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Abstract

At the model selection the effective method requires much cost of time.

The analysis of bivariateB-spline model with penalized term has many

difficulties. It has many factors and parameters such that the number

of the knots, the locations of those knots, number of B-spline functions

and the value of the smoothing parameter of the penalized term. For

the determination of the model we have to compare a large amount

of the combinations of those parameters. Various information criteria

are considered and the cross validation (CV) criterion is excellent but

it requires a large amount of computational costs.

Various alternative schemes are considered to reduce its compu-

tation. Modified generalized information criterion (mGIC) is one of

those alternative schemes. In this criterion an influence function is

used to estimate the parameters of the models. The influence function

is related to the first term of a Taylor expansion. By the numerical

simulation we studied the effect of an influence function. But this

information criterion could not determine the optimal model.

A new method generalized cross validation with influence function

(GCVIF )is proposed. For the verification of GCVIF theoretical proof

and the computational results are shown.

We have to decide the value of the optimal smoother parameter

which minimize the value of the evaluation function. Among the mod-

els which have suitable parameters respectively we have to choose the

best model by using the information criteria such as CV or general-

ized CV with influence function (GCVIF ). However the method of



GCVIF is not practical necessarily, because it requires the calculation

of the inverse matrix of hat matrix and the influence function. Those

calculations take a large cost of time when n increases. The efficient

scheme which will take small amount of time is required.

On the other hand the parameters which we have to decide are the

coefficients of the spline functions and the total number of knots and

those positions and the smoother parameter of penalized term. The

range of the total number of knots is decided by the total number of

sample points. The range of the positions of the knots are decided by

the area of the surface. But the estimation of the range of the value

of the smoother parameter is difficult. So we have to estimate it quite

roughly. We propose an effective method to estimate the range of the

smoother parameter and consequently we can obtain more accurate

value of its parameter. We can reduce the calculation time which does

not contribute the selection of the optimal model. We can decide more

accurate smoother parameter by a small amount of time.

The application of B-spline surface to the estimation of lake bottom

topography is described. Using the analysis of bivariate B-spline the

shape of the lake bottom is approximated. According to the validity

of the estimation by bivariate B-spline function the method is applied

to the actual data of the lake depth. A survey over the water area has

more difficulties than that on the land, and the measurement data are

distributed quite irregularly. The locations of the measured data don’t

exist regularly over the lake. Those locations were distributed along

with the wake of the boat on which the sample data were collected.

The density of the data is quite high in some small region and quite

low in another wide region. Based on such irregular data we tried
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the statistical estimation. The regularized term with a penalty coef-

ficient make the proper approximation of the parameters of B-spline

functions. There are many factors such that the number of the knots,

the locations of those knots, the number of B-spline functions and the

coefficient of penalized term. Appropriate information criterion which

has sufficient accuracy and small amount of computation is applied to

the determination of the optimal model.
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Chapter 1

Introduction
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Both parametric statistics and nonparametric statistics, in the es-

tablishment of the relationship between the response variables and the

covariate variables, there is the problem of model selection, it is an

important part for statistical modeling. One main purpose of model

selection is to choose the true distribution.

In this thesis, the refined cross-validation value GCVIF for the

model selection is proposed, for the approximation of experimental

data, spline function is smooth and useful because of its less oscil-

lation. Its dominance becomes larger according to the appropriate

locations of knots. In this thesis the approximation of the two di-

mensional surface by bivariate B-splines is described. It has some

additional difficulties than univariate spline function.

Determination of smooth coefficients of B-splines, we use the maxi-

mum penalized likelihood estimator (MPLE; Good and Gaskins 1971;

Green and Silverman 1994). Among some methods for the penalized

term we choose the method of integration as the most favorable one.

An AIC-type criterion which is the approximation of Kullback-

Leibler divergence for the MPLE is a generalized information criterion

(GIC[16]) which forms the empirical log-likelihood with the correction

term for the bias, derived analytically with the influence function. The

GIC can evaluate the models not only with MPLE but also with a ro-

bust estimator, maximum weighted likelihood estimator, etc. Cross-

validation (CV [25] ) is applicable to choose the value of an optimal

parameter in the maximum penalized likelihood method. The CV

requires less analytic calculations than the GIC, although the compu-

tational cost for the CV is much higher than the GIC.

To overcome computational costs, the mGIC [28] is considered
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which utilize influence function. The first order influence function

is useful for its small costs of time. On the other hand the second

order influence function has too much costs of time compared with

its small profits. But mGIC is not sufficient to determine the optimal

parameters. For more accuracy we use the generalized CV (GCV[17])

and we proposed GCVIF , which is an improved GCV with the influ-

ence function. It is better for the model selection than CV, AIC, GIC

and mGIC. GCVIF is the criterion that includes the residual sum of

squares, the number of sample and the number of parameters in the

model. It is more stable and distinguishable than CV, GIC and mGIC.

The computational result shows the excellence of our improved scheme

GCVIF .

The smoothing spline surfaces are often used to estimate a three-

dimens-ional shape of the surface. When we use the regularization

method with the penalized term the smoothing parameter is most

important. Too large parameter gives a too flat surface and too small

one causes overfitting and gives a surface without fluency. The value

of the appropriate parameter varies according to the shape of the

surface to be estimated. We have to search the appropriate range of

the value of the smoothing parameter. When we have decided the set

of the parameter and coefficients we evaluate them by the information

criterion. But it will take a long time to calculate, when we have

chosen CV. For the many sets of knots and many values of parameters

we have to calculate the values of CV. However most of them don’t

contribute to the determination of the optimal model. We introduce

a scheme which use as small sets as possible. Moreover we can obtain

more accurate value of the smoother parameter.

3



At first we start with small sets of knots and a set of rough values of

the parameters. After calculating the values of CV for them we obtain

a value of the smoother parameter by using spline interpolation. This

value is only estimated by interpolation, so it is not accurate neces-

sarily. Based on this parameter we estimate the values of CV for the

many sets of knots. The model which has the smallest value of CV is

the optimal set of knots. We can obtain the same optimal set of knots

from various estimated values of the smoother parameter. It is verified

by the numerical calculation. Finally we determine the optimal value

of the smoother parameter for the optimal set of knots. In this study

we approximate the topography of the lake bottom with our statistical

method. The lake is Kojima Lake which is located Okayama prefec-

ture in Japan. Kojima lake is separated by the bank from Kojima

bay and turned into a freshwater lake. The water quality of the closed

water area like this lake tends to worsen because of the sedimenta-

tion or the pollutant from the upper stream. For the improvement of

the water quality the dredging is tried and that requires the detailed

depth data of the lake. Compared with land, the detailed survey of

the lake depth is difficult and we applied statistic method. Based on

the data measured from September 2010 to January 2011, we made

the estimation by using B-splines. To make optimal model selection,

various information criteria are devised. When there is a large num-

ber of models, CV is difficult to use for its computational cost. The

GCVIF is adopted because we can obtain the almost same information

as CV and it has a small amount of computational cost. Furthermore,

in order to high accuracy, the technique of using the influence function

which we have proposed recently [2] is applied. We are able to obtain

4



by this method the optimal model which can approximate the smooth

topography of the lake bottom. At first we applied CV and GCVIF

for the estimation of the selected two subdomains of the lake. After

the evaluation of the methods we approximate the topography of the

whole domain by GCVIF and selected values of β.

5



Chapter 2

Statistical Models
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2.1 Modeling

A statistical model is a formalization of relationships between variables

in the form of mathematical equations. A statistical model describes

how one or more random variables are related to one or more other

variables. The model is statistical as the variables are not determinis-

tically but stochastically related. In mathematical terms, a statistical

model is frequently thought of as a pair where is the set of possible

observations and the set of possible probability distributions on. It is

assumed that there is a distinct element of which generates the ob-

served data. Statistical inference enables us to make statements about

which element(s) of this set are likely to be the true one.

If we assume that the observations x = {x1, x2, . . . , xn} are gener-

ated from the distribution function G(x), then G(x) is referred to as

the true distribution, or the true model. On the other hand, the dis-

tribution function F (x) used to approximate the true distribution is

referred to as a model and is assumed to have either a density function

or a probability function f(x). If a model is specified by p-dimension

parameters θ, then the model can be written as f(x|θ). If the parame-

ters are represented as a point in the set Θ ⊂ Rp, then {f(x|θ);θ ∈ Θ}
is called a parametric family of probability distributions or models.

An estimated model f(x|θ̂) obtained by replacing an unknown pa-

rameter θ with an estimator θ̂ is referred to as a statistical model. The

process of constructing a model that appropriately represents some

phenomenon is referred to as modeling. Hoverer, setting up an appro-

priate family of probability models prior to estimating the parameters

is of greater importance.
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2.2 Regression Models

The regression model is used to model the relationship between a re-

sponse variable y and several explanatory variables x = {x1, x2, . . . , xp}T .
This is equivalent to assuming that the probability distribution of the

response variable y varies depending on the explanatory varibales x

and that a conditional distribution is given in the form of f(y|x).
Let {(yα,xα);α = 1, 2, . . . , n} be n sets of data obtained in terms

of the response variable y and p explanatory variables x. Then the

model

yα = u(xα) + εα, α = 1, 2, . . . , n, (2.1)

of the observed data is called a regression model, where u(x) is a

function of the explanatory variables x, and the error terms or noise

εα are assumed to be independently distributed with mean E[εα] = 0

and variance V (εα) = σ2. We often assume that the noise εα follows

the normal distribution N(0, σ2). In such a case, yα has the normal

distribution N(u(xα), σ
2) with mean u(xα) and variance σ2, and its

density function is given by

f(yα|xα) =
1√
2πσ2

exp

{
−(yα − u(xα))

2

2σ2

}
, α = 1, 2, . . . , n,

(2.2)

The following models are used as regression functions that ap-

proximate the mean structure: (1) linear regression, (ii) polynomial

regression, (iii) natural cubic splines given by piecewise polynomi-

als Green and Silverman(1994, p.12)], (iv) B-splines[de Boor (1978),

Imoto(2001), Imoto and Konishi(2003)], (v) kernel functions [Simonoff

(1996)], adn (vi) neural networksBishop(1995), Ripley(1996)].
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Chapter 3

Generalized CV with Influence

Function
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3.1 Influence Function

The general definition of the influence function is as follows. Its suit-

ably normed limiting influence on the value of an estimate or test

statistic T (Ĝ) can be expressed as

T (1)(x,G) = lim
ε→0

T ((1− ε)G+ εδx)− T (G)

ε
, (3.1)

where δx denotes the pointmass 1 at x. The above quantity, considered

as a function of x, was introduced [12],[13] under the name influence

function (T (1)), and is arguably the most useful heuristic tool of robust

statistics. If T is sufficiently regular, it can be linearized near G in

terms of the influence function: if H is near G , then the leading terms

of a Taylor expansion are

T (H) = T (G) +

∫
T (1)(x,G)[dH(x)− dG(x)] + · · · , (3.2)

We have ∫
T (1)(x,G)dG(x) = 0, (3.3)

and, if we substitute the empirical distribution Ĝ, for H in the equa-

tion (3.2), we obtain

√
n(T (Ĝ)− T (G)) =

√
n

∫
T (1)(x,G)dĜ(x) + · · ·

=
1√
n

∑
T (1)(xi, G) + · · · . (3.4)

By the central limit theorem, the leading term on the right-hand side

is asymptotically normal with mean 0, if the xi are independent with

common distribution G. The remaining terms are asymptotically neg-

ligible and
√
n[T (Ĝ) − T (G)] is asymptotically normal with mean 0
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and variance

A(G, T ) =

∫
T (1)(x,G)2dG(x). (3.5)

About distributions G,H, when we let

h(ε) = T ((1− ε)G+ εH), 0 ≤ ε ≤ 1, (3.6)

The ith order derivative of functional T (·) at (z1, z2, · · · , zi, G) as the
symmetric function T (i)(z1, z2, · · · , zi, G) will be defined to satisfy the

following equation with respect to any distribution functionH [31],[33]

h(i)(0) =

∫
· · ·
∫
T (i)(z1, z2, · · · , zi, G)

i∏
j=1

d{H(zj)−G(zj)}. (3.7)

To guarantee the uniqueness of the derivatives the next condition is

imposed ∫
T (i)(z1, z2, · · · , zi, G)dG(zk) = 0, 1 ≤ k ≤ i. (3.8)

Then d{H(zj) − G(zj)} in the equation (3.7) can be replaced with

dH(zj).

The Taylor series of h(ε) around ε = 0 is

h(ε) = h(0) + εh′(0) +
1

2
ε2h′′(0) + · · · . (3.9)

If we set ε = 1 in the equation(3.9) formally then h(0) = T (G),

h(1) = T (H),

T (H) = T (G) +

∫
T (1)(z1;G))dG(z1)

+
1

2

∫∫
T (2)(z1, z2;G))dG(z1)dG(z2) + · · · .(3.10)
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3.2 Improved Generalized CV Criterion GCVIF

The Kullbak-Leibler divergence KL measures the distance between

the true probability density function p(x) and estimated probability

density function q(x) as follows

KL(p; q) =

∫
p(x) log

p(x)

q(x)
dx

=

∫
p(x) log p(x)dx−

∫
p(x) log q(x)dx. (3.11)

This divergence is nonnegative and is equal to zero if and only if

p(x) = q(x). But this value includes the unknown function p(x) we

can only estimate its value from the observed samples. The first term∫
p(x) log p(x)dx is constant and we only have to estimate the sencond

term −
∫
p(x) log q(x)dx. The negative log-likelyhood is an approxi-

mation of KL divergence and it is asymptoticaly equivalent to KL

divergence according to the law of large numbers as follows

−1

n

n∑
α=1

log q(xα) → −
∫
p(x) log q(x)dx. (3.12)

The property of the leave-one-out cross-validation (LOOCV) is as

foloows

E[LOOCV] = E[−
∫
p(x) log q(−α)(x)dx] (3.13)

where q(−α)(x) is the probablity density function of the distribution

without the α-th data point.

We considered an information criterion GCVIF which is a general-

ized cross-validation with the influence function. From n observations

the α-th data point (zα,xα) is removed and the parameter vector

12



θ = (w′, σ2)′ is estimated based on the remaining n− 1 observations.

We denote the parameter as θ̂(−α) = (ŵ(−α)′, σ̂2(−α))′. The correspond-

ing estimated regression function is denoted as û(−α)(x). We use the

log-likelihood for Cross-Validation(ICCV ) as

ICCV = −2
n∑

α=1

log(f(xα,θ
(−α)))

=
n∑

α=1

{
log(2πσ̂2(−α)) +

(zα − û(−α))2

σ̂2(−α)

}
. (3.14)

This is asymptotically equivalent to AIC (Akaike Information criterion)-

type criteria such as AIC or BIC (Bayesian Information criterion) and

so on [1][24][34]. Minimizing the equation(3.14) is the method of se-

lecting optimal model. Various alternative schemes are considered for

the reduction of its computational costs.

And another scheme is called generalized CV (GCV)[17] which esti-

mate the value of u(−α)(xα) directly as follows

zα − û(−α)(xα) =
zα − û(xα)

1− hαα
, (3.15)

where the hαα is the (α, α)th component of the smoother matrix H.

The matrix H transforms observed data z to predicted values ẑ where

H does not depend on the data z, and it is referred to as a hat matrix or

is called as smoother matrix. Then in cross-validation, the estimation

process performed n times by removing observations one by one is not

needed, and thus the amount of computation required can be reduced

substantially. Then the generalized cross validation with influence

function GCVIF is calculated by

GCVIF =
n∑

α=1

{
log(2πσ̂2(−α)) +

[
zα − û(xα)

σ̂(−α)(1− 1
ntrH)

]2}
, (3.16)
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where hαα is replaced with 1
ntrH which is the average of it and tr(H)

is called the effective number of parameters. The estimation σ̂2(−α) is

approximated by the influence function T (1)(zα; Ĝ) as follows [17]

θ̂(−α) ≈ θ̂ − 1

n
T (1)(zα; Ĝ). (3.17)

3.3 Method of Regularization

For the nonlinear statistical modeling the maximum penalized like-

lihood methods are often used [9],[10],[11]. Suppose that we have

n observations {(zα,xα); α = 1, · · · , n}, where zα are the response

variables generated from unknown true distribution G(z|x) having a

probability density g(z|x) and xα are the vectors of explanatory vari-

ables. We estimate w which is a vector consisting of the unknown

parameters and determines the model z = u(x|w). Let f(zα|xα;θ)

be a specified parametric model, where θ is a vector of unknown pa-

rameters included in the model. The regression model with Gaussian

noise is denoted as

zα = u(xα|w) + εα, εα ∼ N(0, σ2), α = 1, · · · , n (3.18)

f(zα|xα;θ) =
1√
2πσ2

exp

[
−{zα − u(xα;w)}2

2σ2

]
, (3.19)

where θ = (w′, σ2)′. The parameter will be determined by the maxi-

mization of the penalized log-likelihood function expressed as

ℓλ(θ) =
n∑

α=1

log f(zα|xα;θ)−
n

2
λH(w). (3.20)

As the regularized term or penalized termsH(w) with anm-dimensional

parameter vector w, various types are used depending on the dimen-

14



sion of explanatory variables or the purpose of the analysis. For ex-

ample, the discrete approximation of the integration of a second-order

derivative, finite differences of the unknown parameters and sum of

squares of wi are used and those areH1(w) = 1
n

∑n
α=1

∑d
i=1

{
∂2u(xα|w)

∂x2
i

}2

, H2(w) =
∑m

i=k+1(∆
kwi)

2 and H3(w) =
∑m

i=1w
2
i . For the three di-

mensional approximation we use [30]

H(w) =

∫∫ {(
∂2u

∂x2

)2

+

(
∂2u

∂y2

)2
}
dxdy, (3.21)

and it is represented in the quadratic form

H(w) = w′Kw. (3.22)

Therefore the equation(3.20) will be

ℓλ(θ) = −n
2
log(2πσ2)− 1

2σ2
(z −Bw)′(z −Bw)− n

2
λw′Kw,(3.23)

where z = (z1, · · · , zn)′, u(xα|w) = w′b(xα) and B is an n×m matrix

composed of the basis functions as

B = (b(x1)
′, · · · , b(xn)

′)′. (3.24)

Differentiating ℓλ(θ) with respect to θ and setting the result equal

to zero and we obtain the solution of them. Then the estimation of

parameters are

ŵ = (B′B + nλσ̂2K)−1B′z,

σ̂2 =
1

n
(z −Bŵ)′(z −Bŵ). (3.25)

At first we set the constant value of β = λσ̂2 and determine ŵ for a

given value of β. After we obtain the variance estimator σ̂2 then we

can obtain the smoothing parameter λ = β/σ̂2.
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3.3.1 B-Splines

We consist B-spline function Mm,i(x) of required degree r − 1 (order

r) by the algorithm of de Boor-Cox[6],[7],[8]. This calculation can be

started by the first step

M1,j(x) =

{
(ξj − ξj−1)

−1 (ξj−1 ≤ x < ξj)

0 (otherwise)
, (3.26)

and the successive recurrence formula is below

Mr,j(x) =
(x− ξj−r)Mr−1,j−1(x) + (ξj − x)Mr−1,j(x)

ξj − ξj−r
, (3.27)

where {ξk}, k = 1−r, · · · , n+r are the knots and n is the total number

of intervals for the approximation. The univariate spline functions are

shown in Figure 3.3.1, where ξ−3= ξ−2= ξ−1= ξ0= 0, ξ1=1, ξ2=2, ξ3=

3, ξ4= ξ5= ξ6= ξ7=4. For the adequate approximation the selection of

the knots is quite important. The division by equal intervals cannot

provide the best approximation always.

We set the approximation for the three dimensional surface as

u(x, y) =

p1∑
i=1

p2∑
j=1

wijMi(x)Nj(y), (3.28)

where p1, p2 is the total number of basis B-splines {Mi(x)}, {Nj(y)}
respectively. And these functions have the support [ξi−r, ξi), [ηj−r, ηj)

for x, y direction respectively. The shape of the three dimensional B-

splines are shown in Figure 3.2. The left figure shows a one function

with ξi = (i− 1)× 10, ηi = (i− 1)× 10, i = 1, 2, · · · , 5. The right fig-

ure shows four functions with p1 = p2 = 2, ξi = (i − 1) × 10, ηi =

16



Figure 3.1: Spline functions (order four)

(i − 1) × 10, i = 1, 2, · · · , 6. We have to satisfy the Schoenberg-

Whitney condition[23]. Because if there is no sample point in the

domain {(x, y)| ξi−r ≤ x < ξi, ηj−r ≤ y < ηj}, then we cannot deter-

mine the parameter wij.

In the equation of integration (3.21)(
∂2u

∂x2

)2

=

(
p1∑
i=1

p2∑
j=1

wij
d2Mi(x)

dx2
Nj(y)

)2

, (3.29)

(
∂2u

∂y2

)2

=

(
p1∑
i=1

p2∑
j=1

wijMi(x)
d2Nj(y)

dy2

)2

. (3.30)

We set wij = w̃k, i = ik, j = jk, p1p2 = m,
d2Mi(x)

dx2
Nj(y) = B̃1,k,

Mi(x)
d2Nj(y)

dy2
= B̃2,k.
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Figure 3.2: Three dimensional spline functions (order four)
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Then the equation(3.29) (3.30) can be rewritten as(
∂2u

∂x2

)2

=

(
m∑
k=1

w̃kB̃1,k

)2

, (3.31)

(
∂2u

∂y2

)2

=

(
m∑
k=1

w̃kB̃2,k

)2

. (3.32)

And the integration becomes below∫∫
B̃1,pB̃1,qdxdy =∫
d2Mip(x)

dx2
d2Miq(x)

dx2
dx

∫
Njp(y)Njq(y)dy, (3.33)

∫∫
B̃2,pB̃2,qdxdy =∫

Mip(x)Miq(x)dx

∫
d2Njp(y)

dy2
d2Njq(y)

dy2
dy. (3.34)

The sum of equation(3.33) and (3.34) will be Kpq which is the com-

ponent of m × m nonnegative matrix K that is represented in the

equation (3.22). Therefore when we set bij(xα, yα) = Mi(xα)Nj(yα),

the equation(3.20) will be

ℓλ(θ) = −n
2
log(2πσ2)− 1

2σ2

n∑
α=1

{zα −w′b(xα, yα)}2 −
n

2
λw′Kw

= −n
2
log(2πσ2)− 1

2σ2
(z −Bw)′(z −Bw)− n

2
λw′Kw,

(3.35)
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3.3.2 The Empirical Influence Function

When we differentiate this equation with respect to ε, and set ε = 0

then ∫
ψ(z,T (G))d{δx(z)−G(z)}

+

∫
∂ψ(z,θ)

∂θ

∣∣∣∣
θ=T (G)

dG · ∂
∂ε

{T (Hε)}
∣∣∣∣
ε=0

= 0, (3.36)

where,Hε(z) = (1 − ε)G(z) + εδx(z). Therefore the vector of the

influence function is given by

∂

∂ε
{T (Hε)}

∣∣∣∣
ε=0

≡ T (1)(x; Ĝ). (3.37)

Here when we set

R(ψ, Ĝ) = −
∫

∂ψ(z,θ)′

∂θ
dG

∣∣∣∣
θ=T (Ĝ)

, (3.38)

then

T (1)(z, Ĝ) = R(ψ, G)−1ψ(z,T (Ĝ)). (3.39)

3.3.3 Higher Order Empirical Influence Function

We can denote equations(3.25) as follows

n∑
α=1

ψi(xα;θ) = 0 (i = 1, 2, · · · , p), p = p1p2 + 1, (3.40)

where θ = (w′, σ2)′. When we denote ψ = (ψ1, · · · , ψp)
′ the solution

θ̂ of the equation(3.40) is given by θ̂ = T (Ĝ) which is the vector of

functional with degree p defined with distribution G as follows∫
ψ(x,T (G))dG(x) = 0. (3.41)
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Replacing the distribution G with (1− ε)G+ εδx we obtain∫
ψ(z,T ((1− ε)G+ εδx))d{(1− ε)G(z) + εδx(z)} = 0. (3.42)

For the higher order influence function we differentiate the equation

(3.42) with respect to ε twice and let ε = 0 then we obtain below

2

∫
∂ψ(z,T (G))′

∂θ
d{δx(z)−G(z)} · ∂

∂ε
{T (Hε)}

∣∣∣∣
ε=0

+

∫
∂2ψ

∂θ∂θ

∂T (Hε)}
∂ε

∣∣∣∣
ε=0

dG · ∂T (Hε)

∂ε

∣∣∣∣
ε=0

+

∫
∂ψ

∂θ
dG · ∂

2T (Hε)

∂ε2

∣∣∣∣
ε=0

= 0. (3.43)

Therefore the influence function with second order as

∂2

∂ε2
{T (Hε)}

∣∣∣∣
ε=0

≡ T (2)(z, z;G). (3.44)

Recall ∫
∂ψ(z,T (G))′

∂θ
dG(z) = 0, (3.45)

and the equation(3.43) can be rewritten as below

2

(
∂ψ(z,T (G))′

∂θ

∣∣∣∣
z=x

+R(ψ, G)

)
T (1)

+

(∫
∂2ψ

∂θ∂θ
T (1)(x;G)dG

)
T (1) −R(ψ, G)T (2) = 0. (3.46)

Thus we obtained

T (2)(z, z; Ĝ) = R(ψ, Ĝ)−1(
2
∂ψ(z,T (G))′

∂θ

∣∣∣∣
z=x

+

∫
∂2ψ

∂θ∂θ
T (1)(x; Ĝ)dĜ

)
T (1) + 2T (1).

(3.47)
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3.4 Other Information Criteria

An information criterion for the model f(z|x; θ̂) with obtained by

maximizing the penalized log-likelihood function(3.20) is given by

GICP = −2
n∑

α=1

log f(zα|x; θ̂) + 2tr
{
R(ψ, Ĝ)−1Q(ψ, Ĝ)

}
, (3.48)

where R(ψ, Ĝ) and Q(ψ, Ĝ) are (m + 1) × (m + 1) matrices [17].

respectively given by

R(ψ, Ĝ) = −1

n

n∑
α

∂ψ(zα,θ)
′

∂θ

∣∣∣∣
θ=θ̂

=
1

nσ̂2

B′B + nλσ̂2K
1

σ̂2
B′Λ1n

1

σ̂2
1′
nΛB

n

2σ̂2

 , (3.49)

Q(ψ, Ĝ) =
1

n

n∑
α

ψ(zα,θ)
∂ log f(zα|xα;θ)

∂θ′

∣∣∣∣
θ=θ̂

=
1

nσ̂2

 1

σ̂2
B′Λ2B − λKω̂1′

nΛB
1

2σ̂4
B′Λ31n −

1

2σ̂2
B′Λ1n

1

2σ̂4
1′
nΛ

3B − 1

2σ̂2
1′
nΛB

1

4σ̂6
1′
nΛ

41n −
n

4σ̂2

 .
(3.50)

When we denote H = Ĝ(−α) in equation(3.10), then the Taylor series

of the functional θ̂(−α) = T (Ĝ(−α)) becomes below

T (Ĝ(−α)) = T (G) +
1

n− 1

n∑
i̸=α

T (1)(yi;G))

+
1

2(n− 1)2

n∑
i ̸=α

n∑
j ̸=α

T (2)(yi, yj;G) + op(n
−1)

= T (Ĝ) − 1

n− 1
T (1)(yα; Ĝ) +

1

2(n− 1)2
T (2)(yα, yα; Ĝ)

+ op(n
−1), (3.51)
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where Ĝ(−α) is the empirical distribution that consists of n−1 samples

without α-th sample. The first order of influence function T (1) is

effective and it does not take much calculation. But the second order

of influence function T (2) has small profits and large calculation as

much as CV. in our experiment.

Therefore We adopt the next approximation for the alternative CV

[17]

T (Ĝ(−α)) ≈ T (G) +
1

n− 1

n∑
i̸=α

T (1)(zi;G)

≈ T (Ĝ)− 1

n
T (1)(zα; Ĝ). (3.52)

In the equation(3.14) of ICCV we replace the θ̂(−α) with θ̂− 1
nT

(1)(zα; Ĝ)

and its scheme is called as modified GIC (mGIC)[29],

mGIC = −2
n∑

α=1

log f

(
xα; θ̂ − 1

n
T (1)(xα; Ĝ)

)
. (3.53)

3.5 Numerical Simulation for Surface Estimation

3.5.1 Surfaces and Samples

We assume two models of the equations of surface I and surface II as

follows

I : z = sin(2πx) + 2 cos(2π(x+ y)), (3.54)

II : z = (1− x) exp(−x2) + xy exp(−y2). (3.55)

Those topographies are shown in Figure 3.3. For the estimation we

generated a set of 300 sample coordinates data with the Gaussian noise
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according to the normal distribution N(0, σ2).

3.5.2 Estimation of Parameters

Usually B-splines with order four (degree three) are used in the calcu-

lation. Along x direction we set the knots x1, x2, · · · , xp and the knots

at the both ends are four-folded.

So the total number of basis B-splines will be p− 4. At every interval

[xn−1, xn), n = 5, 6, · · · , p−3 there exist four basis B-splines and those

are below.

Bn,1(x) =
−(x− xn)

3

(xn − xn−3)(xn − xn−2)(xn − xn−1)
, (3.56)

Bn,2(x) =
(x− xn−3)(x− xn)(x− xn)

(xn − xn−3)(xn − xn−2)(xn − xn−1)

+
(x− xn−2)(x− xn)(x− xn+1)

(xn+1−xn−2)(xn−xn−2)(xn−xn−1)

+
(x− xn−1)(x− xn+1)(x− xn+1)

(xn+1 − xn−1)(xn+1 − xn−2)(xn − xn−1)
, (3.57)

Bn,3(x) = − (x− xn−2)(x− xn−2)(x− xn)

(xn+1−xn−2)(xn−xn−2)(xn−xn−1)

− (x− xn−2)(x− xn−1)(x− xn+1)

(xn+1−xn−2)(xn−xn−1)(xn+1−xn−1)

− (x− xn−1)(x− xn−1)(x− xn+2)

(xn+1 − xn−1)(xn − xn−1)(xn+2 − xn−1)
, (3.58)

Bn,4(x) =
(x− xn−1)

3

(xn+2 − xn−1)(xn+1 − xn−1)(xn − xn−1)
. (3.59)

According to the total number of sample data we set 10 - 20 knots

along the every axis. We denote the total number of knots (n1, n2)
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Figure 3.3: The topographies of two surfaces
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where n1 and n2 are the total number of knots along x and y di-

rections respectively. And for every (n1, n2), we tested 100 sets of

randomized knots generated uniformly. But some of them don’t sat-

isfy the Schoenberg-Whitney condition then we generate other set of

knots again. Furthermore the equations of matrices made from ill con-

ditioned sets cannot be solved properly then we also generate another

sets of knots again so we tested 100 solvable sets for every (n1, n2).

The total number of basis will be (n1−4)(n2−4) and the total number

of the parameters will be (n1 − 4)(n2 − 4) + 1 which is consist of the

coefficients of the basis and the variance. For the regularization term

we use the equation(3.21) and at the numerical calculation we use the

equations (3.33) and (3.34). We tested the estimation with various

β’s which are from 10−1 to 10−10 in principle.

3.5.3 Evaluation of Models

For the evaluation of the obtained parameters we test some criteria

such as GICP , mGIC, CV and GCVIF . Those results are shown in

the Tables and Figures below.

Tables 3.1,3.2 summarize the results of GICP over the various values

of β. The GICP values are monotone decreasing so we cannot deter-

mine the optimal parameters in this case.

Tables 3.3,3.4 summarize the results of CV over the various values of

β. Optimal value which minimizes the information criterion Cross-

Validation (3.14) determine the number of knots and the value of β.

We can determine the optimal parameters which minimize CV. But

the repetition is 12100 and it takes about 800 minutes in our simula-

tion for every β and every surface.
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Table 3.1: GICP results for the surface I

total number of knots

x-axis y-axis β σ2 λ GICP

19 13 1.00E-01 1.850992 5.4025E-02 1049.27

19 13 1.00E-02 1.672307 5.9798E-03 1020.16

20 17 1.00E-03 0.937645 1.0665E-03 856.57

20 17 1.00E-04 0.316010 3.1645E-04 550.51

13 11 1.00E-05 0.224000 4.4643E-05 454.96

19 16 1.00E-06 0.181253 5.5171E-06 448.37

19 19 1.00E-07 0.106759 9.3669E-07 390.52

19 19 1.00E-08 0.082473 1.2125E-07 337.60

19 19 1.00E-09 0.068697 1.4557E-08 293.71

20 20 1.00E-10 0.060981 1.6399E-09 257.63

Table 3.2: GICP results for the surface II

total number of knots

x-axis y-axis β σ2 λ GICP

18 11 1.000E-01 0.407434 2.4544E-01 596.15

20 19 1.000E-02 0.397532 2.5155E-02 590.43

20 15 1.000E-03 0.322460 3.1012E-03 535.90

17 20 1.000E-04 0.165861 6.0291E-04 359.24

17 20 1.000E-05 0.047773 2.0932E-04 33.99

17 20 1.000E-06 0.005674 1.7623E-04 -604.09

20 20 1.000E-07 0.001115 8.9720E-05 -947.39

20 20 1.000E-08 0.000771 1.2969E-05 -1040.50

20 20 1.000E-09 0.000631 1.5844E-06 -1100.57

20 20 1.000E-10 0.000551 1.8140E-07 -1138.09
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Table 3.3: CV results for the surface I

total number of knots

x-axis y-axis β σ2 λ CV

19 13 1.00E-01 1.85E+00 5.4025E-02 1050.12

19 13 1.00E-02 1.67E+00 5.9798E-03 1021.12

20 17 1.00E-03 9.38E-01 1.0665E-03 859.33

20 17 1.00E-04 3.16E-01 3.1645E-04 560.37

13 11 1.00E-05 2.24E-01 4.4643E-05 468.14

10 11 1.00E-06 2.29E-01 4.3673E-06 475.16

10 11 1.00E-07 2.28E-01 4.3939E-07 478.01

10 11 1.00E-08 2.24E-01 4.4721E-08 478.89

10 11 1.00E-09 2.20E-01 4.5520E-09 479.82

10 10 1.00E-10 2.20E-01 4.5354E-10 486.15

Table 3.4: CV results for the surface II

total number of knots

x-axis y-axis β σ2 λ CV

13 13 1.00E-01 0.003851 2.59673E+01 596.86

18 18 1.00E-02 0.053463 1.87045E-01 591.29

20 15 1.00E-03 0.322460 3.10116E-03 537.93

17 20 1.00E-04 0.165861 6.02913E-04 367.40

20 15 1.00E-05 0.048688 2.05391E-04 74.36

16 14 1.00E-06 0.006367 1.57050E-04 -346.11

16 14 1.00E-07 0.002303 4.34181E-05 -441.16

19 13 1.00E-08 0.002769 3.61129E-06 -244.25

13 13 1.00E-09 0.003851 2.59673E-07 25.99

13 13 1.00E-10 0.003851 2.59673E-08 31.07
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Table 3.5: mGIC results for the surface I

total number of knots

x-axis y-axis β σ2 λ mGIC

19 13 1.000E-01 1.850992 5.4025E-02 1049.57

19 13 1.000E-02 1.672307 5.9798E-03 1020.50

20 17 1.000E-03 0.937645 1.0665E-03 857.52

20 17 1.000E-04 0.316010 3.1645E-04 553.14

13 11 1.000E-05 0.224000 4.4643E-05 458.32

12 10 1.000E-06 0.214460 4.6629E-06 456.67

19 19 1.000E-07 0.106759 9.3669E-07 434.30

19 19 1.000E-08 0.082473 1.2125E-07 392.92

20 19 1.000E-09 0.081656 1.2247E-08 352.85

19 19 1.000E-10 0.061331 1.6305E-09 323.84

Table 3.6: mGIC results for the surface II

total number of knots

x-axis y-axis β σ2 λ mGIC

12 14 1.00E-01 0.200834 0.497923 556.37

18 18 1.00E-02 0.053463 0.187047 547.02

20 15 1.00E-03 0.322460 0.003101 536.67

17 20 1.00E-04 0.165861 0.000603 361.89

17 20 1.00E-05 0.047773 0.000209 44.76

19 15 1.00E-06 0.005595 0.000179 -500.40

20 20 1.00E-07 0.001115 0.000090 -889.99

20 20 1.00E-08 0.000771 0.000013 -973.54

20 20 1.00E-09 0.000509 0.000002 -1095.15

20 20 1.00E-10 0.000483 0.000000 -1103.50
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Table 3.7: GCVIF results for the surface I

total number of knots

x-axis y-axis β σ2 λ GCVIF

19 13 1.000E-01 1.850993 5.40E-02 1050.13

19 13 1.000E-02 1.672307 5.98E-03 1021.47

20 17 1.000E-03 0.937645 1.07E-03 857.20

20 17 1.000E-04 0.316010 3.16E-04 556.99

13 11 1.000E-05 0.224000 4.46E-05 470.02

12 10 1.000E-06 0.214460 4.66E-06 478.49

10 11 1.000E-07 0.227586 4.39E-07 481.99

10 11 1.000E-08 0.223611 4.47E-08 484.37

10 10 1.000E-09 0.220486 4.54E-09 487.35

10 10 1.000E-10 0.220486 4.54E-10 487.36

Table 3.8: GCVIF results for the surface II

total number of knots

x-axis y-axis β σ2 λ GCVIF

18 11 1.000E-01 0.407434 2.45E-01 596.93

20 19 1.000E-02 0.397532 2.52E-02 591.12

20 15 1.000E-03 0.355688 2.81E-03 536.83

17 20 1.000E-04 0.165862 6.03E-04 363.96

10 10 1.000E-05 0.227627 4.39E-05 60.32

14 17 1.000E-06 0.005844 1.71E-04 -463.05

14 17 1.000E-07 0.001890 5.29E-05 -659.31

14 17 1.000E-08 0.001712 5.84E-06 -582.75

13 13 1.000E-09 0.003851 2.60E-07 -549.87

13 13 1.000E-10 0.003851 2.60E-08 -549.52
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Tables 3.5,3.6 summarize the results of mGIC over the various values

of β. We use the influence function to estimate the value of param-

eters. This method can obtain the almost same result in parameters

as CV and it takes very small time. It is almost 35 minutes for every

β and it is 1/23 of CV. In this approximation of parameters the dif-

ference between the mGIC and CV are quite small. The correlation

coefficient is almost 1.0. For example, when β = 10−5, n1 = n2 = 20

the average of the correlation coefficients over 100 sets of knots is

0.99999611. But the values of mGIC are monotone decreasing so we

cannot determine the optimal parameters in this case.

The results of an alternative method GCVIF with influence function

(3.16) for model selection are shown in Table 3.7 ,3.8. In the estima-

tion of variance we use the influence function. For the evaluation of

the obtained parameters we test some criteria such as GICp, mGIC,

CV and GCVIF . Those results are shown in Figure 3.4 and 3.5. Figure

3.4 summarize the results of GICp, mGIC, CV and GCVIF over the

various values of for surface I. And Figure 3.5 shows the results of four

criteria for surface II. The GICp values are monotone decreasing so we

cannot determine the optimal parameters in this case. The selected

models with optimal parameters determined by the GCVIF are shown

in Figure 3.6 and Figure 3.7 for the surface I and II respectively. In

Figure 3.6 the estimated surface is based on the 95-th set of (13,11)

knots. In Figure 3.7 the estimated surface is based on the 99-th set of

(14,17) knots. In those figures the locations of knots and samples and

the residuals are also shown.
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Figure 3.4: Four criteria of Surface I

Figure 3.5: Four criteria of Surface II
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3.5.4 Comparison between the Distributions of Criteria

We compare the distributions of four information criteria for the two

surfaces I,II. The criteria are GICP , CV, mGIC and GCVIF we have

improved. On the surface I, we show the Boxplots of four criteria over

β = 10−4, 10−5, 10−6, 10−7 in Figures 3.8,3.10 and graphs of those in

Figures 3.9, 3.11. Similarly on the surface II, we show the Boxplots of

four criteria over β = 10−4, 10−5, 10−6, 10−7 in Figures 3.12,3.14 and

graphs of those in Figures 3.13, 3.15. We can find from these Tables

and Figures that mGIC is larger than GICP and GCVIF is closer to

CV than others.

Table 3.9: Five number summary of information criteria for β = 10−4 of surface I

GICp mGIC GCVIF CV

Min. : 550.5 Min. : 553.1 Min. : 557 Min. : 560.4

1st Qu.: 580.8 1st Qu.: 582.8 1st Qu.: 587.8 1st Qu.: 587.1

Median : 586 Median : 587.8 Median : 592.7 Median : 591.8

Mean : 594 Mean : 595.8 Mean : 600.9 Mean : 599.8

3rd Qu.: 599.7 3rd Qu.: 601.3 3rd Qu.: 606.3 3rd Qu.: 604.7

Max. : 704.5 Max. : 705.5 Max. : 709.9 Max. : 1847.5
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(a) β = 10−4

(b) β = 10−5

Figure 3.8: Boxplots for four criteria of surface I
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Table 3.10: Five number summary of information criteria for β = 10−5 of surface I

GICp mGIC GCVIF CV

Min. : 455 Min. : 458.3 Min. : 470 Min. : 468.1

1st Qu.: 466.6 1st Qu.: 472 1st Qu.: 488.6 1st Qu.: 487.7

Median : 468.7 Median : 474.8 Median : 493.8 Median : 493.2

Mean : 472.1 Mean : 477.4 Mean : 494.7 Mean : 494.4

3rd Qu.: 471.7 3rd Qu.: 477.6 3rd Qu.: 498.5 3rd Qu.: 498.4

Max. : 562.3 Max. : 564.6 Max. : 569.2 Max. : 1366

Table 3.11: Five number summary of information criteria for β = 10−6 of surface I

GICp mGIC GCVIF CV

Min. : 448.4 Min. : 456.7 Min. : 478.5 Min. : 475.2

1st Qu.: 464.5 1st Qu.: 476.3 1st Qu.: 519 1st Qu.: 517.6

Median : 468.8 Median : 482.1 Median : 539.3 Median : 538.4

Mean : 470.5 Mean : 482.7 Mean : 543.9 Mean : 542.8

3rd Qu.: 473.7 3rd Qu.: 487.6 3rd Qu.: 566.5 3rd Qu.: 564.8

Max. : 557.2 Max. : 564.4 Max. : 644.6 Max. : 1357.8

Table 3.12: Five number summary of information criteria for β = 10−7 of surface I

GICp mGIC GCVIF CV

Min. : 390.5 Min. : 434.3 Min. : 482 Min. : 478

1st Qu.: 459 1st Qu.: 477.4 1st Qu.: 555.7 1st Qu.: 570.3

Median : 467.7 Median : 486.3 Median : 606.9 Median : 629.2

Mean : 467 Mean : 486.6 Mean : 636.1 Mean : 667.2

3rd Qu.: 475.7 3rd Qu.: 495 3rd Qu.: 694 3rd Qu.: 722.7

Max. : 555.2 Max. : 563.9 Max. : 1125.8 Max. :1 17387.5
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(a) β = 10−6

(b) β = 10−7

Figure 3.10: Boxplots for four criteria of surface I
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Figure 3.11: Comparison of four criteria (ascending order of CV)
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(a) β = 10−4

(b) β = 10−5

Figure 3.12: Boxplots for four criteria of surface I
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Figure 3.13: Comparison of four criteria (ascending order of CV)
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Table 3.13: Five number summary of information criteria for β = 10−4 of surface II

GICp mGIC GCVIF CV

Min. : 359.2 Min. : 361.9 Min. : 364 Min. : 367.4

1st Qu.: 420.5 1st Qu.: 422.6 1st Qu.: 424.8 1st Qu.: 427.1

Median : 439.3 Median : 441.1 Median : 443.8 Median : 445.2

Mean : 446.1 Mean : 448 Mean : 450.6 Mean : 452

3rd Qu.: 468.6 3rd Qu.: 470.2 3rd Qu.: 473.2 3rd Qu.: 473.8

Max. : 548.4 Max. : 549.4 Max. : 551.5 Max. : 653.4

Table 3.14: Five number summary of information criteria for β = 10−5 of surface II

GICp mGIC GCVIF CV

Min. : 33.99 Min. : 44.76 Min. : 60.32 Min. : 74.37

1st Qu.: 133.27 1st Qu.: 141.58 1st Qu.: 152.68 1st Qu.: 165.93

Median : 232.01 Median : 238.59 Median : 251.86 Median : 256.99

Mean : 242.16 Mean : 248.99 Mean : 259.9 Mean : 268.71

3rd Qu.: 347.87 3rd Qu.: 353.34 3rd Qu.: 363.91 3rd Qu.: 369.02

Max. : 539.16 Max. : 541.22 Max. : 542.81 Max. : 854.3
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(a) β = 10−6

(b) β = 10−7

Figure 3.14: Boxplots for four criteria of surface II
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Table 3.15: Five number summary of information criteria for β = 10−6 of surface II

GICp mGIC GCVIF CV

Min. : -604.09 Min. : -500.4 Min. : -463.1 Min. : -346.12

1st Qu.: -157.55 1st Qu.: -136.52 1st Qu.: -73.4 1st Qu.: -10.16

Median : 86.47 Median : 101.6 Median : 152.8 Median : 184.03

Mean : 47.09 Mean : 64.08 Mean : 112.8 Mean : 162.77

3rd Qu.: 272.98 3rd Qu.: 283.65 3rd Qu.: 322 3rd Qu.: 337.65

Max. : 541.6 Max. : 544.17 Max. : 545.5 Max. : 15626.06

Table 3.16: Five number summary of information criteria for β = 10−7 of surface II

GICp mGIC GCVIF CV

Min. : -604.09 Min. : -889.99 Min. : -659.31 Min. : -441.2

1st Qu.: -158.11 1st Qu.: -222.01 1st Qu.: -41.15 1st Qu.: 224.4

Median : 84.61 Median : 79.01 Median : 191.47 Median : 396.2

Mean : 47.94 Mean : -0.86 Mean : 132.28 Mean : 378.3

3rd Qu.: 274.12 3rd Qu.: 273.93 3rd Qu.: 349.06 3rd Qu.: 499.1

Max. : 541.04 Max. : 544.28 Max. : 546.63 Max. : 348848.6
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Chapter 4

Topographical Estimation of the

Lake Bottom by B-spline Surface
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4.1 Estimation of the Selected Areas

For the topographical estimation we have got the experimental data

of the lake. The area of the data is 2.79 km2, and the total number

of data is 1178. At first we tested the two subdomains of the whole

data. After the verification of the scheme to these two subdomains we

applied the scheme to the whole domain. We chose two subdomains

where the distributions of the data are relatively uniform compared

with other domains. The area I is an eastern area and the area II is a

northern area.

We used the small number of knots for x and y directions respec-

tively because of the irregularity of locations of samples. We tested

from 10 to 18 knots for x and y directions respectively. And for ev-

ery combination of the number of knots, we generated 100 sets of the

uniformly randomized x and y coordinates according to the density of

samples respectively. But some of them didn’t satisfy the Schoenberg-

Whitney condition then we generated another set of coordinates again.

Furthermore the equations of matrices made from ill conditioned co-

ordinates could not be solved properly then we also generated other

coordinates of knots again. After solving the equations (3.25), we have

applied generalized cross-validation with influence function GCVIF [2]

as the information criterion.

The results are shown in Tables 4.1,4.2,4.3,4.4. The optimal models

are shown in Figures 4.3,4.5. For the small values of β the selected

models are not adequate. Those are shown in Figures 4.4,4.6.

The results of these criteria shows that the smaller values of β are
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Figure 4.1: Distribution of data over area I
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Table 4.1: CV results of area I

total number of knots

x-axis y-axis β σ2 λ CV

17 16 1.00E-00 0.003458 2.8918E+02 -766.40

11 10 1.00E-01 0.003292 3.0377E+01 -776.76

10 10 1.00E-02 0.003166 3.1586E+00 -776.52

10 10 1.00E-03 0.003118 3.2067E-01 -768.27

11 10 1.00E-04 0.002872 3.4819E-02 -768.20

11 10 1.00E-05 0.002665 3.7525E-03 -765.94

11 10 1.00E-06 0.002661 3.7580E-04 -761.93

10 10 1.00E-07 0.002878 3.4745E-05 -747.79

10 10 1.00E-08 0.002878 3.4746E-06 -746.17

10 10 1.00E-09 0.002878 3.4746E-07 -745.97

10 10 1.00E-10 0.002878 3.4746E-08 -745.95

Table 4.2: CV results of area II

total number of knots

x-axis y-axis β σ2 λ CV

16 18 1.00E+00 0.096383 1.0375E+01 199.88

17 10 1.00E-01 0.090808 1.1012E+00 203.61

11 10 1.00E-02 0.084684 1.1809E-01 215.32

12 12 1.00E-03 0.072609 1.3772E-02 219.93

12 11 1.00E-04 0.070483 1.4188E-03 195.25

12 11 1.00E-05 0.070152 1.4255E-04 194.72

12 11 1.00E-06 0.070117 1.4262E-05 196.03

12 11 1.00E-07 0.070116 1.4262E-06 196.97

12 11 1.00E-08 0.070116 1.4262E-07 197.12

12 11 1.00E-09 0.070116 1.4262E-08 197.13

12 11 1.00E-10 0.070116 1.4262E-09 197.13
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Table 4.3: GCVIF results for the area I

total number of knots

x-axis y-axis β σ2 λ GCVIF

17 16 1.00E+00 0.0032969 3.0300E+02 -768.49

10 16 1.00E-01 0.0032059 3.1200E+01 -778.16

16 10 1.00E-02 0.003125 3.1997E+00 -779.12

10 10 1.00E-03 0.003118 3.2067E-01 -772.00

10 10 1.00E-04 0.003063 3.2646E-02 -772.00

10 10 1.00E-05 0.002968 3.3690E-03 -762.05

11 10 1.00E-06 0.002678 3.7343E-04 -761.34

10 10 1.00E-07 0.002726 3.6680E-05 -760.30

10 10 1.00E-08 0.002726 3.6680E-06 -760.23

10 10 1.00E-09 0.002726 3.6680E-07 -760.22

10 10 1.00E-10 0.002726 3.6680E-08 -760.22

Table 4.4: GCVIF results for the area II

total number of knots

x-axis y-axis β σ2 λ GCVIF

16 18 1.00E+00 0.096383 1.0375E+01 190.63

18 18 1.00E-01 0.072638 1.3767E+00 167.43

15 14 1.00E-02 0.062674 1.5956E-01 158.61

11 15 1.00E-03 0.061989 1.6132E-02 165.76

11 11 1.00E-04 0.070245 1.4236E-03 173.68

11 10 1.00E-05 0.077283 1.2940E-04 177.41

10 10 1.00E-06 0.077254 1.2944E-05 177.73

10 10 1.00E-07 0.077254 1.2944E-06 177.74

10 10 1.00E-08 0.077254 1.2944E-07 177.74

10 10 1.00E-09 0.077254 1.2944E-08 177.74

10 10 1.00E-10 0.077254 1.2944E-09 177.74
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not important for the determination of the models.

4.2 Estimation of the Whole Area

We tested the estimation with various β’s which were from 10−1 to

10−7 according to the results of two subareas. For the evaluation

of the obtained parameters we use the GCVIF as the information

criterion. We can determine the optimal parameters which minimize

this GCVIF . Those results are shown in the Table 4.5. And the

optimal model is shown in Figure 4.8. Figure 4.9 shows the selected

model for β = 10−7 and that is not adequate in shape.

Table 4.5: GCVIF results over the whole area

total number of knots

x-axis y-axis β σ2 λ GCVIF

22 19 1.00E-01 0.049689 2.0125E+00 292.61

21 18 1.00E-02 0.051459 1.9433E-01 333.00

22 18 1.00E-03 0.066054 1.5139E-02 347.73

22 18 1.00E-04 0.050174 1.9931E-03 337.37

22 21 1.00E-05 0.095211 1.0503E-04 318.57

22 18 1.00E-06 0.042305 2.3638E-05 303.21

22 18 1.00E-07 0.041752 2.3951E-06 299.24
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Figure 4.3: Selected model(CV)
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Figure 4.4: Selected model(CV)
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Figure 4.5: Selected model(GCVIF )
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Figure 4.6: Selected model(GCVIF )
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Figure 4.8: Estimation of lake bottom topography

59



-400
-200

 0
 200

 400
 600

 800
 1000

 1200

 0
 200

 400
 600

 800
 1000

 1200
 1400

-8
-7
-6
-5
-4
-3
-2
-1
 0

[m]

The estimated surface
The sample points

The residuals

[m]
[m]

[m]

Figure 4.9: GCVIF results over the whole area (β = 10−7)

4.3 Numerical Simulation of Influence Function

There are two alternative methods of LOOCV. One estimates the

value of û(−α) of (3.14) directly such as GCVIF . The other estimates

the values of parameters θ̂(−α) and it calculates û(−α) using those pa-

rameters such as mGIC. In section 3.5.4 we have written that mGIC

does not make a good approximation of CV compared with GCVIF .

We simulate numerically where the errors occur at and how large those

are.

60



4.3.1 Samples and Conditions

The sample area is area I of the lake in Section 4.1. The total number

of data used in this simulation is 278. The total number of knots of

B-spline along the x and y axis is 20 respectively.

u(x, y) =
20∑
i=1

20∑
j=1

wijMi(x)Nj(y), (4.1)

where Mi(x), Nj(y) are the spline functions with order four along the

x and y axis respectively and wij are the coefficients of products of

the spline functions.

The total number of estimated coefficients of the spline function is

(20 − 4) × (20 − 4) = 256. And the variance is also to be estimated.

The result of surface estimation is shown in Fig. 1. The curved line

is the estimated surface, cross points are the location of samples and

vertical lines show the size of residuals.
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In this simulation we set λσ̂2 = 10−5 as the experiment.
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Figure 4.10: Estimated surface

4.3.2 Information Criteria

LOOCV is calculated as below

CV = −2
n∑

α=1

log(f(xα, θ̂
(−α)))

=
n∑

α=1

{
log(2πσ̂(−α)

2

) +
(zα − û(−α))2

σ̂(−α)
2

}
. (4.2)
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And we adopt the next approximation for CV

T (Ĝ(−α)) ≈ T (G) +
1

n− 1

n∑
i̸=α

T (1)(zi;G)

≈ T (Ĝ)− 1

n
T (1)(zα; Ĝ). (4.3)

In the equation(3.14) of CV we replace the θ̂(−α) with θ̃α = θ̂ −
1
nT

(1)(zα; Ĝ) and its scheme is called as modified GIC (mGIC)[28].

The calculation is shown as below

mGIC = −2
n∑

α=1

log(f(xα, θ̂ − 1

n
T (1)(zα; Ĝ)))

=
n∑

α=1

{
log(2πσ̃2α) +

(zα − ũα)
2

σ̃2α

}
, (4.4)

where θ̃α = (w̃′
α, σ̃

2
α), ũα = u(xα|w̃′

α).

4.3.3 Numerical Result

The numerical result shows that the first terms (variance) of (3.14),(3.52)

are almost same and the second terms (depth) of them are quite dif-

ferent.

Table 4.6: Comparison of CV and mGIC

CV mGIC

variance term -1299.783 -1298.879

depth term 1227.449 544.995

About the variance term, the maximum difference is 0.024155 and

the average is 0.003258. These are quite small. But about the depth

term, there are large differences.
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By the influence function we estimate not the depth but the param-

eter. We calculate 278 samples and every sample has 257 parameters.

So the total number of parameters which we estimated is 71446. The

ratios of the parameters estimated by CV and estimated by mGIC are

calculated and those results are shown in Table 4.7. The average of

the ratios is 0.99999 and the variance is 5.2410× 10−6.

Table 4.7: Ratio of the estimated parameters (mGIC / CV)

ratio total number percentage

0.995 - 1.005 70416 98.55%

0.990 - 1.010 71010 99.38%

0.975 - 1.025 71342 99.85%

0.950 - 1.050 71419 99.96%

all 71446

The total number of parameters which have the differences larger

than 5.0% is only 27. The smallest ratio is 0.87720 and the largest is

1.10598. The estimation of the parameter is quite accurate. But the

estimation of the depth using these parameters cause large differences

in some samples. Consequently the value of the information criterion

has the large difference.

4.3.4 Difference between Smaples

About the depth term the half of 278 samples have the difference

smaller than 0.71 and the sum of those differences is only 30.91 . But

the rest samples have the large differences and the sum of them is

651.56 . The samples which have the large differences are distributed

near the boundary area. Those locations are shown in Fig.4.11. The
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maximum difference is 43.06839 and the average is 2.45486. The ratio

of the parameters of the sample which has the largest difference are

shown in Table 4.8.
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Figure 4.11: locations of samples with large errors

Table 4.8: ratio of parameters of the sample which has the largest difference

average maximum minimum

all 257 parameters 0.99958

valid 16 spline coefficients 0.99342 1.03259 0.88941

other 241 parameters 1.00002 1.00428 0.99701

4.3.5 Difference between Parameters

On the other hand the parameters which have large errors are shown

in Table 4.9.
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Table 4.9: Parameters with large variance

function function minimum maximum standard

number(i) number(j) ratio ratio variance deviation

3 15 0.87720 1.01827 0.0000735 0.0085736

16 12 0.99835 1.10571 0.0000514 0.0071676

1 14 0.88941 1.00357 0.0000499 0.0070617

8 11 0.98520 1.09219 0.0000455 0.0067451

4 16 0.97364 1.10598 0.0000445 0.0066704

4 15 0.98694 1.08300 0.0000363 0.0060287

3 14 0.95697 1.04481 0.0000330 0.0057406

15 12 0.99693 1.08498 0.0000324 0.0056886

2 14 0.97906 1.07677 0.0000296 0.0054376

3 15 0.99109 1.07392 0.0000288 0.0053688

The function number in Table 4.9 means the number of spline func-

tion in (4.1). The supports of the spline functions related with the

coefficients in Table 4.9 are shown in Fig. 4.12. Those areas are dis-

tributed southeast mainly.
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Figure 4.12: Supports of Spline function related with the sample points in Table 4.9
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Chapter 5

Effective Scheme
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5.1 Evaluation of the Model

For the B-spline the total number and the locations of the knots are

important. When the knots at the both ends are four-folded, the least

total number of knots is ten along x and y axis respectively. The total

number of parameters is (nx − 4) × (ny − 4) + 1 which is consist of

the coefficients of the basis and the variance, and this value should be

less than the total number of the sample points at least. We have set

300 sample points and the adequate total number of knots along every

axis is less or equal to 20. And for every (nx, ny), we prepared 100

sets of randomized knots generated uniformly. But some of them don’t

satisfy the Schoenberg-Whitney condition [23] then we generate other

set of knots again. Furthermore the equations of matrices made from

ill conditioned sets cannot be solved properly then we also generate

another sets of knots again so we tested 100 solvable sets for every

(nx, ny). We denote a set of knots as Sj,k (j = 1, 2, · · · , 121, k =

1, 2, · · · , 100) where j = 11(nx − 10) + (ny − 10) + 1 represents the

number of knots and k represents the number of the sets which has the

same total number of knots. On the other hand, we tried eight values

of the smoother parameter β which is the coefficient of the penalized

term. We set the values of β from 10−1 to 10−8, so we considered 96,800

models and determined the parameters of those by the regulaization

method. The evaluations of the models are done by the value of CV.

We use the log-likelihood for Cross-Validation(CV) as
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CV = −2
n∑

α=1

log(f(xα,θ
(−α)))

=
n∑

α=1

{
log(2πσ̂2(−α)) +

(zα − û(−α))2

σ̂2(−α)

}
(5.1)

where σ̂2(−α), θ(−α), û(−α) are determined by the data without α’th

sample.

We only tried quite rough values of β. The result is shown in Table

5.1-5.2.

Table 5.1: All values of CV by previous method

nx ny j k β

10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

10 10 1 1 628.70 619.04 572.46 484.71 409.37 385.67 424.62 446.15

10 10 1 2 628.79 619.96 581.09 506.56 464.77 470.70 502.74 514.65
...

10 10 1 100 628.79 619.92 579.63 507.01 464.46 453.35 480.04 487.96

10 11 2 1 628.58 617.90 565.17 463.64 351.10 339.66 402.22 414.08

10 11 2 2 628.95 621.43 590.44 534.84 523.31 541.29 581.61 645.75
...

10 11 2 100 628.85 620.57 585.10 509.99 469.65 471.24 482.55 486.20
...

20 20 121 1 628.55 617.59 561.84 415.92 106.62 -145.01 367.30 3028.74
...

20 20 121 99 628.57 617.81 564.13 438.16 216.48 -10.95 127.41 1393.35

20 20 121 100 628.56 617.74 563.23 425.62 152.27 -32.05 173.46 3192.88

In order to determine better model we need more accurate value

of β. But it will take many time to calculate the CV’s. We studied
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to get more efficient scheme. In these models, there are many sets of

knots and β’s which are not useful to determine the best model. We

save the time for calculation and tried to obtain more correct value of

β and verify the validity of our scheme.

Table 5.2: Minimum value of CV for each β by previous method

nx ny j k β σ2 λ CV

13 13 37 19 10−1 0.003851 2.59673E+01 31.07

18 18 97 37 10−2 0.053463 1.87045E-01 40.25

20 15 66 92 10−3 0.322460 3.10116E-03 537.93

17 20 118 95 10−4 0.165861 6.02913E-04 367.40

20 15 66 92 10−5 0.048688 2.05391E-04 74.36

16 14 51 21 10−6 0.006367 1.57050E-04 -346.11

16 14 51 21 10−7 0.002303 4.34181E-05 -441.16

19 13 43 4 10−8 0.002769 3.61129E-06 -244.25

5.2 Optimal Smoother Parameter

5.2.1 Interpolation by Spline Function

For every set of knots Sj,k, we have only eight values of CV for β =

10−1, 10−2, · · · , 10−8. Fig. 5.1 shows the interpolation of the value of

CV by the spline function.

Let xi = − log10 βi and spline interpolation functions fi(x) = ai(x−
xi)

3 + bi(x − xi)
2 + ci(x − xi) + di, (i = 1, 2, · · · , N − 1) are defined

over the interval [xi, xi+1] (i = 1, 2, · · · , N − 1). We determine the

coefficients of these functions as follows.
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Figure 5.1: Spline Interpolation

fi(xi+1) = fi+1(xi+1) = yi+1

fi
′(xi+1) = fi+1

′(xi+1)

fi
′′(xi+1) = fi+1

′′(xi+1) for i = 1, 2, · · · , N − 2

Directly we find di = yi (i = 2, 3, · · · , N − 1).

The boundary condition is the natural spline

f1(x1) = y1

fN−1(xN) = yN

f1
′′(x1) = fN−1

′′(xN) = 0.

Based on these conditions we can obtain the coefficients by solving

the next equation of matrix.
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
2(h1 + h2) h2 0 · · · 0

h2 2(h2 + h3) h3 · · · 0
... . . .

0 0 · · · hN−2 2(hN−2 + hN−1)




b1

b2
...

bN−2

 =


v1

v2
...

vN−2


where hi = xi+1 − xi, vi = 3

(
yi+1 − yi

hi
− yi − yi−1

hi−1

)
. We can deter-

mine the all variables from {bi} as follows

ai =
bi+1 − bi

3hi
, ci =

yi+1 − yi − aih
3
i − bih

2
i

hi
.

To get the value of x which gives the minimum value of function.

The spline functions are only three dimensional polynomials, we can

easily differentiate and calculate the zero points of them.

fi
′(x) = 3ai(x− xi)

2 + 2bi(x− xi) + ci = 0

Let x̃j be the zero point for every j. Instead of calculating CV’s

for all sets Sj,k (j = 1, 2, · · · , 121, k = 1, 2, · · · , 100), we select only

one k = kj for every j, we calculate CV’s for selected sets Sj,kj (j =

1, 2, · · · , 121). In those sets we make the spline interpolation and

determine the minimum estimated valuesmj (j = 1, 2, · · · , 121) and x̃j
which givesmj for every set. Among them we determine the minimum

value of mj and x̃j which gives it. We denote those values as mmin

and xmin. Then we obtain βmin = 10−xmin. Using this βmin, we estimate

the coefficients of the estimated surface and calculate CV for all sets

Sj,k (j = 1, 2, · · · , 121, k = 1, 2, · · · , 100).
The value of βmin that is 10

−xmin varies depend on the selection of kj,

the statistical values of xmin based on 100 experiments are as follows.

73



Table 5.3: Minimum value of CV for each j

nx ny j x̃j mj

10 10 1 5.824489 384.30

10 11 2 5.585633 330.07
...

20 19 120 6.232998 -150.10

20 20 121 6.200994 -159.55

Table 5.4: Statistical values of xmin

average 6.56285

median 6.55971

standard deviation 0.102462

maximum 6.85326

minimum 6.32370
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The result of the calculation based on the set of various values of

βmin which include maximum one and minimum one shows that the

same model S71,21 is the best.

Table 5.5: Model evaluation for βmin = 10−6.85326

nx ny j k λ CV

16 14 71 21 0.00240204 -462.824

15 14 60 80 0.00369185 -429.770

17 14 82 79 0.00271836 -425.079
...

Table 5.6: Model evaluation for βmin = 10−6.67209

nx ny j k λ CV

16 14 71 21 0.00261375 -473.446

15 14 60 80 0.00391828 -457.147

16 15 72 99 0.00325389 -429.550
...

5.2.2 Estimation of the Optimal β

After the determination of the best set of knots, we have to determine

the optimal value of smoother parameter β. We have only estimated

vague value of β. To obtain the best value of CV we calculate it based

on various values of β only on the best set selected above. The range

of β is set from b−3σ to b+3σ, where b is the mean of best ten values

of x̃j in Table 5.3 and σ is the standard deviation of them. The result

of calculations is shown in Table 5.9.
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Table 5.7: Model evaluation for βmin = 10−6.53701

nx ny j k λ CV

16 14 71 21 0.00288071 -469.079

15 14 60 80 0.00420413 -457.276

16 15 72 99 0.00356967 -441.773
...

Table 5.8: Model evaluation for βmin = 10−6.32370

nx ny j k λ CV

16 14 71 21 0.00364017 -439.822

16 15 72 99 0.00438565 -429.780

15 14 60 80 0.00502962 -421.374
...

Table 5.9: Values of CV for randmized β

− log β β λ CV

6.66160 2.1796×10−7 0.00263041 -473.493

6.65547 2.2106×10−7 0.00264043 -473.490

6.67365 2.1200×10−7 0.00261131 -473.435

6.64192 2.2807×10−7 0.00266333 -473.407

6.64123 2.2843×10−7 0.00266452 -473.400
...
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Chapter 6

Conclusion
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For the estimation of a surface we adopt the regularized method.

In this method the coefficient of the penalized term is important. The

value of β in 3.3 plays an important role. As the value of β decreases,

the residual variance reduces and the information criterion GICP also

reduces monotonously. Then the GICP cannot determine the opti-

mum model in both surfaces given in 3.5. The method of minimizing

the cross-validation (CV) can determine the optimal values for two

surfaces. The result of computation shows the excellence of the cri-

terion CV. But it requires a large amount of computation. For the

parameter estimation the alternative method mGIC by the informa-

tion function works well. But the total number of parameters is so

many that occasionally the estimated values are quite different from

the sample value. Those samples make the value of mGIC worse and

consequently we cannot determine the optimum model by this crite-

rion in both surfaces. To overcome this difficulty the GCV is quite

useful. To improve the property of GCV we use the influence func-

tion to estimate the variance of n− 1 samples. We can recognize the

superiority of GCVIF which can determine the optimum model and

can approximate the distribution of CV very well and it requires small

amount of computation.

We propose an improved GCV criterion GCVIF . This conclusion is

the theory and obtained through a large number of simulation tests.

From the results of these tests of GCVIF criterion on surface I and

surface II we can see that the GCVIF criterion is more stable than CV,

GIC and mGIC, also we can see that the GCVIF criterion includes

their informations.
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In the actual measurement data some of information criteria could

not determine the optimal parameters. In particular, the solutions to

small β’s did not determine the shape of surfaces adequately. The

major reason of those difficulties is considered as the irregularity of

the distribution of data. If there is little data near the boundary of

the domain, even if the surface changes sharply, the value of criterion

will seldom be influenced. In spite of those difficulties CV and the

generalized CV with information function (GCVIF ) can determine the

optimal values to the various sets of data. The computational cost

of GCVIF is 1/50 of CV. Furthermore the selected optimal model

by GCVIF (Figure 4.5) is better than that by CV(Figure 4.3). We

can assert that GCVIF is just practical method. This approximation

method is able to contribute for the improvement of the water quality

of Kojima Lake. We can predict the values of spline coefficients of

LOOCV using the influence function of order one. But the difference

of the information criteria is quite large. In this paper we show the

result of computation and the distribution of errors of samples or

parameters. It will be our future work to clarify the reason of these

errors.

Furthemore we propose a new scheme which can reduce the amount

of calculation to almost one eighth. At first we only use one set of each

number of knots. Although the estimated value of βmin depends on

the selection of sets, we need not mind the difference. Because the

standard deviation of xmin is quite small. Based on that βmin we can

determine the best set of knots. And the determination does not

depend on the value of estimated βmin.
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To the selected optimal set of knots we finally obtain the optimal

smoother parameter β by randomization. And the effective digit of it

becomes higher than the previous method. It is our future study how

to set the appropriate range of β in the final step.
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