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Chapter 1

General introduction



1.1 Ice VII: a polymorph of ice

There is no material that has the greater number of structural forms than that of
water. Experimentally, so far, 16 different crystalline ice phases (“the polymorphism
of ice”) have been confirmed to exist[l]. The crystalline ices identified by
experiments have been assigned numbers, such as ice 14, Ic, 11, and the latest XV. The
ice polymorph comprises metastable ices and non-molecular ones as well as stable
molecular crystals: ices Ic, IV, IX, XII, and XIV are molecular metastable phases; ices
X and XI' are non-molecular stable phases. It was very recent that the latest-found ice,
ice XV, was identified by Saltzmann et al. [2]. Therefore, there is a strong likelihood
that yet another ice phases are latent in phase diagram. Updating water’s phase
diagram (Fig. 1.1(a)) is still one of the most challenging and significant scientific

themes.

" There is confusion in allocating the number XI; one for proton-ordered form of ice Ih and
another for hexagonal ice of symmetrized proton.
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Figure 1.1

(a) The phase diagram of water. Some ice phases are not shown. With bracket corresponds
to metastable phase.

(b) The prior experimental melting curves of ice VII [3—-10]. Each label for plot indicates the
first author and the publication year of the paper.

(c) The unit-cell structure of ice VII.  Sphere is the position of a water molecule. The two
hydrogen-bond networks are depicted by blue and cyan lines.

(d) Orthographic snapshots of ice VII (left) and plastic ice (right). Blue spheres are oxygen
atoms and cyan ones are hydrogen atoms. No hydrogen bond is drawn. The lattice
structure in plastic ice is the same as that in ice VII, but plastic ice does not have

hydrogen-bond network due to its almost-free molecular rotation.



Water preserves its molecular framework up to about 20 GPa. The most dense
ices in molecular crystalline phases are ice VII and ice VIII, which coexist at a pressure
higher than ~2 GPa in the phase diagram, as shown in Fig. 1.1. Ice VII is a
self-clathrate, where proton-disordered two diamond-type hydrogen-bond networks
interpenetrate each other (Fig.1.1(c)). On the other hand, in terms of molecular
configuration, the unit cell of its lattice structure is body-centered cubic (BCC) lattice.
Ice VIII is the proton-ordered counterpart of ice VII, whose lattice has a lower
symmetry and is tetragonal.

The first report of the existence of ice VII dated back to 1937, by Bridgman [11].
Since then, however, the melting curve of ice VII has yet to be settled by experimental
works [3-10,12]. The different experimental methods have resulted in the different
melting curves and the discrepancy spreads wider as pressure increases. Several prior
experimental melting curves of ice VII are collected in Fig. 1.1(b). Most of the earlier
experimental works evaluated the melting points by the change in the volume of system,
while most of the late experimental surveys on the melting of ice VII were made by
direct (visual) observation. Differences among methods make it difficult to identify

the correct melting curve.



1.2 The appearance of plastic ices in computer simulation

In 2008, Takii, Koga, and Tanaka suggested a distinct interpretation as to the
problem that the melting curve of ice VII had not been identified [13]. Their report
stated that when ice VII is heated in molecular dynamics (MD) simulation, it melts not
to liquid but to plastic phase, in which each molecule can rotate freely but cannot move
away from certain lattice point (Fig.1.1(d)). Although there are many kinds of
materials that possess plastic phase [14], the report by Takii et al. (Ref. [13]) is the first
one regarding the plastic phase of water. The tentative name for the plastic phase of
water is “plastic ice,” which has no official name because of the lack of experimental
identification.

Computational results and various analyses in the paper of Takii et al. strongly
encourage the possibility for the existence of plastic ice [13]. Moreover, in 2009,
Aragones et al. conducted the further computer simulations so as to confirm the plastic
ice; and they also found, in higher-pressure region, another plastic ice whose structure
differs from what Takii et al. had reported [15,16]. That the experiments have not
taken the plastic phase of ice into account may be a reason for the discrepancy of the
experimental melting curves of ice VII. Therefore, it is anticipated that this research

field will become more active increasingly.



1.3 Overview of the dissertation

The keywords in this dissertation are plastic ice and ice VII. The main topics are
structural differences, energetic differences, dynamic differences, and the phase
transition behavior between those two ice phases. This dissertation consists of this
chapter and our research outcomes (Chapters 2 through 4).

In Chapter 2, I report energetic and microscopic structural differences between
plastic ice and ice VII, and the feature in terms of hydrogen bond in plastic ice. At
non-zero temperature, the system continually moves on complicated potential energy
landscape. At a basin on the potential energy landscape at which the structure is called
“inherent structure [17]” or “Q-structure’,” the thermal noise is eliminated and
accordingly the HB network becomes clear [17-19]. We compare the inherent
structures of plastic ice and ice VII, whose densities are the same as one another. We
show that the isotropic short-range repulsive interaction term’s contribution is greater
than the Coulombic interaction term, in the total potential energy which is the sum of
those terms. (Concerning the water’s intermolecular potential function model is
described in Appendix for Chapter 1.) Our survey also reveals that the BCC
configurations of plastic ice and ice VII are quite different at microscopic level,
according to the average deviation from the perfect BCC lattice point whose density is
the same as those phases. Moreover, it is found that even though the lattice structure
of plastic ice is BCC, as with ice VII, the total number of HBs in the plastic ice system
is much smaller than that in ice VII and there are various hydrogen-bonding patterns per
molecule not restricted to four tetrahedral directions in plastic ice.

In Chapter 3, we investigate the reorientational autocorrelations and the

hydrogen-bond autocorrelations of plastic ice, ice VII, and liquid water to evaluate the

* Potential energy minimization so as to find a structure at a basin on the potential energy landscape (i.e.,
an inherent structure) is also often called “quenching.” The name “Q-structure” originates in the

[Pt}

q”’uenching and is used in Chapter 2.
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association between molecular rotation and energetic relaxation. We check that the
hydrogen-bond autocorrelation of plastic ice decays like liquid and then settle into the
non-zero value like crystalline phase, reflecting the free rotation and impermissible
diffusion of water molecule in plastic ice. Also checked is that the lifetime of HB
depends only on the molecular rotational motion, according to the similarity between
the reorientaional and the HB correlations.

Finally, in Chapter 4, I show that, in computer simulation, the phase boundary
between ice VII and plastic ice switches itself from first-order transition line
(coexistence line) to second-order phase transition line (critical line) and these
boundaries are joined by a tricritical point. So far, researchers have concluded that the
phase transition between ice VII and plastic ice is entirely first-order transition due to
the observation of hysteresis in thermodynamic quantity profile and the intersection of
chemical potential profile. We perform the vast number of MD simulations in very
wide range of pressure, then observing the critical phenomena such as the divergent
behavior of the heat capacity at constant pressure as a function of temperature in
higher-pressure region. We obtain the typical critical exponents and those exponents
satisfy a “scaling law” which should holds at a critical point. Furthermore, the scaling
raw here is confirmed to hold regardless of pressure, from 10 to 26 GPa. In addition to
those results, analyzing a Landau’s phenomenological free energy enables us to find
that a tricritical point joins the coexistence and critical lines and to estimate the location
of the tricritical point in the phase diagram at (temperature, pressure) = (665 K, 13.3
GPa). The critical behavior on the VII-plastic phase boundary is the third one
following the trivial liquid-vapor critical phenomena and the hypothetical liquid-liquid

critical phenomena in the supercooled region.
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Appendix for Chapter 1
The classical intermolecular potential models of water.

Here I describe about the water models to simulate water’s properties
computationally. Molecular dynamics simulation is a technique to reproduce the time
development of the system, where the molecules are moved with obeying the

Newton’s equations of motion,

d?r; 0
D B r—
dt 5 9w =) (A1.1)

where r; is the position vector of i-th molecule, m; the mass of i-th molecule, and
¢;; the pair potential energy between i- and j-th molecules. Numerical integration of
the Eq. Al.1 gives the r; in the future. So as to do the numerical integration, one

needs to give ¢;; as an analytical form in advance. For water, ¢;; is often given by
daqb o \2 [ g\
ou=2 0 e (og) —(ee) |
N %; Tab 00 00

The first term in the right side is the Coulombic potential term and the second term is

(A1.2)

(“12-6 type”) Lennard-Jones potential term. The parameters q, and q,, are the
charges on the sites a and b, respectively; the notation of summation means the sum for
all possible {a, b} pairs. € and o in the second term are also parameters. 7 is the
distance between oxygen atoms in i- and j-th water molecules.

No model can reproduce the whole water’s properties or phase diagram precisely.
In Eq. A1.2 for the water models such as TIP4P, TIPSP, and so on, the parameters q,
(qp), € and o are optimized so as to reproduce particular properties — for example,
the maximum density of liquid water at 4°C — as well as possible. The parameters

for the rigid (i.e., the molecular framework is completely fixed) models®, TIP3P* [20],

3 There are the models whose OH bond’s stretching and HOH angle’s bending are permitted (so-called
the flexible models).

* “TIP” is abbreviated from “Transferable Intermolecular Potential” and “3P” is from “3-Point” sites.

12



TIP4P [20], TIP4P/2005 [21], TIP5P [22], and TIP5SP-E [23] are tabulated in Table
Al.l. Also, the molecular geometries including negative charge sites for 3-site
(TIP3P), 4-site (TIP4P and TIP4P/2005) and 5-site (TIPSP and TIPSP-E) models are

illustrated in Fig. A1.1.

13



Table Al.1

Parameters and molecular geometry for the potential functions of 3-site (TIP3P), 4-site (TIP4P

and TIP4P/2005), and 5-site (TIP5P and TIP5P-E) rigid water models.

qu is the proton

charge, rqy is the length of the OH bond, 6y is the HOH angle, r, is the distance from O to

a negative charge site (denoted by “L” here), 6, is the LOL angle.

these models are given in Fig. Al.1.

The illustrations for

3-site model 4-site 5-site
TIP3P TIP4P TIP4P/2005 TIP5P TIP5P-E
qule 0417 0.520 0.5564 0.241 0.241
o /A 3.15061 3.15365 3.1589 3.12 3.097
€ /kcal mol’! 0.1521 0.1550 0.18520 0.16 0.178
rou! A 0.9572 0.9572 0.9572 0.9572 0.9572
BOion / deg 104.52 104.52 104.52 104.52 104.52
ro. ! A 0.15 0.1546 0.70 0.70
0,0/ deg 109.47 109.47

14
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Figure Al1.1

Illustrations for geometries of the 3-site (TIP3P), 4-site (TIP4P and TIP4P/2005), and
5-site (TIP5P and TIP5P-E) rigid models. In all of these models, positive charges (qy)
are placed on the two hydrogen atoms. TIP3P model has a negatively-charged (q;)
interaction site on oxygen atom. TIP4P and TIP4P/2005 have a negatively-charged (gq)
interaction site on dipole vector. TIP5P and TIP5P-E have two negatively-charged (g)
sites on tetrahedral directions. All these models do not have polarization, that is, g, = —
2gy for TIP3P, TIP4P and TIP4P/2005; g, = — gy for TIPSP and TIPSP-E. The values

for the bond lengths, the angles, and so on in this picture are tabulated in Table A1.1.
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Chapter 2

Lattice- and network-structure in plastic ice

We have investigated structural and energetic characteristics of plastic ice, which was
found in a high-pressure region such as 10 GPa by molecular dynamics simulation and
free energy calculation. It was predicted that plastic ice intervenes between ice VII
and liquid water, in which diffusion is suppressed but rotation is allowed. In the
present work, the structure in plastic ice is explored from both local and global view
points and focus is placed on the local arrangement, the extent of deviation from the
ideal lattice position, and the hydrogen-bonded patterns. The roles of the attractive
interaction and the repulsive part of Lennard-Jones potential are also examined. It is
found that the higher interaction energy in plastic ice induces a large dislocation of
water molecules, which eventually conducts a facile rotation. There are a large
amount of hydrogen-bonds which do not orient to the tetrahedral directions. These
orientational defects give rise to fusion of the two interpenetrating sublattices of ice
VII leading to a plastic phase rather than defect-containing ice VII, which results in a

unique network structure of the plastic ice.
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2.1 Introduction

Water exhibits a rich variety of phase behavior in a wide range of temperature and
pressure, having more than 16 morphologies [2,24-26]. It freezes to a high density
ice form, called ice VII at a pressure above 2 GPa [27-31]. Ice VII has the highest
density made of intact water molecules. Its structure is identified with a
body-centered cubic (BCC) lattice, in which each water molecule is hydrogen-bonded
with half of the nearest neighbors. Thus, it can be viewed as a kind of self-clathrate
composed of two interpenetrating cubic ice (ice Ic) lattices [32]. For pressures lower
than 20 GPa, the molecular framework of water is well preserved so that its local
structure is dominated by hydrogen bonds (HBs) with four neighbors as well as the
packing efficiency [27,28].

A plastic phase is an unusual solid state found for some substances in which
molecules rotate nearly freely at lattice sites [33]. Takii et al. found a plastic phase of
water by molecular dynamics simulations and free energy calculations with various
intermolecular potential functions [13], TIP4P [20], TIPSP [22], SPC/E [34], and a
polarizable model [35] in the framework of rigid molecules under several system sizes
from N (number of water molecules) = 432 to 3456. A plastic phase emerges
irrelevant to the boundary conditions, upon application of either short-range
truncation [36] or the Ewald sum method [37]. This phase appears at a fairly high
density that suppresses diffusional motions unlike the case of low pressure ices
including ice Ic. A nearly spherical shape of water molecules seems to facilitate
rotational motions by breaking some of HBs but avoids a melting transition to liquid.
Also found was a plastic phase of face-centered cubic (FCC) lattice for a water-like
model with sluggish HBs.

Similar studies were made in order to include the plastic phase in the phase

diagram of water using a variant of the TIP4P water called TIP4P/2005 [21] by a

17



different method to calculate the phase boundary [15,16]. They also found an FCC
plastic phase at a much higher pressure. The FCC phase seems to be associated with
what was found for a water-like model with sluggish HBs.

Although it is of great importance to elucidate the difference between crystalline
and plastic ice from a view point of the local and global network structures, no such
microscopic picture has been established. In the present work, we investigate
structural and energetic characteristics of the plastic ice by exploring the local
arrangement, the extent of deviation from the ideal lattice position, and the

hydrogen-bonded patterns in the plastic ice.

18



2.2 Methods

Isothermal-isobaric molecular dynamics simulations are performed to compare
the structures and thermodynamic properties of liquid, plastic, and crystalline phases
under 12 GPa. The TIP5P water model is employed and the long-range interaction is
truncated smoothly at 0.8655 nm [36]. As the initial structure, 432 water molecules
are placed on BCC lattice sites in the cubic simulation cell with periodic boundary
conditions. Long-time simulations are performed at three different temperatures, 500,
640 and 960 K. After 8 ns run for equilibration, ice VII, plastic, and liquid phases are
obtained, respectively. 100 independent instantaneous structures, say I-structures, are
extracted at each temperature. The mean densities of ice VII, plastic phase, and
liquid phase are 1.8703 g cm™, 1.7699 g cm™, and 1.6393 g cm™, respectively. All
the structures are then scaled in size so that the density becomes the mean value at the
plastic phase, 1.7699 g cm™, in order to remove the effect by volume difference in
potential energy analysis discussed in the next section. Finally, 100 inherent
structures, say Q-structures, are obtained for each temperature by the steepest descent

method.
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2.3 Results and Discussion
2.3.1 Identification of plastic phase and thermodynamic properties

Identification of water as a plastic phase is made by two time correlation
functions namely the mean square displacement and the reorientational correlation
function according to the definition of a plastic phase. These are defined by

A0 = (23 ) - rP)
TN i=1 ; ; (2.1)

for the mean square displacement, where r;(t) stands for a center of mass coordinate
of molecule i at time ¢, and

1 N
Z:(t) = (= ) |ui(t) - us(0)[?
<N ; > 22)

for the reorientational correlation function, where u;(t) stands for a unit vector
parallel to a dipole of water molecule 7 at time . Those time correlation functions are
depicted in Fig. 2.1. We recover the same temperature dependence of these time
correlation functions as that initiated with different coordinates reported
previously [13]. The plastic phase emerges in the tem- perature range between 590
and 890 K for heating while its range is a little narrower in cooling at 10 GPa. That is
caused by the hysteresis in transition between plastic and liquid. Here, we set the

pressure to 12 GPa so as to observe a facile transition in heating and cooling processes.
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Figure 2.1
Time-correlation functions, (a) the mean square displacements and (b) the reorientational
correlation functions of ice VII (500 K; blue), plastic ice (640 K; black) and liquid water

(960 K; red) obtained by molecular dynamics simulations.
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2.3.2 Thermodynamic and structural properties in density-adjusted quenching
In order to investigate the structural characteristics of the three phases in more
detail, a direct consequence due to the density difference is removed by a simple
scaling of the coordinates of water molecules; the cell size at a given instant for any
phase is adjusted to have the mean cell size in the plastic phase at T = 640 K. We
examine various properties of the inherent structures, which are obtained by the
steepest descent energy minimization. The radial distribution functions (RDFs) for
the density-adjusted structure exhibit almost complete agreement with those at the
original density, from which we affirm that the present analysis is justified. The
potential function to describe a pair interaction for water is composed of Coulombic
and Lennard-Jones (LJ) interactions. The former is the essential part of HB in the
three phases and the latter plays a role to maintain identity of individual molecules.
The two sorts of interactions are equally important since a compact packing and a
lower cohesive energy compete at a higher pressure. The potential energies of those
three phases and the individual components are tabulated in Table 2.1. The potential
energy increases in both transitions from ice VII to plastic and from plastic to liquid
water in I-structure. This is also true in Q-structure. One of the most remarkable
differences among the three phases is the higher LJ interaction in liquid water.
Liquid water has a fairly different structure from either ice VII or plastic ice. Some
peaks in the ice phase are missing in liquid water or only a trace of them appears. An
intriguing feature is the position of the first peak in the oxygen-oxygen RDF for liquid
water; it is closer by 0.02 nm than that for ice as shown in Fig. 2.2. The higher LJ
energy seems to be accounted for by this closer separation of the neighboring
molecules. Thus, a lower density in liquid does not mean a uniform expansion but
some vacant space that results from a randomly arranged structure of liquid water,

pushes water molecules close together, which may be caused by the intense thermal
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motions at a high temperature. In conjunction with the potential energies listed in
Table 2.1, the binding energy distributions are calculated for the individual

components, which are defined by

(w28(0u-))

i g (2.3)

xp(€)

where ¢;; stands for a pair interaction energy between two molecules i and j, and
(...) denotes the ensemble average. As shown in Fig. 2.3, the distribution for liquid
water is almost symmetric against the binding energy and is nearly Gaussian as
observed in an ambient condition [18]. It is, however, asymmetric for plastic ice.
The origin of this asymmetry is explained in terms of the local hydrogen bonded

network later in this section.
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Table 2.1

The potential energies and those for the Lennard-Jones term and the Coulombic term of ice VII,

plastic ice and liquid water for I- and Q-structure.

I-structure

Q-structure

Ice VI Plastic  Liquid Ice VI Plastic  Liquid

Potential energy /kJ mol”' -39.274 -24.705 -6.5635 -50.751 -45283 -41.776
LJterm /kJmol' 18289 23.380 39.750 13.526  18.181  27.778
Coulombic term /kJ mol™ -57.563 -48.086 -46.313 —-64.277 -63465 -69.554

24
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Oxygen-oxygen radial distribution functions of ice VII (blue), plastic ice (black) and liquid

water (red) for Q-structure.
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The structure of the plastic phase is characterized by the existence of several
peaks in the oxygen-oxygen RDF whose positions are the same as those in ice VII as
shown in Fig. 2.2. The ratio of the second peak position to the first one is around
1.16, which indicates that both phases have a BCC lattice structure. Since the water
molecules in the plastic phase are fixed in principle to the lattice position in the same
way as in ice VII, the LJ term for plastic ice in Table 2.1 should have a similar value to
that for ice VII. In reality, however, it is fairly higher than that for ice VII. This
could be caused by small but distinct deviation of molecules from the corresponding
ideal lattice sites. Indeed, the peaks in the RDF for plastic ice are blurred.
Therefore, the deviation from the ideal lattice sites is examined for both ice VII and
plastic ice in Q-structure. The distribution of the dislocation is Gaussian whose
standard deviation is 4.5%10™* nm for ice VII and is 2.7x1072 nm for plastic ice.
This indicates that a deviation whose magnitude is similar to the mean deviation in
plastic ice cannot be observed in ice VII. Therefore, plastic ice seems to be not a
variant of the ice VII form where only a small number of structural defects leaving
molecules away from the lattice sites are embedded but a phase where a large number
of dislocations are implemented by the Gaussian distribution with the large standard
deviation. (We examine this issue in the later subsec.) The large deviation, i.e.,
dislocation of molecules, is associated with the higher LJ interaction energy because of
the asymmetric nature of the LJ potential in the molecular separation. While the
extension of the molecular separation by 0.027 nm results in a decrease in LJ energy
by 4.4 kJ mol™ for an ideal neighboring distance in the BCC lattice, 0.267 nm, a
contraction by the same amount gives rise to an increase by 18.6 kJ mol™'. Thus, the
dislocation accounts for the higher LJ energy in plastic ice. The higher energy in LJ
interaction is also consistent with the pair interaction energy distribution for the LJ

term shown in Fig. 2.4, which is defined by
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rp(0) = {1 30 6(61; — o)),

Nl (2.4)
where ¢;; stands for a pair interaction energy between two moledules i and j (here for
the LJ term). The pronounced peak associated with the nearest neighbors in ice VII is
smeared out in plastic ice. The actual dilatation of plastic ice compared with ice VII
can also be associated to the large dislocation. The difference between plastic and
crystalline in simple quenching at constant volume is a little smaller in accordance
with the dilatation upon transition to the plastic phase. A more detailed scrutiny of
the local environment of those three phases seems to be essential in order to provide a
microscopic picture of plastic ice. This is achieved from two view points; local
energetic and structural aspects are examined and those are combined with the global
network structure. Local structures of water and ice are described by simply the
coordination number of individual molecules, which is defined by the number of

molecules around a tagged molecule. An alternative expression of it is given by

n(re) = 4mp /TC goo(T)TQdT,
0 2.5)

where p is the average number density of the system. The upper bound of the
integration, 7, is usually considered to be the distance at the first minimum of an
oxygen-oxygen RDF, goo(r). Since the cell size is adjusted to have the density of
the plastic ice, it is natural to adopt the common r, value, 7. = 0.306 nm (the first
minimum for plastic), to the three phases. The coordination distributions are shown
in Fig. 2.5. The crystalline phase (ice VII) has only 8-coordinated molecules. In the
plastic phase the 8-coordinated molecule is also the most dominant species but other
species than the 8-coordinated one appear. The coordination number distribution in
liquid is widespread with its center at 9. Especially, the populations of extremely

small and large coordination number species increase in the liquid state. The average
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coordination numbers are 8.40 for plastic and 8.55 for liquid.
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Figure 2.4
Pair interaction energy distributions for the LJ term of ice VII (blue), plastic ice (black) and

liquid water (red) for Q-structure.
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Coordination distributions of ice VII (blue), plastic ice (black) and liquid water (red) for

Q-structure.
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The energetic contribution to the local structure competes with the packing
efficiency at a high density, a local energetic feature is represented by an HB number
distribution, a distribution in which a tagged molecule has a specific number of HBs
with other molecules. The HB is defined by the geometric restriction on a pair of
neighboring molecules where the OH distance for the pair is smaller than 0.22 nm and
the angle between the OH bond of one molecule and the direction toward the adjacent
oxygen is less than /6 (this HB criterion is almost equivalent to a certain threshold
for a pair interaction energy). With this criterion we obtain the lifetimes of hydrogen
bonds of those three phases. In ice VII a hydrogen bond is almost completely
retained, which is consistent with the reorientational correlation in Fig. 2.1. In both
liquid and plastic phases, a hydrogen bond decays in the same order as the relaxation
time of the corresponding reorientational correlations. In the plastic phase, however,
a hydrogen bond is almost always reformed in later time. Ice VII is composed of
only molecules hydrogen-bonded with 4 neighbors but plastic ice has a wider
distribution in HB number centered at 4 as shown in Fig. 2.6. In the liquid phase, a
much wider one is observed and there are many defects in HB. The larger
coordination number but the smaller number of hydrogen-bonded neighbors in liquid
and plastic phases result in the higher potential energy than that in ice VII, since the
small separation of two water molecules gives rise to the repulsive interaction without

hydrogen-bonding.
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Hydrogen-bond number distributions of ice VII (blue), plastic ice (black) and liquid water

(red) for Q-structure.
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Liquid water has the highest LJ energy and the lowest Coulombic energy in
Q-structure as in Table 2.1. The high LJ energy is associated with the closest
separation of neighboring pairs as mentioned above. The low Coulombic energy in
liquid water is consistently explained by the smaller molecular separation, which
seems to dominate unfavorable orientations. This is confirmed by the pair interaction
distributions for Coulombic energy depicted in Fig. 2.7, which is defined by Eq. 2.4 for
the Coulombic term. A low energy (strong interaction) region in liquid water is a
little larger, which originates from the smaller OH distance for a neighboring pair as

seen from oxygen-hydrogen RDFs (Fig. 2.8).
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Pair interaction distributions for Coulombic energy of ice VII (blue), plastic ice (black) and

liquid water (red) for Q-structure.
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Oxygen-hydrogen radial distribution functions of ice VII (blue), plastic ice (black) and

liquid water (red) for Q-structure.
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2.3.3 Local hydrogen-bond network in plastic ice

Ice VII is made up of the two interpenetrating ice Ic lattice structures. Here we
call individual sublattices A and B. Any water molecule on sublattice A in ice VII
forms no HB with any molecule on sublattice B. Since all the water molecules sit on
the lattice sites in plastic ice, each water molecule can be classified by its location on
the lattice site; called either A or B in the same way as in ice VII. Some HBs may
bridge A and B sublattices by orientational defect in plastic ice. Then, a global
hydrogen bond network is disrupted. It is of great interest to explore the local
hydrogen bond patterns that exist in Q-structure of plastic ice.

We search for various hydrogen bond patterns in a unit cell, which contains one
molecule at the center and 8 at the vertexes of the cubic box. The five most popular
patterns are picked up, which are designated as type-(a) to type-(e) found in
Q-structure of plastic ice. In ice VII, four of the eight vertexes in tetrahedral
positions belong to the sublattice A hydrogen-bonded with the center and the sublattice
B comprises the remaining four forming no HB with the center. The unique pattern
observed in ice VII is type-(a) shown in Fig. 2.9(a) where all the HBs are oriented
correctly to the four vertexes of the sublattice A (“right” HBs) as depicted by yellow
lines in Fig. 2.9. This pattern is the most popular one even in plastic ice. The others
suffer from the lack of HB and/or from orientational faults containing “wrong” HBs
marked by green lines. Type-(b) has one wrong HB out of its four HBs, which
orients toward one of the vertexes of the sublattice B. This is a bridging molecule
disturbing a nominal HB network by combining the two sublattices. One of the four
HBs is missing but the remaining three are right HBs oriented correctly in type-(c).
Type-(d) contains the same number of HBs as type-(c) but one of them is a wrong HB.
All three HB partners are clustered on one side of the cell as shown in Fig. 2.9(d).

There is an extra (necessarily wrong) HB in type-(e) with four right HBs. The
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occurrence of those patterns is 28%, 21%, 13%, 9%, and 5% for type-(a) to type-(e),
respectively. Each molecule at the center has a different energy and therefore
occurrence of those patterns in the local connectivity seems to lead to asymmetry in the
binding energy distributions for plastic ice. The Coulombic binding energy
distribution of the central molecule for each type is shown in Fig. 2.10. Type-(a) has
a slightly lower energy than type-(b), which originates from the functional form of the
pair potential; the most favorable directions are those heading to the tetrahedrally
oriented protons and lone-pairs. Type-(e) has the lowest energy among the five types
due to its five HBs although one of the HBs may be a little weaker than that in type-(a)
by about a few kJ mol'. This weaker HB is consistent with the higher energy in
type-(b) compared with type-(a). In contrast to the observation on the existence of
one wrong HB, the energy in type-(d) is lower than in type-(c). Since three HB sites
in type-(d) are biased spatially, there might be some possibility for another molecule to
interact with intermediate strength. The other patterns are collected to one group in

Fig. 2.10.
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Type-(b) Type-(c)

Figure 2.9

The five most popular hydrogen-bonding patterns in plastic ice at 12 GPa and 640 K.
Spheres denote oxygen, which are divided into two subluttices, A and B, by colors blue and
red. Blue and yellow cylinders correspond to the hydrogen bonds, which connects water
molecules on the same sublattice and bridges different sublattices, respectively. Hydrogen

atoms are not illustrated.
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Considering fairly high occurrences of type-(c) and (d) as well as the patterns
other than (a) to (e), they are responsible for the asymmetry in the binding energy
distribution in plastic ice. There are a large amount of hydrogen-bonds which do not
orient to the tetrahedral directions such as type-(b), (d), and (e). Frequent occurrence
of these patterns leads to fusion of the two sublattices rather than defect-containing ice
VII. It is noted that there are a large amount of unit cells with orientational (HB)
defects. Each sublattice may not be connected by way of the unit cells having perfect
local orientation, i.e., type-(a). In fact, the site-percolation threshold for the diamond
structure is known to be 0.43, which is much higher than the occurrence of type-(a),

0.28 [38,39].
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24 Conclusion

In the present study, the properties of the plastic ice phase are elucidated by the
potential energy distributions decomposed into the Coulombic and LJ interactions and
by classification of the local structures. In comparison with liquid water and ice VII
in density-adjusted I- and Q-structure, the following three characteristics of the plastic
ice phase are found.

Firstly, the LJ interaction in the plastic phase is found to be more repulsive than
that in ice VII even though water molecules are placed on the BCC lattice sites in both
phases. In the plastic phase the water molecules rotate at the cost of potential energy
in order to acquire rotational entropy, which is estimated to be about 12 J K™' mol™".
This value is to be compared with 5 J K™ mol™' for the translational one at the melting
from plastic ice to liquid water. A large amount of HBs are broken due to the thermal
motions at high temperatures and the hydrogen bond connectivity of water molecules
is fairly disturbed, which causes the dislocation of the molecules in the plastic phase
from their ideal lattice points.

Secondly, Coulombic interaction in liquid water is stronger than that of any other
phase. In crystalline solid, the positions of molecules are fixed around the lattice
points and the Coulombic interaction is well balanced with the LJ repulsion. In liquid
water, on the contrary, a pair of water molecules can be close together, say, within 0.25
nm. This short distance brings the stronger LJ repulsion but it is compensated with
the stronger Coulombic attraction.

Finally, we have focused on the asymmetric distribution in the Coulombic binding
energy of plastic ice. The main peak of the distribution is contributed from the water
molecules having four regular hydrogen bonds with surrounding molecules while the
shoulder comes from the disordered local structures, which have only three hydrogen

bonds. More than half of the water molecules have a HB bridging the two sublattices.

42



Thus the sublattices of ice VII are fused in the plastic ice.
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Chapter 3

Rotational dynamics of plastic ice

The work here focuses on the dynamics of the water molecules in the phases at high
temperature and pressure, i.e., ice VII, plastic ice, and liquid water. The
hydrogen-bond correlation function providing the lifetime of hydrogen bonds is
compared to the reorientational correlation function to examine a relation between a
rotation of an individual molecule and an energetic relaxation process. The
hydrogen-bond correlation function of plastic ice decays in a way similar to liquid but
it converges to a finite value as seen in ice VII, reflecting the rotational motion of the
water molecule at the fixed location. In addition, the relaxation times of the two
correlation functions for plastic ice resemble one another, confirming the fact that only

the rotational motion invokes the hydrogen-bond rearrangements in plastic ice.
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3.1 Introduction

Water is the most ubiquitous substance on the earth and is indispensable for
biological systems. While a water molecule is simple, water exhibits various
versatilities and anomalies, that is, diversity of the condensed phases. In fact, the
number of crystalline structures exceeds 16 according to experimental investigations
and theoretical predictions as of the present time [2,24-26]. In addition, the most
unique feature in condensed phase is its polyamorphism, which may be associated with
the other anomalies in supercooled liquid state [40].

The existence of the plastic phase (plastic ice) — the almost free rotational phase
with no molecular diffusion — has been predicted by computer simulation, as one of
the new stable states of water in high pressure region [13,16,41]. Plastic ice
intervenes between ice VII and the supercritical fluid water as the two lattice types:
one is the body-centered cubic (BCC) lattice and the other is the face-centered cubic
(FCC) one. The BCC-type plastic ice exists under lower pressure while the FCC-type
one does un- der higher pressure. The various properties of plastic ice have been
elucidated in Refs. [13] and [16]. Ref. [16] poses an extended phase diagram of water
including the plastic phase. There are, however, unexplained structural and dynamic
properties of plastic ice.

In the present work, we analyze the rotational dynamics of ice VII, plastic ice, and
liquid water at high temperature and pressure in order to elucidate the characteristics of
the dynamics in plastic ice. The reorientational correlation function and the HB
correlation function are calculated from the simulation results and the characteristic

relaxation time of liquid water and plastic ice are examined.
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3.2 Methods

In order to scrutinize the HB dynamics in plastic phase by comparing it with two
other phases, three representative states are chosen at a fixed pressure of 12 GPa.
Those correspond to crystalline ice VII, plastic structure, and liquid water, which are
obtained at 7' = 500, 640, and 960 K. Molecular dynamics simulations are performed
for longer time than 8 ns with an initial ice VII structure. The temperature and
pressure are fixed by Nosé-Andersen thermo-barostat [42-44]. A simple periodic
boundary condition is applied to a cubic box containing 432 water molecules.
Water-water interaction is described by the TIPSP potential, which is made of two
protons each with a positive fractional charge, two negative charge sites, and an
oxygen nucleus interacting with Lennard-Jones potential [22]. The resultant densities
of ice VII, plastic ice, and liquid water turn out to be 1.8703, 1.7699, and 1.6393 g cm™

3, respectively.
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3.3 Results and discussion
3.3.1 Mean square displacement and reorientational correlation function

In Fig. 2.1 in Chapter 2, I showed the mean square displacement (MSD) defined
by Eq. 2.1 and the reorientational correlation function (RCF) defined by Eq. 2.2. In
ice VII, individual molecules stay at the original positions and that the MSD of ice is
constant after a short rise period caused by vibrational motions. The RCF is also
constant, with an initial decay to 0.95 due to the librational motions. In liquid water,
on the other hand, the MSD increases linearly with time and orientational correlations
are lost within 1 ps after a rapid decrease by the librational motions. Plastic ice
behaves similarly to crystalline ice in translational motion with a larger amplitude of
vibrations while its rotational motion is a close analogue of liquid. The ice-like MSD
indicates the nondiffusional molecular motion in the plastic phase. Random rotations
of the molecules can also be identified by the convergence toward O of the RCF [41].

Relaxation time of rotation is discussed in subsection 3.3.3.
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3.3.2 Hydrogen bond correlation

Individual water molecule in the liquid and the plastic phases makes rapid and
incessant rotational motions, which inevitably induce the rearrangements of HB
network structure. While, the way of the alternation and the lifetime of the HB
depends on the phase. It is therefore intriguing to examine the HB time correlation
which may feature the possible partners of HBs as well as the HB lifetime. In order
to shed a light on these properties, we adopt a history-independent correlation function
of HB [45]. Itis given as

(6hij(0)0hi;(t))
([6hi;(0)]2) (3.1)

CHB (t)

where h;;(t) is a binary function defined as h;;(t) = 1 if a pair of water molecules i
and j are hydrogen-bonded, and h;;(t) = 0 otherwise, and §h;;(t) = h;;(t) — (h).
The angular bracket indicates an average over all the pair of molecules and the time
origin. In the infinite system, (h) is zero and that the formula is written in much
simpler form. The averaged number of HBs per water molecule, say nyg, is defined
as
nup = (N — 1)(h). (32)
A hydrogen bond is defined according to the mutual geometry of a pair of
molecules; the distance between an O atom on one molecule and a proton on another
molecule is less than 0.22 nm and the angle for a vector connecting two oxygen nuclei
and the OH arm is within +30° [41].
cyg(t) indicates a probability of finding a hydrogen bond at the molecular pair i
and j which are hydrogen-bonded at time t = 0. Decay of cyp characterizes the
lifetime of the bond. cyg(t) converges to the different values in the different phases
reflecting the HB network rearrangement dynamics. In the liquid phase, cyg(t)

converges to zero. This is because the hydrogen-bonded pair at # = O breaks off its
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adjacency after a long time by molecular displacements. In ice, on the other hand,
cyp remains to be around unity after a long time, because all the HBs are maintained
except the case when they are broken by thermal vibrations with probability g. cyp
is then expected to converge to (1 — g) in a large system. In the plastic phase, HB
rearrangements are allowed but the molecules cannot be dislocated from the initial
position. The bond initially connected will be connected again with a certain
probability after a long time. In such a case, cyg remains finite. cyp 1s expected
to converge to p = nyg/N, in a large system, where n. is the coordination number.
Here nyg in the plastic phase is 3.08 and if n. is ideally set to be 8 (the number of
neighbors per molecule in BCC lattice), the expected asymptotic value is 0.385.

Figure 3.1 shows that cyg(t) in liquid eventually decays to 0. This behavior is
roughly similar to that in the RCF. This suggests that a HB cleavage is mainly
dominated by rotational motion of an individual molecule. Convergence to zero is,
however, realized by additional diffusional motion. A very fast initial decay of
cyg(t) for ice VII is also observed in the reorientational correlation function and
therefore this decay is associated with the librational motions. A more interesting
decay is indeed obtained for cyg(t) for the plastic phase. A hydrogen bond once
formed in plastic ice exhibits a decay similar to liquid water. However, an asymptotic
behavior is different. cyg(t) converges to a finite value, 0.323, indicating the
recurrence of the HBs. Thus, it is another evidence that water molecules rotate but do

not translate diffusively.
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The hydrogen bond correlation functions of the three phases against time. Blue, black,

and red correspond to ice VII, plastic ice, and supercritical fluid water, respectively.

50



3.3.3 Relaxations of reorientational and hydrogen-bond correlations

Figure 3.2 shows the short-time behaviors of the reorientational and the HB
correlation functions for the plastic and the liquid phases. After the initial very fast
decay corresponding to the librational motions, a linear decay is observed. The
relaxation times for the reorientational and the HB correlation functions of the plastic

and the liquid phases are listed in Table 3.1.
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Reorientational and HB correlation functions plotted against time in lower and upper
panels, respectively. Red and black lines indicate the liquid and the plastic phases,

respectively. Dashed lines are approximations with the sum of two exponential functions.
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Table 3.1

Relaxation times of various correlation functions in the units of pico-second.

Reorientational Hydrogen bond

Plastic 1.01 0.839

Liquid 0.223 2.54
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The clearest characteristic in Fig. 3.2 and Table 3.1 indicates the relevance of the
slopes (relaxation times) between the plastic and the liquid phases in the RCF and the
cyg- Thatis, the RCF of liquid water has a shorter relaxation time than that of plastic
ice, reflecting the temperature difference in both phases, while the relaxation time of
cyp for liquid is much longer than that for plastic ice. To elucidate the origin of the
discrepancy, they are compared from the different aspect. The relaxation time of
plastic ice is similar in the both correlation functions, and also close to those of liquid
water at ambient condition [45,46]. Since each water molecule in plastic ice rotates at
a fixed location and that the cyg(t) depends mainly on the rotational motion, both the
RCF and the cyg of plastic ice decay similarly. A prominent difference is found in
the relaxation times of the two correlation functions of liquid water where cyg decays
much slower than the RCF. In order to explain it, we focus on the liquid water’s
relaxation time of cyg, 2.54 ps. The MSD at time ¢ = 2.54 ps is about 7.8 Az, i.e., the
deviation from the position at time origin is 2.8 A on average. This distance
corresponds to the distance between nearest-neighbor water molecules at the present
pressure and temperature [13]. Displacement of the water molecules from the initial
location provokes the permanent dissociation of the hydrogen-bonded pairs. Thus the
relaxation time can be considered as the lifetime of HBs induced by molecular
translations.

Debye-Stokes-Einstein relation [47] relates the rotational relaxation time 7; with
viscosity n by t; = 4nnR3/kgT, where R is the hydrodynamic radius of the
reorienting molecules, kg the Boltzmann’s constant, and 7 the temperature. It
denotes that the relaxation time is proportional to the viscosity and the inverse
temperature. Rotational relaxation time of HDO at ambient condition is 2.5 ps to 3.0
ps [46,48] and that of H,O should be shorter owing to its smaller moment of inertia.

The viscosity n of water at 960 K and 12 GPa is comparable to that at ambient
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condition [49]. By taking them into consideration, the rotational relaxation time of
liquid water at 960 K and 12 GPa is estimated to 0.5 ps, which is in quite a good
agreement with our calculation result.

There is no information available for the HB lifetime of the supercritical fluid
water at high pressure, but Petrenko et al. showed by computer simulation using
TIPAP-HB model that the HB lifetime of the supercritical water depends only on
density and is independent from temperature [S0]. Their plot suggests the HB
lifetime at the present density will be longer than 2 ps, which is in good agreement
with our result.

Molecular dynamics simulations with SPC/E water model elucidates that the HB
lifetime of water at ambient condition is comparable to the reorientational relaxation
time [45,51]. In our results at high temperature and pressure, on the other hand, they
differ about one order of magnitude, suggesting that the mechanism of the HB
rearrangements at high temperature and pressure, namely supercritical fluid water, is
different from normal liquid water. Further analyses are awaited. The relaxation

times for plastic ice are verifiable by the ultrafast infrared spectroscopy [46,48].
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34 Concluding remarks

In this paper, we discuss the reorientational dynamics of water molecules in
plastic ice, ice VII, and liquid water at high temperature and pressure. The HB
correlation function in plastic ice exhibits the intermediate behavior between ice VII
and liquid state. That correlation decays like liquid but it converges to a finite value
like ice VII, reflecting the rotational motion of a water molecule at a fixed location. It
is found that the relaxation time of the HB correlation function is much longer than
that of the reorientational correlation function for liquid water at high temperature and
pressure, while the relaxation times of the two correlation functions for plastic ice are
comparable.  This is probably because only rotational motion invokes HB
rearrangements in plastic ice while a translational motion is coupled in liquid water
giving a rise to an HB relaxation.

It should be noted that discussion and conclusion in this paper are essentially
independent from the HB definitions. We also investigate HB correlations employing
another major HB definition according to the pair interaction energy, in which two
water molecules are regarded to be hydrogen-bonded if the pair interaction is lower
than —=16 kJ mol”'. 1In fact, qualitative features in HB decay are found to be

insensitive to the definition of HB.
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Chapter 4

Yet another criticality of water

A phase behavior around the transition between ice VII and a plastic phase of water is
investigated by molecular dynamics simulation and the subsequent analysis on the
basis of Landau theory. The prior works have predicted that the phase transition
between ice VII and plastic ice is a first-order transition on the ground of a weak
hysteresis and so on. Rigorous survey in the present report, however, augments their
prediction with new evidences that a first-order phase transition line gives way to a
second-order one at higher pressures, where a tricritical point joins these phase
boundaries together. Critical phenomena are also observed whereby, other than that
associated with the hypothetical critical point in the deeply supercooled state, which
could influence the physical properties in a wide range of temperature and pressure.
A new critical behavior is affirmed by the result that the scaling law holds at any
pressure on the second-order phase transition line for which the critical exponents are
estimated. We introduce an appropriate order parameter to obtain the Landau free
energy functional and the change in the functional against temperature accounts for the
phase behaviors. This also enables to estimate the coexistence and the spinodal lines
at pressures below the tricritical point, all of which compensate those obtained directly
by molecular dynamics simulations. These results allow us to anticipate that the
critical fluctuations may give us clue for determining the phase boundary

experimentally.
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4.1 Introduction

Water has at least 16 crystalline polymorphs including metastable states and a
non-molecular solid [1]. Almost all the polymorphs do not occur on Earth but surely
distribute at many places inside and outside the solar system, and often play crucial
roles in the planetary geology [52]. Among the molecular crystalline phases, ice VII is
one of the densest ices and also occupies the widest area on the pressure-temperature
plane. [Each polymorph of water has its mystery, and so does ice VII. Melting curve
of ice VII to high-pressure liquid water has not been settled by experiments [3—10].
We have proposed the intervention of a plastic phase of ice (plastic ice) between ice VII
and liquid water based on molecular dynamics (MD) simulations and the free energy
calculations [13], which enables to account for large gaps among various experimental
curves of ice VII[13,15,16]. In plastic ice, water molecules are fixed at the lattice
points while they rotate freely [13,15,16,41].

The phase transition between ice VII and plastic ice is reported to be first-order on
the basis of 1) appearance of small hysteresis in the forward and backward transition
between them; and ii) the slopes of two free energy curves at the intersection [13,15,16].
On the other hand, owing to the proton disorder in ice VII, its structure already acquires
a high symmetry and the transition to plastic ice accompanies only a minor symmetry
change. Thus it can be a kind of order-disorder phase transition of either first- or
second-order [53]. The transition, therefore, deserves a close scrutiny.

Much attention has been paid to the critical phenomena of water. Critical
phenomena are spectacular collective ones accompanying the divergent character in
fluctuations in both time and space. In addition to the trivial vapor-liquid critical point,
water is conjectured to possess the second (metastable) critical point. It will terminate
the coexistence line between two different liquid states of water in the supercooled

region of the metastable phase diagram of liquid water, and its critical fluctuations may



even affect the properties of liquid water at room temperature, which is observed as the
anomalies of water [54-57]. Thus the single critical point wields influences to a wide
area of the phase diagram, and that is the different point from the first-order phase
transitions.

In the present work, the phase behaviors are reexamined in more detail using
TIPSP-E water model [23]. It is found that the behaviors are fairly complicated, that is,
a first-order phase transition (“coexistence”) line gives way to a second-order
(“critical”’) one at higher pressures, where a tricritical point joins the boundaries
together at around 13.3 GPa. A further analysis is made according to the Landau
theory with an appropriate order parameter as explained below. We estimate the
location of the coexistence and spinodal lines in the phase diagram by exploiting
Landau free energy functional. We also estimate the critical exponents and affirm the
scaling law holds well regardless of pressure. The phase boundaries, shown in Fig.

4.1(a), will be explained in detail in the following sections.
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Figure 4.1 | Phase diagram of ice VII and plastic ice
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Phase boundaries between Ice VII and plastic ice, deduced from computer simulations.
Coexistence and critical lines are plotted with solid and dashed lines, respectively. The
dotted circle indicates the estimated location of the tricritical point (abbreviated as “TCP”).
Phase diagram plotted against the relative temperature from 7,.. T, means the coexistence
temperature (at pressures below TCP) or the critical temperature (above TCP). Solid,
dashed, and dotted lines are the coexistence, critical, and spinodal lines, respectively.
Dotted circle indicates the estimated location of the tricritical point. Squares below 13
GPa are obtained by polynomial expansion of Landau free energy function and the
remaining points are obtained by the finite-size scaling.

Snapshots of ice VII at 455 K (upper) and plastic ice at 456 K (lower). Pressure is 5 GPa.
Only one layer of crystal structure is cropped out. Oxygen atom is painted in chessboard
pattern to clarify the molecular orientation and also gradated from red (-1) to blue (+1)

according to the bond order parameter defined in Methods section.



4.2 Methods
Molecular dynamics simulation.

Ice VII is heated and plastic ice is cooled in isothermal-isobaric ensemble
molecular dynamics simulation [58]. Nosé-Andersen method is used for controlling
temperature and pressure [42,44]. Pressureissetto5,6,7,8,9,10,11, 12,13, 14, 16,
18, and 26 GPa. Cubic simulation cell with the periodic boundary conditions contains
1024, 2000, 3456, or 5488 water molecules. We employ the TIP5SP-E rigid water
model [23], whose pair potential function is represented by the sum of Lennard-Jones
interaction and Coulombic interaction terms. Both interactions are truncated at 0.85
nm and the long-range interactions are corrected by analytical formula [59] for
Lennard-Jones term and by a reaction-field method [23,59] for Coulombic term.
Simulation time is 1 to 10 ns including 500 ps of thermal equilibration time after

heating or quenching.

Hydrogen bond definition.
A hydrogen bond is defined for a pair of water molecule whose intermolecular

oxygen-hydrogen distance is less than 0.22 nm [41].

Order parameter discriminating ice VII and plastic ice.

We introduce an appropriate order parameter distinguishing the essential structural
difference between ice VII and plastic ice. In ice VII, all water molecules are arranged
in body-centered cubic (BCC) lattice and coordinated by 8 neighbors, and each water
molecule is linked to the staggered four out of 8 sites by hydrogen bonds. Note that
there are two alternative ways in placing the bonds on the same BCC lattice to make up
the perfect ice VII structure. Let “A” and “B” denote the twin structures. That is, a

staggered half of 8 neighbors are hydrogen-bonded in twin A that are not bound in twin
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B. We therefore give bond parity a; for all neighboring pairs (i, j) in a BCC lattice: a;
is +1 if the neighboring pair (i, j) is hydrogen bonded in structure A and —1 otherwise.
Water molecules in plastic ice are also bound to the BCC lattice points but are allowed
to change their HB partners almost freely [41]. The bond order parameter for a

molecule i, say ¢,,is defined by
| N
i = 1 Zaijbij’ 4.1)
J

where NN means the nearest 8 neighbor sites of molecule i and b is 1 if there is a
hydrogen bond between molecular pair (i, j) at a given instant and O otherwise. Time
average of ¢; becomes 0 if molecules rotate freely and remains finite if the structure is
fixed to either A or B of the ice VII structure. Order parameter of a system, say @, is

defined as the average over all molecules of the bond order parameter:
1N
S - 4.2
o=y 20 (42)

with N being the number of molecules in the system. ¢ is +1 or —1 for perfect ice VII
and O for plastic ice. Note that there exist water molecules that incessantly change
their orientations even in ice VII by thermal fluctuation, but total flipping between the
twin structures was not observed except in the vicinity of a certain thermodynamic state
in our simulations. Thus the order parameter is designed to distinguish three possible

states (twin ice VII and a plastic ice).

Finite-size scaling.

A finite-size scaling technique is employed for estimating the critical temperature
T, and the critical exponent v for the correlation length of the bond order parameter [60].
We use a formulated scaling hypothesis for a physical quantity A as a function of

temperature (7) and side length of system (L),
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A(T, L) = L¥/" fo(L'7e), 43)
where x, is the critical exponents for A, € = T /T, — 1 is the reduced temperature, and
fa(*) denotes an arbitrary scaling function for quantity A.

In this work, as the physical quantity A in Eq. 4.3, we choose the Binder parameter

defined as a function of the order parameter of system, p=¢(T), by

B(p;T) = %(3 — <<<Z)24>>2>.

The critical exponent for B(¢; T) is known to be zero [61], thus the Eq. 4.3 become

(44)

simple: B(T,L) = f3 (Ll/ "6). One can get T, and v simultaneously in determining the

regression function f5().
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4.3 Results and discussion

Our simulations present a hysteresis at and below 7 GPa in the physical quantities
between heating and cooling processes (Fig. 4.2(a)). Thus the phase transition
between ice VII and plastic ice is apparently first-order one. Also, the density and
potential energy shown in Fig. 4.2(a) indicate that these values are system-size
independent. Structural difference between ice VII and plastic ice is illustrated in Fig.
4.1(c).

At 8 GPa and higher pressures, hysteresis between heating and cooling processes
disappears. Moreover, at pressures not lower than 10 GPa, a high peak in the heat
capacity at constant pressure (C,) is observed, suggesting the emergence of the critical
phenomena and second-order phase transition. Interestingly, such a high peak persists
even at much higher pressure, implying that the first-order phase transition line may not
be terminated by the single critical point but replaced by the second-order phase

transition line that continues to higher pressures.
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Figure 4.2 | First-order phase transition
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Hystereses of order parameter of system (¢), potential energy and density at the first-order
phase transition. Pressure is 5 GPa. Open large and filled small symbols are values for
systems of N=3456 and 1024, respectively, and squares and spheres are values for cooling
and heating paths, respectively.

Landau free energy profiles g(¢; T) plotted against ¢». Only the right half is drawn.

Three temperatures at 11 GPa are exemplified: open circles, filled squares, and crosses
indicate the raw free energy curves obtained from the histogram of order parameters at
618.75,619.5, and 620 K, respectively. Solid, dotted, and dashed lines are 6th-order even

polynomial fits of them.
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Here, we should examine the divergent characters with much caution. When the
system size is not large enough, incessant alternations occur between states, and the
first-order phase transition looks as if it were second-order. Thus, a simple time
evolution of a thermodynamic property by computer simulation is not useful to
discriminate whether the phase transition is first-order or second-order. In the present
case, such ambiguity of phase transition arises at pressures between 8 and 13 GPa. To
overcome this difficulty, we employ two different approaches: i) associating the
observed transition with a phenomenological free energy (“Landau free energy”)
profile [62] along the appropriate transition path in order to determine the asymptotic
behavior of spinodal and coexistence lines; and ii) applying finite-size scaling [60] in
order to determine the critical temperatures.

The Landau free energy is defined as a function of the order parameter of system,
¢ (=¢(T), defined in Methods section), by g(¢; T) = — kT In W(¢p; T), where k is
Boltzmann constant, 7" is the temperature of system, and W(¢; 7T) is the normalized
probability density that the order parameter has value between ¢ and ¢+d¢. Fig.
4.2(b) shows g(¢; T) in the positive ¢ range for several temperatures at 11 GPa. One
can see g(¢; T) has three minima at an appropriate temperature, suggesting that three
states can coexist if the system size is large enough. g(¢; T) curves are then expanded
in sixth-order even polynomial functions whose minima and inflection points can be
determined analytically. The coexistence and spinodal temperatures are estimated
from the dependence of polynomial coefficients on the temperature. (Detailed
procedure is described in Appendix for Chapter 4. See Fig. A4.1.) These enable us
to estimate the first-order phase transition line extended up to 12 GPa where a direct
observation of the hysteresis is difficult. Estimated coexistence and spinodal lines are

listed in Table 4.1 and plotted in Fig. 4.1(b).
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Table 4.1 | Coexistence and spinodal temperatures

T,

. indicates coexistence temperature.

T, and T, indicate lower and higher spinodal

temperatures, respectively. How to determine 7., T,, and 7, is described in Appendix for

Chapter 4 in detail.

Pressure / GPa T./K T,/ K T,/ K
12 640.28(3) 639.74(3) 640.47(6)
11 619.66(5) 618.65(1) 620.00(7)
10 597.69(8) 596.3(4) 598.16(9)
7 (522)7 517.5% 523.5%
6 (494)7 486.5* 496.5*
5 461)T 451.5* 464 .5*

* Determined by the hysteresis between cooling and heating processes.

T Interpolated from two spinodal temperatures using an approximation described in Appendix

for Chapter 4.
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Next, we employ a finite-size scaling technique for pressures at and above 10 GPa
to examine the scaling behaviors as well as critical temperatures. At these pressures,
as mentioned above and shown in Fig. 4.3(a), the peak position and height of C, change
by system size, suggesting the criticality of the finite-size system. We show the scaled
heat capacities at constant pressure at 14, 16, and 18 GPa in Fig. 4.3(b), which indicate

the scalability of the quantity against the system size.
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Figure 4.3 | Second-order phase

transition

(a) The heat capacity at constant pressure
(C,) at the second-order phase
transition. Pressure is 16 GPa. Open
circles, crosses, and dots correspond to
systems of size N=1024, 2000, and
3456, respectively. Dashed line
indicate T( N = « ) estimated by finite
size scaling technique. Solid curves
are for eye guide.

(b) The scaled heat capacities at 14, 16,
and 18 GPa against the scaled reduced
temperature, which are based on the
scaling hypothesis Eq. 4.3 in Methods
section. Here, v and « are the critical
exponents for the correlation length and
for C,, respectively. We get v by the
finite-size scaling technique (see
Methods section) and a by fitting C(7)
with the relation C, ~ | T/T,— 1 I'*
(written in the text in more detail; see
Fig.4.4(c)). Estimated values of T,
v, and a at each pressure are tabulated

in Table 4.2.
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The results mentioned so far make us find that the first-order phase transition line
continuously gives way to the second-order one as the pressure increases. The Landau
theory tells us the tricritical point should intervene between the two types of phase
transition line. Pressure dependence of the spinodal lines in Fig. 4.1(b) suggests the
singularity at around 13.3 GPa, nevertheless scaling behavior seems to persist even at
subcritical pressures because of the finite system size.

In determining the critical point at each pressure, we first apply the finite size
scaling technique to the Binder parameter to obtain the critical temperature at
thermodynamic limit, 7,(N = %), and the critical exponent v for correlation length (see
Methods section). The estimated critical line above the tricritical point at 13.3 GPa is
also shown in Fig. 4.1. We then assess three other critical exponents a, 3, and y, for
C,, ¢, and thermal fluctuation of ¢ (), respectively, using the system of size N=3456.
Their asymptotic behaviors, C, ~ |€]™%, ¢ ~ le|®, and Xo ~ |€|™V, where €=
T/T. — 1 is the reduced temperature, allow us to estimate them by regression method.
Divergent behaviors of these quantities and their linear approximations are shown in Fig.
4.4(a). Estimated critical temperatures and exponents are listed in Table 4.2 [63—-66].
Critical exponents are found to be almost independent from pressure. These values are
different from the critical exponents for 3-dimensional Ising model, and rather close to
the numerically estimated tricritical exponents of Blume-Capel spin-1 Ising model and
those determined experimentally for ammonium chloride crystal, which also exhibit the
crossover from first- to second-order phase transitions. At 26 GPa, which is the
highest pressure in the present work, the exponents slightly shift to those for 3D Ising
critical point. Note that all the obtained exponents above 10 GPa roughly obey

Rushbrooke’s scaling law [67]: a + 23 + v =2 (Fig. 4.4(b)).
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Table 4.2 | Critical temperature and exponents

Pressure T (N=») a B y v a+2f+y
/ GPa /K T<T. T<T, T<T.
26 855.0(2) 041(3) 0.179(1) 1.03(4) 0.55(4) 1.81(5)
18 746.5(2) 0.53(4) 0.172(1) 1.16(5) 0.58(4) 2.04(6)
16 714.3(2) 0.59(4) 0.165(1) 1.09(5) 0.55(4) 2.01(7)
14 679.5(2) 0.58(3) 0.157(2) 1.16(3) 0.55(5) 2.05(4)
13%* 660.2(2)* 0.60(4) 0.152(1) 1.18(4) 0.55(7) 2.08(6)
12 640.3(2) 0.63(5) 0.139(1) 1.12(6) 0.55(7) 2.03(8)
11 619.8(1) 0.61(3) 0.132(1) 1.09(3) 0.55(6) 1.96(4)
10 597.1(3) 0.58(4) 0.123(1) 1.13(6) 0.55(11) 1.95(7)
Critical point by mean field approx. 0 172 1 172 2
Tricritical point by mean field approx.* 172 1/4 1 172 2
Tricritical point of Blume-Capel model® 0.6 0.26 1.12 0.505 2.24
Tricritical point of NH,C1 by experiment 0.57¢ 0.16°

a Ref. 28
b Ref. 29
c Ref. 30
d Ref. 31

* Closest data point to the estimated tricritical point (13.3 GPa, 665 K).

71



Exponents

(@)

2.5
a+2p+
2 7}*6{29*0**4}**@ ,,,,, ﬁ,,y,,,,
@
1.51
% o ] Y
1 20 ¢} 5l
(b)
0-570 0®5o0 o) o a |
(o}
00000 o o B ©
0 Il Il Il Il Il Il
10 14 18 22 26

Pressure / GPa

72

Figure 5.4 | Asymptotic behavior of
physical properties in the vicinity of the

critical point

Heat capacity at constant pressure (C,),
order parameter of the system (¢), and
fluctuation of ¢ (y,) are plotted against
the reduced temperature 7/7T,(N) — 1
below the temperature of the maximum C,
in finite size system, 7.(N), in log-log
plot. The system size is N = 3456. The
fitting lines embody the critical
exponents.

Plots of estimated critical exponents «, 3,
y, and their sum, o + 2/ + y, against
Dashed line indicates

temperature.

Rushbrooke’s scaling law: a + 25 + y = 2.



Extrapolation of spinodal lines suggests that the tricritical point for TIPSP-E water
model resides at around (7, p) = (665 K, 13.3 GPa). However, we should be careful
enough to tell where the actual tricritical point is, since even the phase transition
between ice VII and plastic ice has not been observed experimentally, and also the
water model is not designed so as to reproduce the properties of water at such high
pressures and temperatures precisely. We just anticipate that the critical fluctuations
may give us clue for determining the phase boundary between them by experiments.
(Comparison with the precedent researches is made in Appendix for Chapter 4. See
Fig. A4.2.) Theoretical studies also predict the plastic ice polymorphs of close-packed
structure at the present thermodynamic conditions [16]. However, structural phase
transition from ice VII has not been identified experimentally. More careful surveys
are awaited both experimentally and theoretically.

Note that similar phase behavior was also observed in the case of order-disorder
phase transition in NH,CI crystal [68]. The phase transition between a disordered
phase II and an ordered phase IV of NH,Cl is first-order below the tricritical point at 1.5
GPa and second-order above it. In the phase transition from II to IV, NH,CI crystal
acquires tetrahedral symmetry by fixing the orientation of NH," ion, similarly to the
case of plastic to VII phase transition where orientations of water molecules are fixed
and the crystal acquires tetrahedral symmetry. It is therefore worthwhile to address a
similarity and a difference between ice VII and ammonium halide. The structures of
both crystals have tetrahedral arrangement doubly degenerated in the spatial orientation
of protons. It is this degeneracy that gives rise to the sixth-order polynomial of an
appropriately chosen order parameter in the Landau free energy, which is, in turn, an
origin of the tricritical point and the phase boundary of second-order transition. The
disordered phase of ammonium halide is still crystalline but the corresponding phase in

ice VII is plastic where the reorientational motion is much faster than that in the

73



crystalline form. This difference seems to be elucidated in the following way. The
cohesion energy to form the crystal in ammonium halide is mainly due to the
Coulombic interaction between two sorts of ions and the orientational order is governed
by a different interaction from the cohesive energy. On the other hand, both cohesion
energy and orientational ordering are dominated by hydrogen bonds in ice VII. The
orientational disordering in ice VII necessarily accompanies breaking of a fairly large
number of hydrogen bonds while keeping the basic lattice structure intact because of
high pressure. (This situation should be distinguished from occasional breakdown and
recovery of local hydrogen bond network involving only several molecules, which may
take place even at a low temperature.) Such a disordering in ammonium halide is
caused by a rather small amount of energy compared with the ionic interaction and
therefore the transition is observed at low temperatures. This difference could be a
main source of appearance of the plastic phase in ice VII. The role of hydrogen bonds
becomes less significant with increasing the pressure (density) and this leads to
vanishing the first-order transition under high pressure. That is, compression
undermines the tetrahedral coordination of hydrogen bonds and the packing effect
gradually prevails so that the second-order transition takes over the first-order one.

We should also mention that we limit our calculation up to 26 GPa because of the
reliability of rigid TIP5SP-E water model. Experimentally, ice VII changes to ice X at
62 GPa and ambient temperature, in which the OH bond is symmetrized [69]. The
energy barrier for proton hopping in ice VII will become lower from much lower
pressure than the VII-X phase boundary, but rigid water models cannot deal with the
migration of hydrogen atoms. It is of interest how the critical line approaches and
connects to the phase boundary with ice X, and how the critical behavior changes
accordingly. The phase behaviors of ice VII and plastic ice at higher pressure should

be investigated by more realistic method, such as the ab initio MD technique.
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We want to stress the importance of analyzing the critical phenomena of molecular
system. Several decades’ researches on critical phenomena by computer simulations
have been devoted mainly on spin models. However, phase diagram of the real
material is more complicated than that of spin models, and the critical point is usually
not isolated on the phase diagram. Critical fluctuation may affect the adjacent phase
transition. Even the metastable critical point might play very important roles in phase
behavior, as we learnt from the studies on second critical point of water [70]. Water
has many polymorphs and many other order-disorder phase transitions according to the

proton disorder. There might be another criticality yet to be discovered.
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Appendix for Chapter 4
Estimation of spinodal and coexistence temperatures via polynomial fitting of
Landau free energy functional.

Here we describe the method to estimate the spinodal and coexistence
temperatures at a given pressure by fitting the Landau free energy functional with a
6th-order even polynomial, which is defined as a functional of the order parameter ¢
as follows:

9(¢) = 7'¢” + " + uee”
/ /

=us (0" + 2t 4 6°)
= ug(r¢? +uag" + ¢°), (A4.2)
where we redefine the coefficients as r =r'/u® and u, =u,'/u®. We
assume ug 1s always positive by stability condition. When u, < 0, this polynomial
has three minima at ¢ <0 and at two non-zero ¢ values with different sign.
Differentiation of this polynomial readily tells us that the coexistence of the three
states, i.e., the condition where the values at three minima are the same, occurs when
r = u,/4, and the spinodal points correspond to the condition where the number of

minima changes, which occurs when 7 = 0 or r = uZ/3.

Therefore, when the values r —u,/4, r, and r —u,/3 are plotted against
temperature, their intersection points with the x axis (temperature axis) correspond to
the unbiased estimates of the coexistence and two spinodal temperatures, respectively.
With the real data obtain by the simulation, the se values change almost linearly
against temperature in the vicinity of the phase boundary and therefore we can estimate
the intersection points fairly precisely. Fig.A4.1 illustrates the actual process of

estimating these temperatures.
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Blue, red, and green points are values v, 7 — uy/4,and r —u,/3 obtained by fitting the

Landau free energy functional with 6th-order even polynomial (Eq. A4.1), respectively.

Intersection points of the linear fitting lines of them with the abscissa axis give the unbiased

estimates of spinodal and coexistence temperatures. Pressures are 10, 11, and 12 GPa.
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When r changes linearly and u, is constant against temperature, we obtain a
simple relation between coexistence temperature 7, and lower and higher spinodal
temperatures 7, and 7', that is

T. —To = 3(Th — T¢). (A4.2)

Actually, one can see this relation approximately holds at the pressures between
10 and 12 GPa in Fig. 4.1(b). We therefore also make use of this relation to estimate
the coexistence temperature from two spinodal temperatures below 10 GPa where
determination of coexistence temperature by direct molecular dynamics simulation is

difficult.
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Comparison with experimental data.

Shown in Fig. A4.2 are the phase boundaries between ice VII and supercritical
fluid water determined by experiments [3—10] and by computer simulations [13,16].
Note that the phase boundaries obtained by Takii et al. [13] and by Aragones et al. [16]
by computer simulations have two branches corresponding to fluid-plastic and

plastic-VII transitions.
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Figure AS.2 | Phase boundaries between ice VII and the supercritical fluid
water

Takii (the water’s potential model is TIPSP) [13], Aragones (TIP4P/2005) [16], and
Himoto’s data (the present work; TIPSP-E model) are obtained by computer simulations;
other data are by experiments [3—10]. Takii and Aragones’ data include the melting points
of plastic ice to the fluid water. The red star in Himoto’s series indicates the pressure and

temperature of the tricritical point discovered in the present work.
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