−1 defined by (Σ−1E)n = En−1. We can define the homology and

cohomology theories associated with any spectrum E.

Proposition 1.2.8. For each CW -complexs pair (X, x0) and n ∈ Z,

En(X) = π0(E ∧X) = [ΣnS0, E ∧X],

En(X) = [E(X),ΣnE] ∼= [Σ−1S0 ∧X,E]

are homology, cohomology theories respectively.

Proof. For f : (X, x0)→ (Y, y0) we take

En(f) = (1 ∧ f)∗,

En(X)(f) = E(f)∗.

We define σn : En(X)→ En+1(SX) by the composite

En(X) = [ΣnS0, E ∧X] Σ
∼=

// [Σn+1S0,ΣE ∧X]

// [Σn+1S0, E ∧ S1 ∧X] = En+1(SX).

Then σn is clearly a natural equivalence. We define σn : En+1(SX)→ En(X)

by the composite

En+1(SX) = [E(SX),Σn+1E] [ΣE(X),Σn+1E]
∼=
i∗
oo

Σ−1

∼=
// [E(X),Σn(X)] = En(X).
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Thus we have used the fact that E(SX) is a cofinal subspectrum of ΣE(X),

and hence the inclusion i : E(SX)→ ΣE(X) induces an isomorphism i∗. σn

is a natural equivalence.

Let (X,A, x0) be any pointed CW -complexes pair. Since

En ∧ (X ∪ CA) ∼= (En ∧X) ∪ C(En ∧ A),

for any n ∈ Z, we see that

E ∧ A 1∧i // E ∧X 1∧j// E ∧ (X ∪ CA)

is a cofibre sequence. It follows from Lemma 1.2.6 that

[ΣnS0, E ∧ A] (1∧i)∗ // [ΣnS0, E ∧X]
(1∧j)∗// [Σns0, E ∧ (X ∪ CA)]

is exact. But this is just the sequence

En(A)
i∗ // En(X)

j∗// En(X ∪ CA).

Thus E∗ is a homology theory.

Since Sn(X ∪ CA) ∼= SnX ∪ C(SnA), for any n ∈ Z, we see that

E(A)
E(j) // E(X)

E(j)// E(X ∪ CA)

is a cofibre sequence. Hence it follows from Lemma 1.2.6 that

[E(A),ΣnE] [E(X),ΣnE]
E(i)∗
oo [E(X ∪ CA),ΣnE]

E(j)∗
oo

is exact. But this is just the sequence

En(A) En(X)i∗oo En(X ∪ CA).j∗oo

Thus E∗ is a cohomology theory.
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1.3 The Vietoris and Čech nerves

In this section we introduce the two nerves, of Vietoris type and of Čech type.

First we define the Čech nerve. The reference is [K]. Let λ = {Uα : α ∈ Γ}

be an open covering of a topological space X. We define the Čech nerve X Č
λ

of an open covering λ as follows. To every open set Uα, we associate a vertex

α. If Uα ∩ Uβ is nonempty, we connected the vertices α and β with an edge.

If Uα∩Uβ∩Uγ is nonempty, we fill in the face of the triangle αβγ. Repeating

this procedure for all finite intersections gives the nerve of λ. Let Ω be a

subset of Γ. The nerve X Č
λ′ of λ′ = {Vβ : β ∈ Ω} is a subcomplex X Č

λ . If Γ is

a finite set, X Č
λ is a finite simplicial complex. If λ is star finite, X Č

λ is locally

finite.

Let λ be an open covering {Uα : α ∈ Γ} of X. For any subset A of X,

let ΓA = {β : β ∈ Γ, Uβ ∩ A}, and then λA = {Uβ ∩ A : β ∈ ΓA} is open

covering of A. Then AČ
λA

is a subcomplex of X Č
λ . Let µ = {Vω : ω ∈ Ω}

be an open covering of X which is a refinement of λ. Define ΩA, τA by

ΩA = {δ : δ ∈ Ω, Vδ ∩ A ̸= ∅}, τA = {Vδ ∩ A : δ ∈ Ω} respectively.

Let u = {uα ∈ Γ} , v = {vω : ω ∈ Ω} be the sets of vertices of X Č
λ , X

Č
τ

respectively. For Vω ∈ τ we chose an open set Uα ∈ λ such that Vω ⊂ Uα. We

define a map πv
u : v → u by πv

u(vω) = uα. Let vr0 , · · · , vrn of Xτ be vertices of

X Č
τ contained in one simplex. By the property ∅ ̸= ∩n

i=0Vri ⊂ ∩n
i=0Uαi

, we see

that uαi
= πv

u(vτi) for i = 0, · · · , n are contained in one simplex of X Č
λ . By

the property πv
u|AτA

: AτA → AλA
, the map πv

u is πv
u : (Xτ , AτA)→ (Xλ, AλA

),

which is called a projection.

Lemma 1.3.1. If X Č
λ and X Č

τ have weak topology, the map πv
u : (X Č

τ , A
Č
τA
)→
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(X Č
λ , A

Č
λA
) is a continuous map.

Definition 1.3.2. Let X be a topological space and K a simplicial complex.

Let f0, f1 be maps X → K. We say that f0 is contiguous to f1 if a set

f0(x) ∪ f1(x) is contained in a simplex of K.

Theorem 1.3.3. Give a simplicial complex K a metric topology. If f0 is a

contiguous to f1, then f0 is homotopic to f1.

Proof. Let Λ be a set of vertices of K. We define a map F : X × I → K as

follows. For (x, t) ∈ X × I, we chose a simplex σ containing f0(x) ∪ f1(x).

The interval [f0(x), f1(x)] is contained in σ. Define F (x, t) is as the point to

divide [f0(x), f1(x)] into t : (1− t). F (x, t) has coordinates ((1− tv(f0(x)) +

tv(f1(x)) : v ∈ Λ). Let F (x0, t0) = y0. For ϵ > 0, let

Ui = {y : y ∈ K, ρ((fi(x0), y) <
ϵ

3
}, i = 1, 2,

where ρ is a metric of K. Then the set W = f−1
0 (U0) ∩ f−1

1 (U1) is a neigh-

borhood of x0. Let

I0 = I ∩ (t0 −
ϵ

3
, t0 +

ϵ

3
).

Consider the neighborhood V =W × I0 of (x0, y0). We show that

ρ(F (x′, t′), y0) < ϵ for any (x′, t′) ∈ V.

Let y′ = F (x′, t′). We have

y′ = ((1− t′)v(f0(x′) + t′v(f1(x
′) : v ∈ Λ).

Let

y′′ = ((1− t′)v × (f0(x0)) + t′v(f1(x0)) : v ∈ Λ).
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We have

ρ(y′′, y′) = Σv∈Λ|(1− t′){v(f0(x0))− v(f1(x0)) + t′{v(f1(x0))− v(f1(x′))}}|

≤ (1− t′)ρ(f0(x0), f0(x′)) + t′ρ(f1(x0), f1(x
′)

<
ϵ

3
.

Hence

ρ(y0, y
′) ≤ ρ(y0, y

′′) + ρ(y′′, y′) <
2

3
ϵ+

ϵ

3
= ϵ.

Thus F is continuous.

Theorem 1.3.4. Let M and K be simpicial complexes with weak topology.

Let f0 and f1 be maps from M to K. If f0 is contiguous to f1, then f0 is

homotopic to f1.

Proof. SinceM×I has weak topology, we define the homotopy F :M×I → I

in a similar way to Theorem 1.3.3. For any simplex σ of M , the restriction

F |σ×I is continuous. By Theorem 1.1.5, we set that F is continuous.

Corollary 1.3.5. Let λ be an open covering of X. Let τ be a refinement of

λ. For any πv
u, π

′v
u , the map πv

u is homotopic to π
′v
u .

Proof. If vβi
for i = 0, · · ·n are vertices of a simplex σ of Čech nerveX Č

τ of the

open covering τ , we have ∩n
i=0Vβi

̸= ∅. Put πv
u(vβi

) = uαi
and πv′

u (vβi
) = uαi

for i = 0, 1 · · · , n, and then we have ∩n
i=0(Uαi

∩ Uα′
i
) ⊂ ∩n

i=0Vβi
̸= ∅. Hence

uαi
, uα′

i
are contained in a simplex ω of X Č

τ . For any element x of σ, a set

πv
u(x)∪πv′

u (x) belongs to ω. Thus π
v
n is contiguous to πv′

u . By Theorems 1.3.3

and 1.3.4, πv
n is homotopic to πv′

u .

For each X ∈ NG0, let λ be an open covering of X. According to [P],

the Vietoris nerve of λ is a simplicial set in which an n-simplex is an ordered
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(n+1)-tuple (x0, x1, · · · , xn) of points contained in an open set U ∈ λ. Face

and degeneracy operators are respectively given by

di(x0, · · · , xn) = (x0, x1, · · · , xi−1, xi+1, · · · , xn)

and

si(x0, x1, · · · xn) = (x0, x1, · · · xi−1, xi, xi, xi+1, · · · , xn), 0 ≤ i ≤ n.

We denote the realization of the Vietoris nerve of λ byXλ. If λ is a refinement

of µ, then there is a canonical map πλ
µ : Xλ → Xµ induced by the identity

map of X.

The relation between the Vietoris and the Čech nerves is given by the

following proposition due to Dowker.

Proposition 1.3.6. ([Dow]) The Čech nerve X Č
λ and the Vietoris nerve Xλ

have the same homotopy type.

According to [Dow], for arbitrary topological space, the Vietoris and Čech

homology groups are isomorphic and the Alexander-Spanier and Čech coho-

mology groups are isomorphic.

1.4 Inverse limits and direct limits

We introduce Inverse limits and direct limits. The reference is [Ma] and [K].

Definition 1.4.1. Let Λ be a directed set (Λ,≤). Let G be a family of sets

{Gλ : λ ∈ Λ}. X is called a projective system if it satisfies the following

properties;
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1. if λ ≤ µ for any λ, µ ∈ Λ, there is a correspondence πλ
µ : Gλ → Gµ,

2. πλ
λ = 1. If λ ≤ µ ≤ ν, we have πλ

ν = πµ
ν ◦ πλ

µ.

We denote the projective system by {Gλ;π
λ
µ}. The correspondence πλ

µ is

called a projection. We write just {Gλ} if there is no possibility of confusion.

Let a projective system {Gλ : πλ
µ} be a family of groups {Gλ} and a family

of homomorphisms {πλ
µ : Xλ → Xµ}. Let G be the direct sum G = Σλ∈ΛGλ.

Let a subgroup G′ of G be generated by

{gλ − πλ
µgλ| λ ≤ µ, λ, µ ∈ Λ}.

A quotient group G/G′ is called a direct limit of groups denoted by lim−→{Gλ}.

For λ ∈ Λ, the projection : G → lim−→{Gλ} induces a homomorphism πλ :

Gλ → lim−→{Gλ}. Clearly we have

πµ ◦ πλ
µ = πλ : Gλ → lim−→{Gλ}.

Proposition 1.4.2. For any element g∞ ∈ lim−→{Gλ}, there is an element gµ

of Gµ such that πµgµ = g∞.

Proof. Let g∞ be a coset [Σn
i=1gλi

]. Since Λ is a directed set, there is a µ ∈ Λ

such that λi ≤ µ for any i. Let gµ = Σk
i=1π

λi
µ gλi

. Since gµ ∈ Gµ, we have

Σk
i=1gλi

− gµ = Σk
i=1(gλi

− πλ′
i

µ gλ).

Hence we have πµgµ = g∞.

Proposition 1.4.3. If πλ
µgλ = 0 for gλ ∈ Gλ, there is µ ∈ Λ such that λ ≤ µ

and πλ
µgλ = 0.
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Proof. Assume that πλgλ = 0. By the assumption, we see that gλ = Σk
i=1(gλi

−

πλi
µi
gµi

). There is µ ∈ Λ such that λ ≤ µ, µi ≤ µ for i = 1, · · · , k. Hence we

have πλ
µgλ = 0.

Definition 1.4.4. A map of the direct system {Gλ} into the direct system

{G′
µ} consists of an order preserving map f : Λ→ Λ′ and a homomorphism

fλ : {Gλ} → {G′
f(λ)} for each λ ∈ Λ

subject to the following property: if λ < µ, then the following diagram is

commutative:

Gλ
fλ //

πλ
µ

��

G′
f(λ)

π
f(λ)
f(µ)

��
Gµ fµ

// G′
f(µ)

Then f induce a homomorphism from Direct limits lim−→{Gλ} to lim−→{G
′
µ}.

By Proposition 1.4.2, for any g∞ there is a gµ ∈ Gµ such that πµgµ = g∞.

We define a homomorphism lim−→f∞ : lim−→{Gλ} → lim−→{G
′
µ} by lim−→f∞(g∞) =

πµfµ(gµ) where πµ is a projection πµ : G′
µ → lim−→{G

′
µ}, µ ∈ Λ′. We denote

this homomorphism simply by lim−→f if there is no possibility of confusion.

Definition 1.4.5. Let Λ be a directed set. A subset Λ′ ⊂ Λ is called a cofinal

subset if for any λ ∈ Λ there is µ ∈ Λ′ such that λ < µ.

Note that a cofinal subset is also a directed set with respect to the given

order relation. Let us recall that properties of direct limits of exact sequence

of modules. Let R be a ring with unit. Suppose that {Gλ} is a direct system

of R-modules defined on a direct system Λ. Let Λ′ be a cofinal subset of Λ.

Let G′
λ be a direct system defined as follows. For any λ ∈ Λ′, G′

λ = Gλ.
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if λ, µ ∈ Λ′ and λ < µ, then π
′λ
µ = πλ

µ. The inclusion map Λ′ → Λ is an

order-preserving map. Hence for each λ ∈ Λ′, the identity map G′
λ → Gλ

defines a map of the directed system {G′
λ} into the directed system {Gλ}.

Obviously the map induces an isomorphism lim−→λ
G′

λ → lim−→λ
Gλ.

Theorem 1.4.6. Suppose that {Gλ}, {G′
λ} and {G′′

λ} are direct systems of

modules, all defined on the same directed set Λ. For each λ ∈ Λ, assume given

homomorphisms fλ : Gλ → G′
λ and gλ : G′

λ → G′′
λ such that the following

sequence

G′
λ

fλ // Gλ
gλ // G′′

λ

is exact. Then the limit sequence

lim−→λ
G′

λ

lim−→fλ
// lim−→λ

Gλ

lim−→gλ
// lim−→λ

G′′
λ

is exact.

Proof. Since gλfλ = 0, for each λ, it follows that lim−→gλ ◦ lim−→fλ = 0. We prove

that kernel lim−→gλ ⊂ image lim−→fλ. Let a ∈ lim−→Gλ be such that

lim−→ gλ(a) = 0.

There exists an index λ ∈ Λ and an element aλ ∈ Gλ such that

πλ(aλ) = a,

where πλ : Gλ → lim−→G, λ ∈ Λ, are the maps defining lim−→ G as a direct limit

of lim−→ G. Then

0 = lim−→ gλ(a) = (lim−→ gλ ◦ πλ)(aλ) = (π′′
λ ◦ gλ)(aλ).
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Since (π′′
λ ◦ gλ)(aλ) = 0, there exists an index µ > λ such that

(π′′λ
µ ◦ gλ)(aλ) = 0.

Therefore

(gµ ◦ πλ
µ)(aλ) = (π′′λ

µ ◦ gλ)(aλ) = 0,

when by exactness there exists an element a′λ ∈ G′
µ such that

fµ(a
′
µ) = πλ

µ(aλ).

Then we have

(lim−→f ◦ π
′
µ)(aλ) = (πµ ◦ fµ)(a′µ)

= (πµ ◦ πλ
µ)(aλ)

= πλ(aλ) = a

as required.

Corollary 1.4.7. If gλ is a monomorphism for each λ ∈ Λ, then so is lim−→ gλ.

Corollary 1.4.8. If fλ is an epimorphism for each λ ∈ Λ, so is lim−→ fλ.

Next we recall the definition of inverse limit. Inverse limits are dual to

direct limits.

Definition 1.4.9. Let Λ be a directed poset (Λ,≤). Let G be a family of

sets {Gλ : λ ∈ Λ}. G is called an inverse system if satisfies the following

properties satisfied;

1. if λ ≤ µ for any λ, µ ∈ Λ, there is a correspondence πλ
µ : Xµ → Xλ,

2. πλ
λ = 1. If λ ≤ µ ≤ ν, we have πλ

ν = πµ
ν ◦ πλ

µ.
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We denote the inverse system by {Gλ;π
λ
µ}. A correspondence πλ

ν is called

a projection.

Let {Gλ : πλ
µ} be consisting of an inverse system a family of groups {Gλ}

and a family of homomorphisms {πλ
µ : Gµ → Gλ}. Put

G′ = {(xλ) ∈
∏
λ∈Λ

Gλ | πλ
µ(xµ) = λ, for all λ ≤ µ}.

The subspace G′ is called an inverse limit of groups denoted by lim←−λ{Gλ}.

A homomorphism πλ : lim←−λ
{Gλ} → Gλ is induced by projection :

∏
λ∈ΛGλ →

Gλ. It satisfies that

πλ
µ ◦ πµ = πλ : lim←−λ

{Gλ} → Gλ, λ ≤ µ, λ, µ ∈ Λ.

Definition 1.4.10. Let Λ be a directed set consisting of the positive integers

with their usual ordering. Let Gi be a R-modules for all i ∈ Λ. Suppose that

there is a homomorphism φi : Gi+1 → Gi for all i ∈ Λ. Let G be the inverse

system {Gi; πi}. Then G is represented by a diagram

G1 G2
π1oo G3

π2oo · · ·π3oo

and is called a tower of R-modules.

Definition 1.4.11. Let

G1 G2
π1oo G3

π2oo · · ·π3oo

be a tower left R-modules. The inverse limit is a submodule of the cartesian

product:

G′ =
∞∏
n=1

Gn
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which is specified as follows. We define a homomorphism

d : G′ → G′

by the formula

d(x1, x2, x3 · · · ) = (x1 − φ2(x2), x2 − φ3(x3), x4 − φ3(x3), · · · ).

Then the kernel of d is the inverse limit of the sequence. The cokernel of

d is called the first derived functor of the inverse limit. We denote it by

lim1Gn.

Observe that lim1 has the following property. If the diagram

G1

Φ1

��

G2
π1oo

Φ2

��

G3
π2oo

Φ3

��

· · ·π3oo

G′
1 G′

2

π′
1oo G′

3

π′
2oo · · ·

π′
3oo

is commutative, there is an induced homomorphism

lim 1Φn : lim 1Gn → lim 1G′
n.

Thus lim1 is a covariant functor from the category of inverse sequences of

R-modules to the category of R-modules.

Proposition 1.4.12. Given a short exact sequence of towers

�� �� ��
0 // G′

2

Φ2 //

��

G2
Ψ2 //

��

G′′
2

//

��

0

0 // G′
1

Φ1 // G1
Φ1 // G′′

1
// 0
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Such a short exact sequence gives rise to the following long exact sequence

0 // lim←− G′
n

// lim←− Gn
// lim←− G′′

n

∆ // lim1G′
n

// lim1Gn
// lim1G′′

n
// 0

Proof. We consider the homomorphism

d :
∏

: Gn →
∏

Gn

which defines lim←− Gn and lim1Gn as is defined a cochain complex {Cn, δn}

with C0 = C1 =
∏
Mn, C

n = 0 for n ̸= 0 or 1, δ0 = d, and δn = 0 for n ̸= 0

for n ̸= 0. Then

lim←− Gn = H0(C)

lim 1Gn = H1(C),

and Hn(C) = 0 for n ̸= 0 or 1. The short exact sequence of towers gives rise

to a short exact sequence of such cochain complexes. The corresponding long

exact cohomology sequence is the exact sequence whose existence is asserted

in the statement of the theorem.

Definition 1.4.13. An inverse sequence of modules

G1 G2
oo G3

oo · · ·oo

is said to satisfy the Mittag−Leffler condition if for every integer n there

exists an integer m ≥ n such that for any i ≥ m,

Image(Gi → Gm) = Image(Gm → Gn).

32



Proposition 1.4.14. Let

G1 G2
oo G3

oo · · ·oo

be a tower of R-modules which satisfies the Mittag-Leffler condition. Then

lim−→
1

n
Gn = 0.

Proof. For each integer n, let G′
n be a submodule of Gn which is the image

of Gi → Gn for a sufficiently large integer i > n. By the Mittag-Leffler

condition, the homomorphism Gn+1 → Gn maps G′
n+1 onto Gn. We have an

induced tower

G′
1 G′

2
oo G′

3
oo · · ·oo

such that all homomorphisms are onto. Hence by the definition of lim1, we

see thatlim1G′
n = 0. Consider the tower of quotient modules

G1

G′
1

G2

G′
2

oo G3

G′
3

oo · · · .oo

There is an integer m > n such that the homomorphism

Gm

G′
m

→ Gn

G′
n

is zero. This fact implies that lim1Gn/G
′
n = 0. Then it is sufficient to apply

the exact sequence of Proposition 1.4.12 to the short exact sequence

0→ {G′
n} → {Gn} → {Gn/G

′
n} → 0.

We recall the properties of direct and inverse limits of modules. After

that we recall the properties of limit of topological spaces.
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Definition 1.4.15. Let Λ be a directed set. Let Xλ be a topological space for

all λ ∈ Λ. Suppose that there is a continuous map πλ
µ : Xµ → Xλ, λ ≤ µ. The

inverse limit system {Xλ, π} is called an inverse system of topological spaces.

Proposition 1.4.16. Let {Xλ; π
λ
µ} be an inverse system of topological spaces.

If Xλ is a Hausdorff space for each λ ∈ Λ, then lim←−λ
Xλ is a closed subset

of
∏

λ∈Λ.

Proof. Let y = (xλ : λ ∈ Λ) be an element of
∏

λ \lim←−Xλ. It is sufficient

to prove that there is an open neighborhood W of y such that W ∩ lim←−Xλ.

There is an open covering λ ≥ µ such that πλ
µxµ ̸= xλ. Since Xλ is Hausdorff,

there is an open neighborhood Vλ, Uλ of πλ
µxµ, xλ in Xλ respectively such

that Vλ ∩ Uλ ̸= ∅. Let

Vµ = (πλ
µ)

−1Vλ.

Then Vµ is an open neighborhood in Xµ. Let W = {(xλ) : xλ ∈ Uλ, xµ ∈ Vµ}

be an open set containing an element y. Then W ∩ lim←−Xλ = ∅.

Proposition 1.4.17. If Xλ is compact for each λ ∈ Λ, then lim←−Xλ is com-

pact.

Proof. For each µ ∈ Λ we define a subspace

Yµ = {(xλ) ∈
∏

Xλ|πλ
µ(xµ) = xλ, λ ≥ µ}.

By the argument of Proposition 1.4.16, we see that Yµ is a closed subset∏
Xλ. Since

∏
λXλ is compact, Yµ is compact for all µ. Hence we often the

following

lim←−Xλ = ∩µ∈ΛYµ ̸= ∅,

since Λ is a ordered set. Thus it is clear that lim←−Xλ is compact.
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Proposition 1.4.18. Let U be an open covering of lim←− Xλ. There are an in-

dex λ0 ∈ Λ and an open covering V of Xλ0 such that (πλ0)
−1V is a refinement

of U .

Proof. For any element (xλ) ∈ lim←−Xλ, we choose finite elements µ1 · · ·µk of Λ

and an open neighborhood Vµi
containing xµi

such that an open neighborhood

W(x′
λ)

= {(x′λ) : (x′λ) ∈ lim←− Xλ, xµi
∈ Vµi

, i = 1, · · · , k}

is contained in an open set in U . Then W = {W(x′
λ)
} is an open covering of

lim←− Xλ. Since lim←− Xλ is compact, there is an open covering {W j
(xλ)
∈ W |j =

1, · · · , k} of lim←− Xλ. There are some elements µi corresponding to W j
(xλ)

. We

denote this set µi by Γj. Observe that ∪jΓj is a finite set of Λ. Since Λ is an

ordered set, there is an element λ0 such that µ ≤ λ0 for any µ ∈ Λ. Let

Vj = ∩{(πµ
λ0
)−1Vµ|µ ∈ Γj}.

Then Vj is an open set of Xλ0 and (πλ0)
−1Vj is contained in an element of U .

Put

V0 = {Xλ0 − πλ0 lim←− Xλ}.

Since lim←− Xλ is compact, πλ0 lim←− Xλ is an open set of Xλ. Let V = {Vj|j =

0, · · · , k}. Then V is an open covering of Xλ0 .

1.5 Homotopy inverse limits

We introduce the homotopy inverse limit following [V] and [BK]. Let Top0

be a category of based topological spaces and based maps. Let I be a small

category and D : I→ Top0 a I-diagram in Top0.
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Let n > 0 and put

In(A,B) = {(fn, · · · , f1) ∈ (mor I)n | fn◦· · ·◦f1 : A→ B is defined in I .A,B ∈ I},

I0(A,A) = {(idA)}, I0(A,B) = ∅ for A ̸= B.

Definition 1.5.1. For any topological spaces X, Y , let F (X, Y ) denote the

space of maps X → Y with compact open topology. Then the homotopy

inverse limit of D,

holim←−−−D ⊂ (
∏

A,B∈I

F (
∞⨿
n=0

In(A,B)× In, D(B)))

is the subset of all elements {αA,B :
⨿∞

n=0 In(A,B)× In → D(B)| A,B ∈ I}

where I is the unit interval, satisfying

αA,B(fn, tn, · · · , f1, t1) =

αA,B(fn, tn, · · · , fi+1, ti+1, fi−1, · · · , t1) f1 = id for i < n

αA,B(fn−1, tn−1, · · · , t1) fn = id,

αA,B(fn, tn, · · · , ti+1, fi ◦ fi−1, ti−1, · · · t1) ti = 1, i > 1

αC,B(fn, tn, · · · , t2) t1 = 1

D(B)(fn, tn, · · · , fi;α(A,E)(fi−1, ti−1, ◦ · · · ◦ t1)(x)) ti = 0

∗ x = base point

where C = range (f1) and E = range (fi−1).

The homotopy limit of D is defined dually.

Let TopI
0 be a set of covariant functors I → Top0. For X ∈ TopI

0, the

map I /i induces a natural map

lim←− Xi → holim←−−− Xi

which, in general, is not a weak equivalence. We give some examples.
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Proposition 1.5.2. The following are examples for which the natural map

lim←−Xi → holim←−−−Xi is a weak equivalence and in which each map Xi → pt is

assumed to be fibration:

1. I is discrete.

2. I contains only two objects and one map between them; then the

homotopy inverse limit reduces to the usual mapping path space.

3. I has an initial object i0 ∈ I, i.e. for each i ∈ I, there is exactly one

map i0 → i ∈ I; in this case, the natural map

holim←−−−Xi → Xi0

is also a weak equivalence.

4. Every diagram in I of the form

X ′ // X X ′′oo

in which at least one of the maps is a fibration.

5. Every tower of fibrations

· · · // Xn
// · · · // X1

// X0.

We decompose the homotopy groups of the inverse limit of a tower of

fibrations into a lim←−-part and a lim←−
1-part.

Theorem 1.5.3. ([BK]) Let X = lim←−Xn, where

· · · // Xn
p // Xn−1

// · · · // X−1 = ∗
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is a tower of fibrations. Then there is, for every i ≥ 0, a natural short exact

sequence

∗ // lim←−
1

i
πn+1(Xi) // πn(holim←−−−i

X) // lim←−i
πn(Xi) // ∗.

1.6 Čech cohomology and homology groups

Let X be a topological space. Let

Λ = {λ | λ : an open covering of X}.

If µ is a refinement of λ for λ, µ ∈ Λ, we denote it by λ ≤ µ. So the set Λ

is an ordered set. Since we choose finite elements λi, for i = 1, 2, · · · , k in Λ,

an open covering

µ = {∩Ui | Ui ∈ λi, i = 1, · · · , k}

of X is a refinement of λi for any i. Thus λi ≤ µ, for i = 1, · · · , k. We denote

the nerve of λ by Nλ. If λ ≤ µ, there is a natural map

πλ
µ : Xµ → Xλ.

Let πλ
µ∗ be a homomorphism

πλ
µ∗ : Hn(Xµ, G)→ Hn(Xλ, G), n = 0, 1, · · ·

induced by πλ
µ, where Hn(Xλ, G) is a singular homology with coeffcient G.

Remark that πλ
µ∗ is decided without any relation to πλ

µ. Let π
λ′
µ be a natural

map. Since πλ
µ and πλ′

µ are contiguous, πλ
µ∗ = πλ′

µ∗ by Theorem 1.3.3. If

λ ≤ µ ≤ ν,we have πµ
λ∗ ◦ πλ

ν∗ = πλ
ν∗. For n ∈ N, we have an inverse system

{Ȟ(Xλ, G); π
λ
µ∗}
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of modules. We define the Čech homology group with coefficient G for X by

Ȟn(X : G) = lim←−λ
Hn(Xλ : G).

Then πλ
µ induces a homomorphism

πλ∗
µ : Hn(Xλ : G)→ Hn(Xµ : G).

For n ∈ N, we have a direct system

{Ȟ(Xλ, G); π
λ∗
µ }.

We define the Čech cohomology group with coefficient G for X by

Ȟ
n
(X : G) = lim−→λ

Hn(Xλ : G).

Next let A be a closed subset of X. For any λ ∈ Λ, let

λA = {U ∩ A | U ∩ A ̸= ∅, U ∈ λ}.

Then λA is an open covering of A. If λ ≤ µ, for λ, µ ∈ Λ, there is a natural

map

πλ
µ : (Xµ, AµA

)→ (Xλ, AλA
).

Thus we have an inverse system

{Hn(Xλ, AλA
: G);πλ

µ∗}

and a direct system

{Hn(Xλ, AλA
: G); πλ∗

µ }

of modules. We define the Čech homology group with coefficient G for a pair

(X,A) by

Ȟn(X,A : G) = lim←−λ
Hn(Xλ, AλA

: G)
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and the Čech cohomology group with coefficient G for a pair (X,A) by

Ȟ
n
(X,A : G) = lim−→λ

Hn(Xλ, AλA
: G).

Let Y be a topological space and B a closed subset of Y . For any con-

tinuous map f : (X,A)→ (Y,B), we define homomorphisms

f∗ : Ȟn(X,A)→ Ȟn(Y,B)

and

f ∗ : Ȟ
n
(Y,B)→ Ȟ

n
(X,A)

as follows. Let Λ = {λ} and Γ = {ρ} be the collection of open coverings

of X and Y respectively. For any ρ ∈ Γ, f−1ρ = {f−1(V ) | V ∈ ρ} is an

open covering of X. Since there is λ ∈ Λ such that f−1ρ = λ, we define a

correspondence ξ : Γ → Λ by ξρ = λ. If ρ ≤ τ , we have ξρ ≤ ξτ . So ξ

preserves the order. For each ρ ∈ Γ, let

ρB = {V ∩B | V ∩B ̸= ∅, V ∈ ρ}.

Let Yρ, and BρB be the nerves of ρ, and ρB respectively. Since for each V ∈ ρ

there is an open set U ∈ λ such that f−1(U) = V , we define a simplicial map

fρ : Xξρ → Yρ

by the correspondence U → V where Xξρ is the nerve of ξρ = λ. Let AξρB

be a nerve of λA. Since fρ : AξρB → BρB , we have

fρ : (Xξρ, AξρB)→ (Yρ, BρB).

Hence fρ induces homomorphisms

fρ∗ : Hn(Xξρ, AξρB : G)→ Hn(Yρ, BρB : G)
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and

f ∗
ρ : Hn(Yρ, BρB : G)→ Hn(Xξρ, AξρB : G).

Moreover if ρ ≤ τ for ρ, τ ∈ Γ, the two diagrams

Hn(Yρ, BρB : G)
f∗
ρ //

µρ∗
τ

��

Hn(Xξρ, AξρB : G)

πξρ∗
ξτ

��
Hn(Yρ, BρB : G)

f∗
ξ

// Hn(Xξρ, AξρB : G)

and

Hn(Xξρ, AξρB : G)
fρ∗ //

πξρ
ξτ∗

��

Hn(Yτ , BτB : G)

µρ
τ∗

��
Hn(Xξρ, AξρB : G)

fξ∗
// Hn(Yρ, BρB : G).

are commutative, where µρ
τ , π

ξρ
ξτ are simplicial maps induced by the inclu-

sions. Thus there is a homomorphism induced by f such that

lim←−fρ∗ : Ȟn(X,A;G)→ Ȟn(Y,B;G)

and

lim−→f
∗
ρ : Ȟ

n
(Y,B;G)→ Ȟ

n
(X,A;G).

We denote lim←−fρ∗ and lim−→f
∗
ρ by f∗ and f ∗ respectively. By the definition of

lim←−fρ∗ and lim−→f
∗
ρ , the following proposition is clear.

Proposition 1.6.1. Let f : (X,A) → (Y,B) and g : (Y,B) → (Z,C) be

maps. Then

g∗f∗ = (gf)∗ : Ȟn(X,A;G)→ Ȟn(Z,C;G)

and

f ∗g∗ = (gf)∗ : Ȟ
n
(Z,C;G)→ Ȟ

n
(X,A;G).
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1.7 Steenrod homology

In this section, we recall the definition of the Steenrod homology group.

In [St], Steenrod constructed a homology theory Hst
∗ for compact pairs of

metric spaces as follows. From p.834 of the same paper [St], we recall

Definition 1.7.1. A regular map of complex K in X is a function f

defined over the vertices of K with values in X such that, for any ε0, all but a

finite number of simplices have their vertices imaging onto sets of diameter<

ε.

Definition 1.7.2. A regular q-chain of X is a set of three objects: a complex

A,a regular map f of A in X, and a q-chain Cq of A. If Cq is a q-cycle,

(A, f, Cq) is called a regular q- cycle.

Definition 1.7.3. Two regular q-cycles (A1, f1.C
q
1) and (A2, f2, C

q
1) of X are

homologous if there exists a (q + 1)-chain (A, f, Cq+1) such that A1 and A2

are closed (not necessarily disjoint) subcomplexes of A, f agrees with f1 on

A1 and f2 on A2, and ∂C
q+1 = Cq

1 − C
q
2 .

We define a Steerod homology group Hs
∗(X) by the homology group asso-

ciated the regular q-cycles of X. Steenrod shows that this homology theory

satisfies the Eilenberg-Steenrod axioms for all compact pairs. In [Mi], Milnor

proves that Steenrod homology theory satisfies two extra axioms as follows.

1. Invariance under relative homeomorphism.

2. (Cluster axiom) If X is a union of countably many compact subsets

X1, X2, · · · which intersect pointwise at a single point b, and which
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have diameters tending to zero, then Hq(X, b) is naturally isomorphic

to the direct product of the groups Hq(Xi, b).

Moreover Milnor characterized the Steenrod homology group by a coefficient

group.

Theorem 1.7.4. [Mi] There exists one and only one homology theory H∗( )

defined for pairs of compact metric spaces which satisfies the two extra Ax-

ioms as well as the seven Eilenberg-Steenrod Axioms and which satisfies

H0(pt) = G.

In addition, there is a method of defining Steenrod homology theories by

a spectrum. In [EH] and [KKS], Steenrod homology theories with coefficients

are defined by a spectrum as follows. Let S be a spectrum and X a compact

metric space. There is a nerve Ni as in Section 1, 3. Then Ni ∧ S is a

spectrum. The Steenrod homology theory is defined by

Hk(X,S) = πk holim←−−−i
(Ni, D).
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Chapter 2

Homology and cohomology

associated with a bibariant

functor

2.1 Diffeological spaces

To derive the properties of the category of numerically generated spaces

we use an adjunction between the categories of topological and diffeological

spaces, respectively. Recall from [I] that a diffeological space consists of a set

X together with a family D of maps from open subsets of Euclidean spaces

into X satisfying the following conditions:

Covering Any constant parametrization Rn → X belongs to D.
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Locality A parametrization σ : U → X belongs to D if every point u of U

has a neighborhood W such that σ|W : W → X belongs to D.

Smooth compatibility If σ : U → X belongs to D, then so does the

composite σf : V → X for any smooth map f : V → U between open subsets

of Euclidean spaces.

We call D a diffeology of X, and each member of D a plot of X.

A map between diffeological spaces f : X → Y is called smooth if for

any plot σ : U → X of X the composite fσ : U → Y is a plot of Y . In

particular, if D and D′ are diffeologies on a set X then the identity map

(X,D)→ (X,D′) is smooth if and only if D is contained in D′. In that case,

we say that D is finer than D′, or D′ is coarser than D. Clearly, the class of

diffeological spaces and smooth maps form a category Diff .

Theorem 2.1.1. The category Diff is complete, cocomplete, and cartesian

closed.

A category is complete if it has equalizers and small products, and is co-

complete if it has coequalizers and small coproducts. Therefore, the theorem

follows from the basic constructions given below.

Products Given diffeological spaces Xj, j ∈ J , their product is given by a

pair (
∏

j∈J Xj, D), where D is the set of parametrizations σ : U →
∏

j∈J Xj

such that every its component σj : U → Xj is a plot of Xj.

Coproducts The coproduct of Xj, j ∈ J , is given by (
⨿

j∈J Xj, D), where

D is the set of parametrizations σ : U →
⨿

j∈J Xj which can be written
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locally as the composite of the inclusion Xj →
⨿

j∈J Xj with a plot of Xj.

Subspaces Any subset A of a diffeological space X is itself a diffeological

space with plots given by those parametrizations σ : U → A such that the

post composition with the inclusion A→ X is a plot of X.

Quotients Let p : X → Y be a surjection from a diffeological space X to a

set Y . Then Y inherits from X a diffeology consisting of those parametriza-

tions σ : U → Y which lifts locally, at every point u ∈ U , along p.

Exponentials Given diffeological spaces X and Y , the set homDiff (X, Y )

has a diffeology DX,Y consisting of those σ : U → homDiff (X,Y ) such that

for every plot τ : V → X of X, the composite

U × V (σ,τ)−−→ homDiff (X,Y )×X ev−→ Y

is a plot of Y . Putting it differently, DX,Y is the coarsest diffeology such that

the evaluation map ev : homDiff (X,Y)× X→ Y is smooth.

Let us denote by C∞(X, Y ) the diffeological space (homDiff (X,Y ), DX,Y ).

Then there is a natural map α : C∞(X × Y, Z) → C∞(X,C∞(Y, Z)) given

by the formula: α(f)(x)(y) = f(x, y) for x ∈ X and y ∈ Y . The following

exponential law implies the cartesian closedness of Diff .

Theorem 2.1.2. [I, 1.60] The map α induces a smooth isomorphism

C∞(X × Y, Z) ∼= C∞(X,C∞(Y, Z)).
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2.2 Numerically generated spaces

Given a topological space X, let DX be the diffeological space with the

same underlying set as X and with all continuous maps from open subsets

of Euclidean spaces into X as plots. Clearly, a continuous map f : X → Y

induces a smooth map DX → DY . Hence there is a functor D : Top→ Diff

which maps a topological space X to the diffeological space DX.

On the contrary, any diffeological space X determines a topological space

TX having the same underlying set as X and is equipped with the final

topology with respect to the plots of X. Any smooth map f : X → Y induces

a continuous map TX → TY , hence we have a functor T : Diff → Top.

Proposition 2.2.1. The functor T is a left adjoint to D.

Proof. Let X be a diffeological space and Y a topological space. Then a map

f : TX → Y is continuous if and only if the composite f ◦σ is continuous for

every plot σ of X. But this is equivalent to say that f : X → DY is smooth.

Thus the natural map

homTop(TX, Y )→ homDiff (X,DY )

is bijective for every X ∈ Diff and Y ∈ Top.

Proposition 2.2.2. A topological space X is numerically generated if and

only if the counit of the adjunction TDX → X is a homeomorphism.

Proof. The condition TDX = X holds if and only if X has the final topology

with respect to all the continuous maps from an open subset of a Euclidean

space into X. But this is equivalent to say that X has the final topology

with respect to the singular simplexes of X.
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Let us write ν = TD, so that X is numerically generated if and only if

νX = X holds.

Lemma 2.2.3. For any topological space X we have ν(νX) = νX.

Proof. Every plot σ : U → X of X lifts to a plot of νX, since νU = U holds

for any open subset U of Rn. Thus νX has the same plots as X, and hence

ν(νX) has the same topology as νX.

Let NG be the category of numerically generated spaces and continuous

maps. It follows that NG is reflective in Top, and the correspondence X 7→

νX induces a reflector ν : Top→ NG.

Proposition 2.2.4. The category NG is complete and cocomplete. For every

small diagram F : J → NG, we have

limJ F ∼= T (limJ DF ) ∼= ν(limJ IF )

colimJ F ∼= T (colimJ DF ) ∼= colimJ IF

where I denotes the inclusion functor NG→ Top.

Proof. Since Diff is complete, the diagram DF : J → Diff has a limiting

cone {ϕj : limJ DF → DF (j)}. We shall show that the cone

{Tϕj : T (limJDF )→ TDF (j) = F (j)}

is a limiting cone to F . Let {ψj : X → F (j)} be an arbitrary cone to F .

Then {Dψj : DX → DF (j)} is a cone to DF , and hence there is a unique

morphism u : DX → limJ DF such that Dψj = ϕj ◦ u holds. But then

Tu : X = TDX → T (limJ DF ) is a unique morphism such that ψj = Tϕj◦Tu
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holds. Hence {Tϕj} is a limiting cone to F . Since the right adjoint functor

D preserves limits, we have T (limJ DF ) ∼= TD(limJ IF ) = ν(limJ IF ).

Similar argument shows that T (colimJ DF ) is a colimit of F . But in this

case we have T (colimJ DF ) ∼= colimJ νF = colimJ IF , since the left adjoint

functor T preserves colimits.

2.3 Exponentials in NG

A map f : X → Y between topological spaces is said to be numerically

continuous if the composite f ◦ σ : ∆n → Y is continuous for every singular

simplex σ : ∆n → X. Clearly, we have the following.

Proposition 2.3.1. Let f : X → Y be a map between topological spaces.

Then the following conditions are equivalent:

1. f : X → Y is numerically continuous.

2. f ◦σ : U → Y is continuous for any continuous map σ : U → X from

an open subset U of a Euclidean space into X.

3. f : νX → Y is continuous.

4. f : DX → DY is smooth.

Let us denote by map(X,Y ) the set of continuous maps from X to Y

equipped with compact-open topology, and let smap(X, Y ) be the set of

numerically continuous maps equipped with the initial topology with respect

to the maps

σ∗ : smap(X, Y )→map(∆n, Y ), σ∗(f) = f ◦ σ,
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where σ : ∆n → X runs through singular simplexes of X. More explicitly,

the space map(X, Y ) has a subbase consisting of those subsets

W (K,U) = {f | f(K) ⊂ U},

where K is a compact subset of X and U is an open subset of Y . On the

other hand, smap(X, Y ) has a subbase consisting of those subsets

W (σ, L, U) = {f | f(σ(L)) ⊂ U},

where σ : ∆n → X is a singular simplex, L a compact subset of ∆n, and U

an open subset of Y . As we have

W (σ, L, U) ∩map(X,Y ) = W (σ(L), U),

the inclusion map map(X,Y )→ smap(X, Y ) is continuous.

Proposition 2.3.2. The inclusion map map(X,Y ) → smap(X,Y ) is bi-

jective for all Y if and only if X is numerically generated.

Proof. If X is numerically generated then a numerically continuous map

f : X → Y is automatically continuous. Hence map(X, Y ) → smap(X, Y )

is surjective for all Y . Conversely, if map(X, νX)→ smap(X, νX) is surjec-

tive, then the unit of the adjunction X → νX is continuous, implying that

X is numerically generated.

Proposition 2.3.3. Suppose that X is a CW-complex. Then the inclusion

map : map(X,Y )→ smap(X,Y ) is a homeomorphism for any Y .

Proof. Since X has weak topology with respect to the family of closed cells,

a map f from X to Y is continuous if and only if it is numerically continuous.
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Hence map(X,Y )→ smap(X, Y ) is a bijection. To prove the continuity of

its inverse, we have to show that every subset of the formW (K,U) is open in

smap(X,Y ). SinceX is closure-finite, K is contained in a finite complex, say

A. Let {e1, . . . , ek} be the set of cells of A, and let Li = ψ−1
i (ei ∩K) ⊂ ∆ni ,

where ψi : ∆
ni → X is a characteristic map for ei. Then we have

W (K,U) = W (ψ1, L1, U) ∩ · · · ∩W (ψk, Lk, U).

Hence W (K,U) is open in smap(X,Y ).

The proposition above implies that any CW-complex X is numerically

generated. Thus we have the following.

Corollary 2.3.4. The category NG contains all CW-complexes.

For numerically generated spaces X and Y , let us denote

Y X = ν smap(X,Y ).

Then there is a map α : ZX×Y → (ZY )X which assigns to f : X×Y → Z the

map α(f) : X → ZY given by the formula α(f)(x)(y) = f(x, y) for x ∈ X

and y ∈ Y .

Theorem 2.3.5. The natural map α : ZX×Y → (ZY )X is a homeomorphism.

This clearly implies the following.

Corollary 2.3.6. The category NG is a cartesian closed category.

To prove the theorem, we use the relationship between Y X and the ex-

ponentials in Diff .
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Proposition 2.3.7. For any topological spaces X and Y , we have

D smap(X,Y ) = C∞(DX,DY ).

Proof. Let σ : U → smap(X, Y ) be a map from an open subset U ⊂ Rn.

Then σ is a plot of D smap(X, Y ) if and only if the composite

U
σ−→ smap(X,Y )

τ∗−→map(∆m, Y )

is continuous for every singular simplex τ : ∆m → X. But τ ∗σ corresponds

to the the composite

U ×∆m σ×τ−−→ smap(X, Y )×X ev−→ Y,

under the homeomorphism

map(U ×∆m, Y ) ∼= map(U,map(∆m, Y )).

Thus σ is a plot of D smap(X, Y ) if and only if ev(σ, τ) is continuous for

every τ . which is equivalent to say that σ is a plot of C∞(DX,DY ).

We are now ready to prove Theorem 2.3.5.

Proof of Theorem 2.3.5. The map α is a homeomorphism since it coincides
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with the composite of homeomorphisms

ZX×Y = ν smap(X × Y, Z)

= T C∞(D(X × Y ), DZ)

= T C∞(DX ×DY,DZ)

∼= T C∞(DX,C∞(DY,DZ)) (1)

= T C∞(DX,D smap(Y, Z))

= ν smap(X, smap(Y, Z))

∼= ν smap(X, ν smap(Y, Z)) = (ZY )X (2)

in which (1) follows from Theorem 2.1.2, and (2) is induced by the numerical

isomorphism smap(Y, Z)→ ν smap(Y, Z).

2.4 The space of basepoint preserving maps

Let Top0 and Diff0 be the categories of pointed objects in Top and Diff ,

respectively. Evidently, the adjunction (T,D) between Top andDiff induces

an adjunction (T0, D0) between Top0 and Diff0. Thus the category NG0

of pointed objects in NG can be identified with a full subcategory of Top0

consisting of those pointed spaces (X, x0) such that νX = X holds. Clearly,

NG0 is complete and cocomplete.

Given pointed spaces X and Y , let map0(X, Y ) and smap0(X,Y ) de-

note, respectively, the subspace of map(X,Y ) and smap(X, Y ) consisting

of basepoint preserving maps. Then Proposition 2.3.3 implies the following.

Proposition 2.4.1. If X is a pointed CW-complex, then the inclusion map

map0(X, Y )→ smap0(X, Y ) is a homeomorphism for any pointed space Y .
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As before Section 2.3, let us denote Y X = ν smap0(X, Y ). By taking the

constant map as basepoint, Y X is regarded as an object of NG0. Recall that

the smash product X ∧ Y of pointed spaces X = (X, x0) and Y = (Y, y0) is

defined to be the quotient of X × Y by its subspace X ∨ Y = X × {y0} ∪

{x0} × Y . We now define a pointed map

α0 : Z
X∧Y → (ZY )X

to be the composite ZX∧Y p∗−→ (Z, z0)
(X×Y,X∨Y ) α′

−→ (ZY )X , where the middle

term (Z, z0)
(X×Y,X∨Y ) denotes the subspace of ZX×Y consisting of those maps

f : X×Y → Z such that f(X∨Y ) = {z0} holds, p∗ is induced by the natural

map p : X × Y → X ∧ Y , and α′ is the restriction of the homeomorphism

ν smap(X × Y, Z) ∼= ν smap(X, ν smap(Y, Z)).

Since p : X×Y → X∧Y is universal among continuous maps f : X×Y → Z

satisfying f(X ∨Y ) = {z0}, the induced map p∗ is bijective, whence so is α0.

Proposition 2.4.2. The map α0 : Z
X∧Y → (ZY )X is a homeomorphism for

any X, Y, Z ∈ NG0.

Proof. Given pairs of topological spaces (X,A), (Y,B), we have

(Y,B)(X,A) = T C∞((DX,DA), (DY,DB)),

where C∞((DX,DA), (DY,DB)) is the subspace of C∞(DX,DY ) consisting

of those smooth maps f : DX → DY satisfying f(DA) ⊂ DB. Thus, to

prove that α0 is a homeomorphism, we need only show that for any pointed

diffeological spaces A, B and C, the bijection

p∗ : C∞((A ∧B, ∗), (C, c0))→ C∞((A×B,A ∨B), (C, c0))

54



induced by the natural map p : A × B → A ∧ B = A × B/A ∨ B is a

smooth isomorphism. Here ∗ = p(A ∨ B) is a basepoint of A ∧ B, and

c0 is a basepoint of C. To see that (p∗)−1 is smooth, let us take a plot

σ : U → C∞((A × B,A ∧ B), (C, c0)) and show that σ̃ = (p∗)−1 · σ is a

plot of C∞((A ∧ B, ∗), (C, c0)). By definition, this is the case if for any plot

τ : V → A ∧B the composite

U × V σ̃×τ−−→ C∞((A ∧B, ∗), (C, c0))× (A ∧B)
ev−→ C

is a plot of C. But for any v ∈ V there exist a neighborhood W of v and

a plot τ̃ : W → A × B such that pτ̃ = τ |W hold. Therefore, the composite

ev(σ̃ × τ) coincides, on U ×W , with the plot

U ×W σ̃×τ̃−−→ C∞((A×B,A ∨B), (C, c0))× (A×B)
ev−→ C.

This implies that ev(σ̃ × τ) is locally, hence globally, a plot of C. Thus

σ̃ = (p∗)−1 · σ is a plot of C∞((A ∧B, ∗), (C, c0)).

The proposition implies a natural bijection

homNG0(X ∧ Y, Z) ∼= homNG0(X,Z
Y ).

Hence we have the following.

Corollary 2.4.3. The category NG0 is a symmetric monoidal closed cate-

gory with tensor product ∧ and internal hom of the form ZY .

Proposition 2.4.4. (1) For every pointed space X, the counit of the adjunc-

tion ε : νX → X is a weak homotopy equivalence.

(2) If X ∈ NG0, then the bijection ι : map0(X,Y )→ smap0(X,Y ) is a

weak homotopy equivalence.
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Proof. (1) Since Sn is a CW-complex, we have

πn(X, x) = π0 map((Sn, e), (X, x)) ∼= π0 smap((Sn, e), (X, x))

for every x ∈ X. Therefore, the numerically continuous map η : X → νX

induces the inverse to ε∗ : πn(νX, x)→ πn(X, x).

(2) We have a commutative diagram

map0(S
n,map0(X,Y ))

ι∗ // map0(S
n, smap0(X, Y ))

smap0(S
n, smap0(X, Y ))

map(Sn ∧X,Y )
∼= //

α0

OO

smap(Sn ∧X, Y ),

∼=

OO

which shows that

ι∗ : map0(S
n,map0(X, Y ))→map0(S

n, smap0(X,Y ))

is bijective. Thus smap0(X,Y ) has the same n-loops as map0(X,Y ). More-

over, a similar diagram as above, but Sn replaced by I+ ∧ Sn, shows that

smap0(X, Y ) has the same homotopy classes of n-loops as map0(X, Y ). It

follows that

ι∗ : πn(map0(X, Y ), f) ∼= πn(smap0(X, Y ), f)

is an isomorphism for every f ∈map0(X, Y ) and n ≥ 0.

Corollary 2.4.5. For all X, Y ∈ NG0, the space Y X is weakly equivalent

to the space of maps map0(X, Y ) equipped the compact-open topology.
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2.5 Homology theories via enriched functors

Let C0 be a full subcategory of NG0. Then C0 is an enriched category over

NG0 with hom-objects F0(X, Y ) = Y X . A covariant functor T from C0

to NG0 is called enriched if the correspondence F0(X,Y ) → F0(TX, TY ),

which maps f to Tf , is a morphism in NG0, that is, a basepoint preserving

continuous map. Similarly, a contravariant functor T from C0 to NG0 is

called enriched if the map F0(X,Y )→ F0(TY, TX) is a morphisms in NG0.

Let T : C0 → NG0 be an enriched functor. Then for any pointed map

f : X ∧ Y → Z such that Y and Z are objects of C0 the composite

X
α0(f)−−−→ F0(Y, Z)

T−→ F0(TY, TZ)

induces, by adjunction, a pointed map X∧TY → TZ. Similarly, an enriched

cofunctor, T : Cop
0 → NG0 assigns X ∧ TZ → TY as an adjunct to the

composite X → F0(Y, Z)→ F0(TZ, TY ).

Proposition 2.5.1. Enriched functors and cofunctors from C0 to NG0 pre-

serve homotopies.

Proof. Let h : I+ ∧X → Y be a pointed homotopy between h0 and h1. Then

an enriched functor T : C0 → NG0 induces a homotopy I+ ∧ TX → TY

between Th0 and Th1. Similarly, an enriched cofunctor T induces a homotopy

I+ ∧ TY → TX between Th0 and Th1.

Corollary 2.5.2. If T : C0 → NG0 is an enriched functor then a homotopy

equivalence f : X → Y induces isomorphisms Tf∗ : πnTX ∼= πnTY for n ≥

0. Similarly, if T is an enriched cofunctor then f induces isomorphisms

Tf∗ : πnTY ∼= πnTX for n ≥ 0.
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From now on, we assume that C0 satisfies the following conditions: (i) C0

contains all finite CW-complexes. (ii) C0 is closed under finite wedge sum.

(iii) If A ⊂ X is an inclusion of objects in C0 then its cofiber X∪CA, belongs

to C0; in particular, C0 is closed under the suspension functor X 7→ ΣX.

The category FCW0 of finite CW-complexes is a typical example of such a

category.

Given a continuous map f : X → Y , let

E(f) = {(x, l) ∈ X ×map(I, Y ) | f(x) = l(0)}

be the mapping track of f . Then the map p : E(f) → Y , p(x, l) = l(1), has

the homotopy lifting property for all spaces, and hence induces a bijection

p∗ : πn+1(E(f), F (f))→ πn+1Y for all n ≥ 0, where F (f) denotes the fiber of

p at the basepoint of Y . A sequence of pointed maps Z
i−→ X

f−→ Y is called

a homotopy fibration sequence if there is a homotopy of pointed maps from

f ◦ i to the constant map such that the induced map Z → F (f) is a weak

homotopy equivalence.

Definition 2.5.3. An enriched functor T : C0 → NG0 is called linear if for

every pair of objects (X,A) with A ⊂ X, the sequence

TA→ TX → T (X ∪ CA),

induced by the cofibration sequence A ⊂ X ⊂ X∪CA, is a homotopy fibration

sequence with respect to the null homotopy of TA → T (X ∪ CA) coming

from the contraction of A within the reduced cone CA. Likewise, an enriched

cofunctor T : Cop
0 → NG0 is called linear if the induced sequence

T (X ∪ CA)→ TX → TA
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is a homotopy fibration sequence.

If T is a linear functor, then every pair (X,A) gives rise to an exact

sequence of pointed sets

· · · → πn+1T (X ∪ CA)
∆−→ πnTA

Ti∗−−→ πnTX
Tj∗−−→ πnT (X ∪ CA)→ · · ·

terminated at π0T (X ∪CA). Here i and j denote the inclusions A ⊂ X and

X ⊂ X ∪ CA, respectively, and ∆ is the composite

πn+1T (X ∪ CA)
p−1
∗−−→ πn+1(E(Tj), F (Tj))

∂−→ πnF (Tj)
ν−1
∗−−→ πnTA.

Similarly, a linear cofunctor T induces an exact sequence

· · · → πn+1TA
∆−→ πnT (X ∪ CA)

Tj∗−−→ πnTX
Ti∗−−→ πnTA→ · · ·

terminated at π0TA.

Theorem 2.5.4. For every linear functor T : C0 → NG0, there exists a gen-

eralized homology theory X 7→ {hn(X;T )} defined on C0 such that hn(X;T )

is isomorphic to πnTX if n ≥ 0, and to π0T (Σ
−nX) otherwise.

Proof. We first show that the map T (X ∨ Y ) → TX × TY induced by the

projections of X ∨ Y onto X and Y is a weak equivalence. This means that

the functor Γ → NG0, which maps a pointed finite set k = {0, 1, . . . , k} to

T (X ∧ k) = T (X ∨ · · · ∨ X), is special in the sense that the natural map

T (X ∧ k) → T (X)k is a weak equivalence for all k ≥ 0. Hence πnTX is an

abelian monoid with respect to the multiplication

πnTX × πnTX ∼= πnT (X ∨X)
T∇∗−−→ πnTX
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induced by the folding map ∇ : X ∨X → X. This multiplication coincides

with the standard multiplication of πnTX since they are compatible with

each other. In particular, π1TX is an abelian group for all X. Moreover, any

pointed map f : X → Y induces a natural transformation T (X∧k)→ T (Y ∧

k), whence it is a homomorphism of abelian monoids Tf∗ : πnTX → πnTY

for all n ≥ 0.

To see that T (X ∨ Y ) → TX × TY is a weak equivalence, it suffices to

show that the sequence TX → T (X ∨ Y ) → TY , induced by the inclusion

X → X∨Y and the projection X∨Y → Y , is a homotopy fibration sequence.

But TX → T (X ∨ Y ) → TY is homotopy equivalent to the homotopy

fibration sequence TX → T (X ∨ Y ) → T (CX ∨ Y ) through the homotopy

equivalence T (CX ∨ Y ) ≃ TY induced by the retraction CX ∨ Y → Y .

Next consider the homotopy exact sequence associated with the sequence

TX → T (CX) → T (ΣX). As T (CX) is weakly contractible, we obtain for

every n ≥ 0 a short exact sequence of abelian monoids

0→ πn+1T (ΣX)
∆−→ πnTX → 0.

Since πn+1T (ΣX) is an abelian group, the homomorphism ∆ is injective,

whence it is an isomorphism. But this in turn means that πnTX is an

abelian group for n ≥ 0. Therefore, hn(X;T ) is an abelian group for all

n ∈ Z.

For a pointed map f : X → Y , we define

hn(f) : hn(X;T )→ hn(Y ;T )

to be the homomorphism induced by Tf : TX → TY for n ≥ 0, and T (Σ−nf)

for n < 0. It is easy to see that the functor X 7→ {hn(X;T )} together with a
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natural isomorphism hn(X;T ) ∼= hn+1(ΣX;T ), given by ∆−1 for n ≥ 0 and

the identity for n < 0, satisfies the homotopy and exactness axioms.

If T : C0 → NG0 is an enriched functor, then for everyX ∈ C0 the spaces

T (ΣnX) together with the maps S1 ∧ T (ΣnX)→ T (Σn+1X) induced by the

homeomorphism S1 ∧ ΣnX ∼= Σn+1X form a prespectrum ∂TX. Following

Goodwillie [G], we call ∂TX the derivative of T at X. Let L(∂TX) be

the spectrification of ∂TX (cf. [L]). Then its zeroth space L(∂TX)0 is an

infinite loop space and the correspondenceX 7→ L(∂TX)0 defines an enriched

functor LT : C0 → NG0. If, moreover, T is linear, then Theorem 2.5.4

implies that the natural map TX → LTX is a weak equivalence for every

X; hence LT defines the same homology theory as T .

An enriched functor T is called stable if the natural map TX → LTX is

a homeomorphism for every X. In particular, LT is stable for any T . Let

SLEF be the category of stable linear enriched functors C0 → NG0 with

enriched natural transformations as morphisms. Then there is a functor D

from SLEF to the category Spec of spectra which maps a stable functor

T to its derivative ∂TS0 at S0. We have shown that the homology the-

ory h•(−;T ) induced by a linear enriched functor T is represented by the

spectrum D(LT ) = L(∂TS0).

Conversely, any homology theory represented by a spectrum comes from

a linear enriched functor. In fact, D has a left adjoint I : Spec → SLEF

defined as follows: For a spectrum E = {En}, IE is the enriched functor

which maps X to the zeroth space L(E ∧ X)0 of the spectrification of the

prespectrum E ∧ X = {En ∧ X}. The unit E → DIE and the counit
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IDT → T of the adjunction are weak equivalences given by the maps

En → Ωn(En ∧ Sn)→ Ω∞(E∞ ∧ Sn) = L(E ∧ Sn)0 = IE(Sn) = DIEn,

IDTX = L(∂TS0 ∧X)0
Lµ−→ L(∂TX)0 = LTX ∼= TX,

where µ : ∂TS0 ∧ X → ∂TX is a map of prespectra consisting of the maps

T (Sn) ∧X → T (ΣnX) induced by the identity of Sn ∧X.

Let us regard Spec and SLEF as a model category with respect to the

classes of weak equivalences, fibrations, and cofibrations consist, respectively,

of level weak equivalences, level fibrations, and morphisms that have the left

lifting property with respect to the class of trivial fibrations. Then we have

the following.

Proposition 2.5.5. The functor D : SLEF→ Spec is a right Quillen equiv-

alence, and hence induces an equivalence between the homotopy categories.

Corollary 2.5.6. The homotopy category of SLEF is equivalent to the stable

category.

2.6 Bivariant homology-cohomology theories

We now introduce the notion of a bilinear functor, and describe a passage

from bilinear functors to generalized cohomology theories. In fact, we shall

show that a bilinear functor gives rise to a pair of generalized homology and

cohomology theories, or in other words, a bivariant homology-cohomology

theory.

Let F : C0
op ×C0 → NG0 be a bivariant functor which is contravariant

with respect to the first argument, and is covariant with respect to the second
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argument. We say that F is enriched (over NG0) if for all pointed spaces X,

X ′, Y , and Y ′, the map

F0(X
′, X)× F0(Y, Y

′)→ F0(F (X,Y ), F (X ′, Y ′)), (f, g) 7→ F (f, g)

is continuous and is pointed in the sense that if either f or g is constant then

so is F (f, g).

Definition 2.6.1. An enriched bifunctor F : C0
op ×C0 → NG0 is called a

bilinear functor if for all (X,A) and (Y,B) the sequences

F (X ∪ CA, Y )→ F (X, Y )→ F (A, Y ),

F (X,B)→ F (X, Y )→ F (X, Y ∪ CB)

are homotopy fibration sequences.

Theorem 2.6.2. For every bilinear functor F : C0
op × C0 → NG0, there

exist a generalized homology theory X 7→ {hn(X;F )} and a generalized co-

homology theory X 7→ {hn(X;F )} such that

hn(X;F ) ∼= π0F (S
n+k,ΣkX), hn(X;F ) ∼= π0F (Σ

kX,Sn+k) (2.1)

hold whenever k, n + k ≥ 0. Moreover, hn(X;F ) is naturally isomorphic to

the n-th homology group hn(X;T ) given by the covariant part T of F .

Proof. Since F (X,Y ) is linear with respect to Y , πnF (X, Y ) is an abelian

group for all X, Y and n ≥ 0. Clearly, this abelian group structure is natural

with respect to both X and Y . Moreover, the bilinearity of F implies natural

isomorphisms

πnF (X, Y ) ∼= πn+1F (X,ΣY ), πnF (ΣX,Y ) ∼= πn+1F (X, Y )
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Consequently, there is a natural isomorphism π0F (X,Y ) ∼= π0F (ΣX,ΣY ),

called the suspension isomorphism.

For every pointed space X and every integer n, let us define

hn(X;F ) = colim
k→∞

π0F (S
n+k,ΣkX), hn(X;F ) = colim

k→∞
π0F (Σ

kX,Sn+k)

where the colimits are taken with respect to the suspension isomorphisms.

Clearly (2.1) holds, and we have hn(X;F ) ∼= hn(X;T ) where T is the co-

variant part of F . Thus the functor X 7→ {hn(X;F )} together with the

evident natural isomorphism hn(X;F ) ∼= hn+1(ΣX;F ) defines a generalized

homology theory. Similarly, the covariant functor X 7→ {hn(X;F )} together

with the natural isomorphism hn+1(ΣX;F ) ∼= hn(X;F ) defines a generalized

cohomology theory, since it satisfies the homotopy and exactness axioms.

Proposition 2.6.3. ([SYH]) If X is a CW -complex, we have hn(X,F ) =

Hn(X, S) and hn(X,F ) = Hn(X, S), the generalized homology and cohomol-

ogy groups with coefficients in the spectrum S = {F (S0, Sn) | n ≥ 0}.
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Chapter 3

An enriched bifunctor

representing the Čech

cohomology group

3.1 The Čech cohomology and the Steenrod

homology

We recall that the Čech cohomology group of X with coefficient group G is

defined to be the colimit of the singlular cohomology groups

Ȟ
n
(X,G) = lim−→λ

Hn(X Č
λ , G),

where λ runs through coverings of X and X Č
λ is the Čech nerve corresponding

to λ, i.e., v ∈ X Č
λ is a vertex of X Č

λ corresponding to an open set V ∈ λ. On

the other hand, the Steenrod homology group of a compact metric space X
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is defined as follows. As X is a compact metric space, there is a sequence

{λi}i≥0 of finite open covering of X such that λ0 = {X}, λi is a refinement

of λi−1, and X is the inverse limit lim←−i
X Č

λi
. According to [F], the Steenrod

homology group of X with coefficient in a spectrum S is defined to be the

group

Hst
n (X, S) = πnholim←−−−λi

(X Č
λi
∧ S),

where holim←−−− denotes the homotopy inverse limit. (See also [KKS] for the

definition without using subdivisions.)

3.2 Proof of Theorem 1

Let T be a linear enriched functor. We define a bifunctor F̌ : NGop
0 ×

NGC0 → NG0 as follows. For X ∈ NG0 and Y ∈ NGC0, we put

F̌(X, Y ) = lim−→λ
map0(Xλ, holim←−−−µi

T (Y Č
µi
)),

where λ is an open covering of X and {µi}i≥0 is a set of finite open coverings

of Y such that µ0 = {Y }, µi is a refinement of µi−1, and Y is the inverse

limit lim←−i
Y Č
µi
.

Given based maps f : X → X ′ and g : Y → Y ′, we define a map

F̌(f, g) ∈map0(F̌(X
′, Y ), F̌(X, Y ′))

as follows. Let ν and γ be open coverings of X ′ and Y ′ respectively, and let

f#ν = {f−1(U) | U ∈ ν} and g#γ = {g−1(V ) | V ∈ γ}. Then f#ν and g#γ

are open coverings of X and Y respectively. By the definition of the nerve,
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there are natural maps fν : Xf#ν → X
′
ν and gγ : Y Č

g#γ
→ (Y ′)Čγ . Hence we

have the map

T (gγ)
fν : T (Y Č

g#γ)
X′

ν → T ((Y ′)Čγ )
X

f#ν

induced by fν and gγ. Thus we can define

F̌(f, g) = lim−→ν
holim←−−−γ

T (gγ)
fν : F̌(X ′, Y )→ F̌(X, Y ′).

Theorem 1. The functor F̌ is a bilinear enriched functor.

First we prove that the sequence

F̌(X ∪ CA,Z)→ F̌(X,Z)→ F̌(A,Z)

induced by the sequence A → X → X ∪ CA, is a homotopy fibration se-

quence. Let λ be an open covering of X∪CA, and let λX , λCA and λA be the

coverings of X, CA and A consisting of those U ∈ λ such that U intersects

with X, CA, and A, respectively. We need the following lemma.

Lemma 3.2.1. We have a homotopy equivalence

(X ∪ CA)Čλ ≃ X Č
λX
∪ C(AČ

λA
).

Proof. By the definition of the Čceh nerve, we have (X ∪ CA)Čλ = X Č
λX
∪

(CA)ČλCA
. By the homotopy equivalence

AČ
λA

= AČ
λA
× {0} ≃ AČ

λA
× I,

where I is the unit interval, we have

X Č
λX
∪ (CA)ČλCA

≃ X Č
λX
∪ AČ

λA
× I ∪ (CA)ČλCA

.
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Since (CA)ČλCA
≃ ∗, we have

X Č
λX
∪ AČ

λA
× I ∪ (CA)ČλCA

≃ X Č
λX
∪ C(AČ

λA
).

Hence we have (X ∪ CA)λ ≃ X Č
λX
∪ C(AČ

λA
).

By Proposition 1.3.6 and Lemma 3.2.1, we see that the sequence

AλA
→ XλX

→ (X ∪ CA)λ

is a homotopy cofibration sequence. Hence the sequence

[(X ∪ CA)λ, Z]→ [XλX
, Z]→ [AλA

, Z]

is an exact sequence for any λ. Since the nerves of the form λX (resp. λA)

are cofinal in the set of nerves of X (resp. A), we conclude that the sequence

F̌(X ∪ CA,Z)→ F̌(X,Z)→ F̌(A,Z)

is a homotopy fibration sequence.

Now we show that the sequence F̌(Z,A) → F̌(Z,X) → F̌(Z,X ∪ CA) is

a homotopy fibration sequence. The linearity of T implies that the sequence

T (AČ
λA
)→ T (X Č

λX
)→ T ((X ∪ CA)Čλ )

is a homotopy fibration sequence. Since the fibre T (AČ
λA
) is homeomorphic

to the inverse limit

lim←− (∗ → T ((X ∪ CA)Čλ )← T (X Č
λX

)),

we have

lim←− (∗ → holim←−−−λ
T ((X ∪ CA)Čλ )← holim←−−−λX

T (X Č
λX

))

≃ lim←− holim←−−−λ
(∗ → T ((X ∪ CA)Čλ )← T (X Č

λX
))

≃ holim←−−−λ
lim←−(∗ → T ((X ∪ CA)Čλ ) ← T (X Č

λX
))

≃ holim←−−−λ
T (AČ

λA
).
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This implies that the sequence

holim←−−−λA

T (AČ
λA
)→ holim←−−−λX

T (X Č
λX

)→ holim←−−−λ
T ((X ∪ CA)Čλ )

is a homotopy fibration sequence, and hence so is F̌(Z,A) → F̌(Z,X) →

F̌(Z,X ∪ CA).

Next we prove the continuity of F̌. Let F (X, Y ) = map0(X, holim←−−−µi

T (Y Č
µi
)),

so that we have F̌(X, Y ) = lim−→λ
F (Xλ, Y ). We need the following lemma.

Lemma 3.2.2. The functor F is an enriched bifunctor.

Proof. Let F1(Y ) = holim←−−−µi

T (Y Č
µi
) and F2(X,Z) = map0(X,Z), so that we

have F (X,Y ) = F2(X,F1(Y )). Clearly F2 is continuous.

LetG1 be the functor which maps Y to holim←−−−µi

Y Č
µi
. Since T is enriched, F1

is continuous if so is G1. It suffices to show that the map G′
1 : map0(Y, Y

′)×

holim←−−−µi

Y Č
µi
→ holim←−−−λj

(Y ′)Čλj
, adjoint to G1, is continuous for any Y and Y ′.

Given an open covering λ of Y
′
, let pnλ be the natural map holim←−−−λ

(Y ′)Čλ →

map0(∆
n, (Y ′)Čλ ). Then G

′
1 is continuous if so is the composite

pnλ ◦G′
1 : map0(Y, Y

′)× holim←−−−µi

Y Č
µi
→map0(∆

n, (Y ′)Čλ )

for every λ ∈ Cov(Y ′) and every n. Here we may assume by [SYH, Propo-

sition 4.3] that map0(∆
n, (Y ′)Čλ ) is equipped with compact-open topology.

Let (g, α) ∈map0(Y, Y
′)× holim←−−−µi

Y Č
µi
, and let WK,U ⊂map0(∆

n, (Y ′)Čλ ) be

an open neighborhood of pnλ(G
′
1(g, α)), where K is a compact set of ∆n and

U is an open set of (Y ′)Čλ .

Let us choose simplices σ of Y Č
g♯λ

with vertices g−1(U(σ, k)), where U(σ, k) ∈

λ for 0 ≤ k ≤ dimσ. Let

O(σ) =
∩

0≤k≤dimσ U(σ, k) ⊂ Y ′.
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Let us choose a point yσ ∈
∩

0≤k≤dimσ g
−1(U(σ, k)), and then g(yσ) ∈ O(σ).

Let W1 be the intersection of all Wyσ ,O(σ).

There is an integer l such that

µl > µl > g#λ

where µl is the closed covering {V |V ∈ µl} of Y . Thus for any U ∈ µl, there

is an open set VU ∈ g#λ such that U ⊂ g−1(VU). Since Y is a compact set,

U is compact. Let W2 be the intersection of WU,VU
, and let W = W1 ∩W2.

Since µl > g#λ, we have

pnλ(G
′
1(g, α)) = (gλ)∗(π

µl

g#λ
)∗p

n
µl
α.

where (gλ)∗ and (πµl

g#λ
)∗ are induced by gλ : Y Č

g#λ
→ (Y ′)Čλ and πµl

g#λ
: Y Č

µl
→

Y Č
g#λ

, respectively. Let

W ′ = (pnµl
)−1(WK,(π

µl
g#λ

)−1(gλ)−1(U)).

Then W ×W ′ is a neighborhood of (g, α) in map0(Y, Y
′)× holim←−−−µi

Yµi
. To

see that pλ ◦ G′
1 is continuous at (g, α), we need only show that W ×W ′ is

contained in (pλ ◦G′
1)

−1(U). Suppose that (h, β) belongs to W ×W ′. Since

W is contained in W1, we have

yσ ∈ h−1(O(σ)) ⊂
∩

0≤k≤dimσ h
−1(U(σ, k)).

This means that the vertices h−1(U(σ, k)) ∈ h♯λ, 0 ≤ k ≤ dim σ, deter-

mine simplices σ′ of Yh♯λ corresponding to each σ ⊂ Yg♯λ. Thus we have an

isomorphism

s : Y Č
h♯λ → Y Č

g♯λ, h
−1(U(σ, k)) 7→ g−1(U(σ, k)).
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Moreover since W is contained in W2, we have µl > h#λ.

Since the diagram

Y Č
µl

//

  A
AA

AA
AA

A
Y Č
g#λ

gλ // (Y ′)Čλ

Y Č
h#λ

hλ

<<yyyyyyyy
s

OO

is commutative, we have

pnλ ◦G′
1(h, β)(K) = hλπ

µl

h#λ
(β)(K) = gλπ

µl

g#λ
(β)(K).

Since gλπ
µl

g#λ
(β)(K) is continued in U , so is pnλ ◦G′

1(h, β)(K).

Thus pnλ ◦G′
1 is continuous for all λ ∈ Cov(Y ′), and hence so is

G′
1 : map0(Y, Y

′)× holim←−−−µi

Y Č
µi
→ holim←−−−λj

(Y ′)Čλj
.

We are now ready to prove Theorem 1. For given pointed spacesX, Y and

a covering µ of X, let iµ denote the natural map F (Xµ, Y )→ lim−→µ
F (Xµ, Y ).

To prove the theorem, it suffices to show that the map

F̌
′ ◦ (1× iλ) : map0(X,X

′)× F (X ′
λ, Y ) → map0(X,X

′)× lim−→λ
F (X ′

λ, Y )

→ lim−→µ
F (Xµ, Y )

which maps (f, α) to if♯λ(F (fλ, 1Y )(α)), is continuous for every covering λ

of X.

LetRλ : map0(X,X
′)→ lim−→µ

map0(Xµ, X
′
λ) be the map which assigns to

f : X → X ′ the image ofmap0(X,X
′), fλ ∈map0(Xf♯λ, X

′
λ) in lim−→µ

map0(Xµ, X
′
λ),

and let Qλ be the map

lim−→µ
map0(Xµ, X

′
λ)× F (X ′

λ, Y )→ lim−→µ
F (Xµ, Y ),
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[f, α] 7→ if♯λfλ ◦ α = if♯λ(F (fλ, 1Y )(α)).

Since we have F̌
′ ◦ (1× iλ) = Qλ ◦ (Rλ×1), we need only show the continuity

of Qλ and Rλ. Since Qλ is induced by the mapsmap0(Xµ, X
′
λ)×F (X ′

λ, Y )→

F (Xµ, Y ), we see Qλ is continuous.

To see that Rλ is continuous, let WKf ,U be a neighborhood of fλ in

map0(Xf♯λ, X
′
λ), whereK

f is a compact subset ofXf♯λ and U is an open sub-

set of X ′
λ. Since K

f is compact, there is a finite subcomplex Sf of Xf♯λ such

that Kf ⊂ Sf . Let τ fi , 0 ≤ i ≤ m, be simplexes of Sf . By taking a suitable

subdivision of Xf♯λ, we may assume that there is a simplicial neighborhood

Nτfi
of each τ fi , 1 ≤ i ≤ m, such that Kf ⊂ Sf ⊂ ∪iNτfi

⊂ f−1
λ (U).

Let {xik} be the set of vertices of τ fi and let W be the intersection of

all W{xi
k},U(τ

f
i
)′
,where U(τfi )

′ is an open set of X ′
λ containing the set {f(xik)}.

ThenW is a neighborhood of f . We need only show thatRλ(W ) ⊂ if#λ(WKf ,U).

Suppose that g belongs toW . Since {xik} is contained in g−1(U(τfi )
′) for any i,

a simplex τ gi spanned by the vertices is contained in Xg♯λ. Let S
g be the finite

subcomplex of Xg♯λ consisting of simplexes τ gi . By the construction, Sf and

Sg are isomorphic. Moreover there is a compact subset Kg of Xg♯λ such that

Kg and Kf are homeomorphic. On the other hand, since g({xik}) ⊂ U(τfi )
′ ,

there is a simplex of X ′
λ having gλ(τ

g
i ) and (τ fi )

′ as its faces. This means that

gλ(τ
g
i ) ⊂ fλ(∪iNτfi

). Thus we have gλ(K
g) = ∪igλ(τ

g
i ) ⊂ fλ(∪iNτfi

).

Let f ♯λ ∩ g♯λ be an open covering

{f−1(U) ∩ g−1(V ) | U, V ∈ λ}

ofX. We regardXf♯λ andXg♯λ as a subcomplex ofXf♯λ∩g♯λ. Since gλ|Xf♯λ∩g♯λ

is contiguous to fλ|Xf♯λ∩g♯λ, we have a homotopy equivalence gλ|Xf♯λ∩g♯λ ≃
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fλ|Xf♯λ∩g♯λ. By the homotopy extension property of gλ|Xf♯λ∩g♯λ : Xf♯λ∩g♯λ →

X ′
λ and fλ : Xf♯λ → X ′

λ, we see that gλ|Xf♯λ∩g♯λ extends to a map G : Xf♯λ →

X ′
λ.

We have the relation G ∼ πf♯λ∩g♯λ
f♯λ

G = gλ|Xf♯λ∩g♯λ = πf♯λ∩g♯λ
g♯λ

gλ ∼

gλ, where ∼ is the relation of the direct limit. Moreover by G(Kf ) ⊂

fλ(∪iNτfi
) ⊂ U , we have [gλ] = [G] ∈ if#λ(WKf ,U). Hence Rλ is contin-

uous, and so is F̌
′
.

3.3 Proofs of Theorems 2 and 3

To prove Theorems 2 and 3, we need several lemmas.

Lemma 3.3.1. There exists a sequence λn1 < λn2 < · · · < λnm < · · · of open

coverings of Sn such that:

1. For each open covering µ of Sn, there is an m ∈ N such that λnm is

a refinement of µ:

2. For any m, Sn
λm

is homotopy equivalent to Sn.

Proof. We prove by induction on n. For n = 1, we define an open covering

λ1m of S1 as follows. For any i with 0 ≤ i < 4m, we put

U(i,m) = {(cos θ, sin θ) | i− 1

4m
×2π+ 1

16m
×2π < θ <

i+ 1

4m
×2π+ 1

16m
×2π}.

Let λ1m = {U(i,m)| 0 ≤ i < 4m}. Then the set λ1m is an open covering of

S1 and is a refinement of λ1m−1. Clearly (S1)Čλ1
m
is homeomorphic to S1, and

hence S1
λ1
m
is homotopy equivalent to S1. Moreover for any open covering µ of
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S1, there exists an m such that λ1m is a refinement of µ. Hence the lemma is

true for n = 1. Assume now that the lemma is true for 1 ≤ k ≤ n−1. Let λ′nm
be the open covering λn−1

m ×λ1m of Sn−1×S1 and let λnm be the open covering

of Sn induced by the natural map p : Sn−1×S1 → Sn−1×S1/Sn−1∨S1. Since

Sn−1

λn−1
m

is a homotopy equivalence of Sn−1, we have a homotopy equivalence

Sn
λn
m
≈ (Sn−1 × S1/Sn−1 ∨ S1)λn

m
≈ (Sn−1

λn−1
m
× S1

λm
)/(Sn−1

λn−1
m
∨ S1

λm
) ≈ Sn.

Thus the sequence λn1 < λn2 < · · · < λnm < · · · satisfies the required condi-

tions.

Lemma 3.3.2. hn(X, F̌) ∼= πn holim←−−−µ
T (X Č

µ ) for n ≥ 0.

Proof. By Lemma 3.3.1, we have an isomorphism

lim−→λ
[Sn

λ , holim←−−−µ
T (X Č

µ )]
∼= [Sn, holim←−−−µ

T (X Č
µ )].

Thus we have

hn(X, F̌) = π0 F̌(S
n, X)

= π0lim−→λ
map0(S

n
λ , holim←−−−µ

T (X Č
µ ))

∼= lim−→λ
[S0,map0(S

n
λ , holim←−−−µ

T (X Č
µ )]

∼= lim−→λ
[Sn

λ , holim←−−−µ
T (X Č

µ )]

∼= [Sn, holim←−−−µ
T (X Č

µ )]

∼= πn holim←−−−µ
T (X Č

µ ).

Now we are ready to prove Theorem 2. Let X be a compact metric space

and let S = {T (Sk) | k ≥ 0}. Since X is a compact metric space, there is

74



a sequence {µi}i≥0 of finite open covering of X with µ0 = X and µi refining

µi−1 such that X = lim←−i
X Č

µi
holds. Let us denote X Č

µi
= X Č

i and Xµi
= Xi if

there is no possibility of confusion. According to [F], there is a short exact

sequence

0 // lim←−
1

i
Hn+1(X

Č
i ,S) // Hst

n (X, S) // lim←−i
Hn(X

Č
i , S) // 0

where Hn(X, S) is the homology group of X with coefficients in the spectrum

S. (This is a special case of the Milnor exact sequence [Mi].) On the other

hand, by [BK], we have the following.

Lemma 3.3.3. ([BK]) There is a natural short exact sequence

0 // lim←−
1

i
πn+1T (X

Č
i ) // πn holim←−−−i

T (Xi) // lim←−i
πnT (X

Č
i ) // 0.

By Proposition 2.6.3, we have a diagram

0 // lim←−
1

i
Hn+1(X

Č
i , S)

∼=
��

// Hst
n (X, S) // lim←−i

Hn(X
Č
i , S) //

∼=
��

0

0 // lim←−
1

i
πn+1(T (X

Č
i ))

// πn(holim←−−−i
T (XČ

i ))
// lim←−i

πn(T (X
Č
i ))

// 0.

(3.1)

Hence it suffices to construct a natural homomorphism

Hst
n (X, S)→ πn(holim←−−−i

T (X Č
i ))

making the diagram (3.1) commutative.

Since T is continuous, the identity map X ∧ Sk → X ∧ Sk induces a

continuous map i′ : X ∧ T (Sk) → T (X ∧ Sk). Hence we have a composite
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homomorphism

Hst
n (X, S) = πnholim←−−−i(X

Č
i ∧ S)

∼= lim−→k
πn+k(holim←−−−i

(X Č
i ∧ T (Sk))

I−→ lim−→k
πn+k(holim←−−−i

T (X Č
i ∧ Sk))

∼= πn(holim←−−−i
T (X Č

i ))

where I = lim−→k
i′k∗ is induced by the homomorphisms

i′
k
∗ : πn+k(holim←−−−i

(X Č
i ∧ T (Sk))→ πn+k(holim←−−−i

T (X Č
i ∧ Sk)).

Clearly the resulting homomorphism Hst
n (X, S) → πn(holim←−−−i

T (X Č
i )) makes

the diagram (3.1) commutative. Thus hn(X, F̌) is isomorphic to the Steenrod

homology group coefficient in the spectrum S.

Finally, to prove Theorem 3 it suffices to show that hn(X, Č) is isomorphic

to the Čech cohomology group of X.

By Lemma 3.3.1, we have a homotopy commutative diagram

· · · = // AG(Sn) = //

≃
��

AG(Sn) = //

≃
��

· · ·

· · · // AG(Sn
λn
m−1

) ≃ // AG(Sn
λn
m
) // · · · .

Hence we have AG(Sn) ≃ holim←−−−i
AG(Sn

λn
i
).

Thus we have

hn(X, Č) = π0Č(X,S
n)

= π0lim−→λ
map0(Xλ, holim←−−−µ

AG((Sn)Čµ ))

∼= [S0, lim−→λ
map0(Xλ, AG(S

n)]

∼= lim−→λ
[S0,map0(Xλ, AG(S

n)]

∼= lim−→λ
[S0 ∧Xλ, AG(S

n)]

∼= lim−→λ
[Xλ, AG(S

n)].
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Hence hn(X, Č) is isomorphic to the Čech cohomology group of X.
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