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Chapter 1 

General introduction
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1.1  Ice VII: a polymorph of ice  

There is no material that has the greater number of structural forms than that of 

water.  Experimentally, so far, 16 different crystalline ice phases (“the polymorphism 

of ice”) have been confirmed to exist [1].  The crystalline ices identified by 

experiments have been assigned numbers, such as ice Ih, Ic, II, and the latest XV.  The 

ice polymorph comprises metastable ices and non-molecular ones as well as stable 

molecular crystals: ices Ic, IV, IX, XII, and XIV are molecular metastable phases; ices 

X and XI1 are non-molecular stable phases.  It was very recent that the latest-found ice, 

ice XV, was identified by Saltzmann et al. [2].  Therefore, there is a strong likelihood 

that yet another ice phases are latent in phase diagram.  Updating water’s phase 

diagram (Fig. 1.1(a)) is still one of the most challenging and significant scientific 

themes.  

                                                
1 There is confusion in allocating the number XI; one for proton-ordered form of ice Ih and 
another for hexagonal ice of symmetrized proton. 
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Figure 1.1 

(a) The phase diagram of water.  Some ice phases are not shown.  With bracket corresponds 

to metastable phase. 

(b) The prior experimental melting curves of ice VII [3–10].  Each label for plot indicates the 

first author and the publication year of the paper. 

(c) The unit-cell structure of ice VII.  Sphere is the position of a water molecule.  The two 

hydrogen-bond networks are depicted by blue and cyan lines. 

(d) Orthographic snapshots of ice VII (left) and plastic ice (right).  Blue spheres are oxygen 

atoms and cyan ones are hydrogen atoms.  No hydrogen bond is drawn.  The lattice 

structure in plastic ice is the same as that in ice VII, but plastic ice does not have 

hydrogen-bond network due to its almost-free molecular rotation. 
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Water preserves its molecular framework up to about 20 GPa.  The most dense 

ices in molecular crystalline phases are ice VII and ice VIII, which coexist at a pressure 

higher than ~2 GPa in the phase diagram, as shown in Fig. 1.1.  Ice VII is a 

self-clathrate, where proton-disordered two diamond-type hydrogen-bond networks 

interpenetrate each other (Fig.1.1(c)).  On the other hand, in terms of molecular 

configuration, the unit cell of its lattice structure is body-centered cubic (BCC) lattice.  

Ice VIII is the proton-ordered counterpart of ice VII, whose lattice has a lower 

symmetry and is tetragonal. 

The first report of the existence of ice VII dated back to 1937, by Bridgman [11].  

Since then, however, the melting curve of ice VII has yet to be settled by experimental 

works [3–10,12].  The different experimental methods have resulted in the different 

melting curves and the discrepancy spreads wider as pressure increases.  Several prior 

experimental melting curves of ice VII are collected in Fig. 1.1(b).  Most of the earlier 

experimental works evaluated the melting points by the change in the volume of system, 

while most of the late experimental surveys on the melting of ice VII were made by 

direct (visual) observation.  Differences among methods make it difficult to identify 

the correct melting curve. 
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1.2  The appearance of plastic ices in computer simulation  

In 2008, Takii, Koga, and Tanaka suggested a distinct interpretation as to the 

problem that the melting curve of ice VII had not been identified [13].  Their report 

stated that when ice VII is heated in molecular dynamics (MD) simulation, it melts not 

to liquid but to plastic phase, in which each molecule can rotate freely but cannot move 

away from certain lattice point (Fig.1.1(d)).  Although there are many kinds of 

materials that possess plastic phase [14], the report by Takii et al. (Ref. [13]) is the first 

one regarding the plastic phase of water.  The tentative name for the plastic phase of 

water is “plastic ice,” which has no official name because of the lack of experimental 

identification. 

Computational results and various analyses in the paper of Takii et al. strongly 

encourage the possibility for the existence of plastic ice [13].  Moreover, in 2009, 

Aragones et al. conducted the further computer simulations so as to confirm the plastic 

ice; and they also found, in higher-pressure region, another plastic ice whose structure 

differs from what Takii et al. had reported [15,16].  That the experiments have not 

taken the plastic phase of ice into account may be a reason for the discrepancy of the 

experimental melting curves of ice VII.  Therefore, it is anticipated that this research 

field will become more active increasingly.
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1.3  Overview of the dissertation 

The keywords in this dissertation are plastic ice and ice VII.  The main topics are 

structural differences, energetic differences, dynamic differences, and the phase 

transition behavior between those two ice phases.  This dissertation consists of this 

chapter and our research outcomes (Chapters 2 through 4). 

In Chapter 2, I report energetic and microscopic structural differences between 

plastic ice and ice VII, and the feature in terms of hydrogen bond in plastic ice.  At 

non-zero temperature, the system continually moves on complicated potential energy 

landscape.  At a basin on the potential energy landscape at which the structure is called 

“inherent structure [17]” or “Q-structure 2 ,” the thermal noise is eliminated and 

accordingly the HB network becomes clear [17–19].  We compare the inherent 

structures of plastic ice and ice VII, whose densities are the same as one another.  We 

show that the isotropic short-range repulsive interaction term’s contribution is greater 

than the Coulombic interaction term, in the total potential energy which is the sum of 

those terms.  (Concerning the water’s intermolecular potential function model is 

described in Appendix for Chapter 1.)  Our survey also reveals that the BCC 

configurations of plastic ice and ice VII are quite different at microscopic level, 

according to the average deviation from the perfect BCC lattice point whose density is 

the same as those phases.  Moreover, it is found that even though the lattice structure 

of plastic ice is BCC, as with ice VII, the total number of HBs in the plastic ice system 

is much smaller than that in ice VII and there are various hydrogen-bonding patterns per 

molecule not restricted to four tetrahedral directions in plastic ice.  

In Chapter 3, we investigate the reorientational autocorrelations and the 

hydrogen-bond autocorrelations of plastic ice, ice VII, and liquid water to evaluate the 
                                                
2 Potential energy minimization so as to find a structure at a basin on the potential energy landscape (i.e., 
an inherent structure) is also often called “quenching.”  The name “Q-structure” originates in the 
“q”uenching and is used in Chapter 2. 
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association between molecular rotation and energetic relaxation.  We check that the 

hydrogen-bond autocorrelation of plastic ice decays like liquid and then settle into the 

non-zero value like crystalline phase, reflecting the free rotation and impermissible 

diffusion of water molecule in plastic ice.  Also checked is that the lifetime of HB 

depends only on the molecular rotational motion, according to the similarity between 

the reorientaional and the HB correlations.   

Finally, in Chapter 4, I show that, in computer simulation, the phase boundary 

between ice VII and plastic ice switches itself from first-order transition line 

(coexistence line) to second-order phase transition line (critical line) and these 

boundaries are joined by a tricritical point.  So far, researchers have concluded that the 

phase transition between ice VII and plastic ice is entirely first-order transition due to 

the observation of hysteresis in thermodynamic quantity profile and the intersection of 

chemical potential profile.  We perform the vast number of MD simulations in very 

wide range of pressure, then observing the critical phenomena such as the divergent 

behavior of the heat capacity at constant pressure as a function of temperature in 

higher-pressure region.  We obtain the typical critical exponents and those exponents 

satisfy a “scaling law” which should holds at a critical point.  Furthermore, the scaling 

raw here is confirmed to hold regardless of pressure, from 10 to 26 GPa.  In addition to 

those results, analyzing a Landau’s phenomenological free energy enables us to find 

that a tricritical point joins the coexistence and critical lines and to estimate the location 

of the tricritical point in the phase diagram at (temperature, pressure) = (665 K, 13.3 

GPa).  The critical behavior on the VII-plastic phase boundary is the third one 

following the trivial liquid-vapor critical phenomena and the hypothetical liquid-liquid 

critical phenomena in the supercooled region.
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Appendix for Chapter 1 

The classical intermolecular potential models of water. 

Here I describe about the water models to simulate water’s properties 

computationally.  Molecular dynamics simulation is a technique to reproduce the time 

development of the system, where the molecules are moved with obeying the 

Newton’s equations of motion,  

	 	 	 	 	 	 	 	 	 (A1.1) 

where 𝐫𝒊 is the position vector of i-th molecule, 𝑚! the mass of i-th molecule, and 

𝜙!" the pair potential energy between i- and j-th molecules.  Numerical integration of 

the Eq. A1.1 gives the 𝐫𝒊 in the future.  So as to do the numerical integration, one 

needs to give 𝜙!" as an analytical form in advance.  For water, 𝜙!" is often given by 

            (A1.2) 

The first term in the right side is the Coulombic potential term and the second term is 

(“12-6 type”) Lennard-Jones potential term.  The parameters 𝑞!  and 𝑞! , are the 

charges on the sites a and b, respectively; the notation of summation means the sum for 

all possible {a, b} pairs.  𝜖 and 𝜎 in the second term are also parameters.  rOO is the 

distance between oxygen atoms in i- and j-th water molecules. 

No model can reproduce the whole water’s properties or phase diagram precisely.  

In Eq. A1.2 for the water models such as TIP4P, TIP5P, and so on, the parameters 𝑞! 

(𝑞!), 𝜖 and 𝜎 are optimized so as to reproduce particular properties ––– for example, 

the maximum density of liquid water at 4°C ––– as well as possible.  The parameters 

for the rigid (i.e., the molecular framework is completely fixed) models3, TIP3P4 [20], 

                                                
3 There are the models whose OH bond’s stretching and HOH angle’s bending are permitted (so-called 
the flexible models). 
4 “TIP” is abbreviated from “Transferable Intermolecular Potential” and “3P” is from “3-Point” sites. 
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TIP4P [20], TIP4P/2005 [21], TIP5P [22], and TIP5P-E [23] are tabulated in Table 

A1.1.  Also, the molecular geometries including negative charge sites for 3-site 

(TIP3P), 4-site (TIP4P and TIP4P/2005) and 5-site (TIP5P and TIP5P-E) models are 

illustrated in Fig. A1.1. 
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Table A1.1 

Parameters and molecular geometry for the potential functions of 3-site (TIP3P), 4-site (TIP4P 

and TIP4P/2005), and 5-site (TIP5P and TIP5P-E) rigid water models.  qH is the proton 

charge, rOH is the length of the OH bond, 𝜃HOH is the HOH angle, rOL is the distance from O to 

a negative charge site (denoted by “L” here), 𝜃LOL is the LOL angle.  The illustrations for 

these models are given in Fig. A1.1. 

 3-site model  4-site  5-site 

TIP3P  TIP4P TIP4P/2005  TIP5P TIP5P-E 

qH / e 0.417  0.520 0.5564  0.241 0.241 

𝜎 / Å 3.15061  3.15365 3.1589  3.12 3.097 

𝜖 / kcal mol-1 0.1521  0.1550 0.18520  0.16 0.178 

rOH / Å 0.9572  0.9572 0.9572  0.9572 0.9572 

𝜃HOH / deg 104.52  104.52 104.52  104.52 104.52 

rOL / Å   0.15 0.1546  0.70 0.70 

𝜃LOL / deg      109.47 109.47 
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Figure A1.1 

Illustrations for geometries of the 3-site (TIP3P), 4-site (TIP4P and TIP4P/2005), and 

5-site (TIP5P and TIP5P-E) rigid models.  In all of these models, positive charges (qH) 

are placed on the two hydrogen atoms.  TIP3P model has a negatively-charged (qL) 

interaction site on oxygen atom.  TIP4P and TIP4P/2005 have a negatively-charged (qL) 

interaction site on dipole vector.  TIP5P and TIP5P-E have two negatively-charged (qL) 

sites on tetrahedral directions.  All these models do not have polarization, that is, qL = – 

2qH for TIP3P, TIP4P and TIP4P/2005; qL = – qH for TIP5P and TIP5P-E.  The values 

for the bond lengths, the angles, and so on in this picture are tabulated in Table A1.1. 
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Chapter 2 

Lattice- and network-structure in plastic ice 
 

We have investigated structural and energetic characteristics of plastic ice, which was 

found in a high-pressure region such as 10 GPa by molecular dynamics simulation and 

free energy calculation.  It was predicted that plastic ice intervenes between ice VII 

and liquid water, in which diffusion is suppressed but rotation is allowed.  In the 

present work, the structure in plastic ice is explored from both local and global view 

points and focus is placed on the local arrangement, the extent of deviation from the 

ideal lattice position, and the hydrogen-bonded patterns.  The roles of the attractive 

interaction and the repulsive part of Lennard-Jones potential are also examined.  It is 

found that the higher interaction energy in plastic ice induces a large dislocation of 

water molecules, which eventually conducts a facile rotation.  There are a large 

amount of hydrogen-bonds which do not orient to the tetrahedral directions.  These 

orientational defects give rise to fusion of the two interpenetrating sublattices of ice 

VII leading to a plastic phase rather than defect-containing ice VII, which results in a 

unique network structure of the plastic ice.  
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2.1  Introduction 

Water exhibits a rich variety of phase behavior in a wide range of temperature and 

pressure, having more than 16 morphologies [2,24–26].  It freezes to a high density 

ice form, called ice VII at a pressure above 2 GPa [27–31].  Ice VII has the highest 

density made of intact water molecules.  Its structure is identified with a 

body-centered cubic (BCC) lattice, in which each water molecule is hydrogen-bonded 

with half of the nearest neighbors.  Thus, it can be viewed as a kind of self-clathrate 

composed of two interpenetrating cubic ice (ice Ic) lattices [32].  For pressures lower 

than 20 GPa, the molecular framework of water is well preserved so that its local 

structure is dominated by hydrogen bonds (HBs) with four neighbors as well as the 

packing efficiency [27,28].   

A plastic phase is an unusual solid state found for some substances in which 

molecules rotate nearly freely at lattice sites [33].  Takii et al. found a plastic phase of 

water by molecular dynamics simulations and free energy calculations with various 

intermolecular potential functions [13], TIP4P [20], TIP5P [22], SPC/E [34], and a 

polarizable model [35] in the framework of rigid molecules under several system sizes 

from N (number of water molecules) = 432 to 3456.  A plastic phase emerges 

irrelevant to the boundary conditions, upon application of either short-range 

truncation [36] or the Ewald sum method [37].  This phase appears at a fairly high 

density that suppresses diffusional motions unlike the case of low pressure ices 

including ice Ic.  A nearly spherical shape of water molecules seems to facilitate 

rotational motions by breaking some of HBs but avoids a melting transition to liquid.  

Also found was a plastic phase of face-centered cubic (FCC) lattice for a water-like 

model with sluggish HBs.   

Similar studies were made in order to include the plastic phase in the phase 

diagram of water using a variant of the TIP4P water called TIP4P/2005 [21] by a 
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different method to calculate the phase boundary [15,16].  They also found an FCC 

plastic phase at a much higher pressure.  The FCC phase seems to be associated with 

what was found for a water-like model with sluggish HBs.   

Although it is of great importance to elucidate the difference between crystalline 

and plastic ice from a view point of the local and global network structures, no such 

microscopic picture has been established.  In the present work, we investigate 

structural and energetic characteristics of the plastic ice by exploring the local 

arrangement, the extent of deviation from the ideal lattice position, and the 

hydrogen-bonded patterns in the plastic ice.
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2.2  Methods 

Isothermal-isobaric molecular dynamics simulations are performed to compare 

the structures and thermodynamic properties of liquid, plastic, and crystalline phases 

under 12 GPa.  The TIP5P water model is employed and the long-range interaction is 

truncated smoothly at 0.8655 nm [36].  As the initial structure, 432 water molecules 

are placed on BCC lattice sites in the cubic simulation cell with periodic boundary 

conditions.  Long-time simulations are performed at three different temperatures, 500, 

640 and 960 K.  After 8 ns run for equilibration, ice VII, plastic, and liquid phases are 

obtained, respectively.  100 independent instantaneous structures, say I-structures, are 

extracted at each temperature.  The mean densities of ice VII, plastic phase, and 

liquid phase are 1.8703 g cm–3, 1.7699 g cm–3, and 1.6393 g cm–3, respectively.  All 

the structures are then scaled in size so that the density becomes the mean value at the 

plastic phase, 1.7699 g cm–3, in order to remove the effect by volume difference in 

potential energy analysis discussed in the next section.  Finally, 100 inherent 

structures, say Q-structures, are obtained for each temperature by the steepest descent 

method. 



 20 

2.3  Results and Discussion 

2.3.1  Identification of plastic phase and thermodynamic properties 

Identification of water as a plastic phase is made by two time correlation 

functions namely the mean square displacement and the reorientational correlation 

function according to the definition of a plastic phase.  These are defined by 

                   (2.1) 

for the mean square displacement, where 𝐫!(𝑡) stands for a center of mass coordinate 

of molecule i at time t, and 

                   (2.2) 

for the reorientational correlation function, where 𝐮!(𝑡) stands for a unit vector 

parallel to a dipole of water molecule i at time t.  Those time correlation functions are 

depicted in Fig. 2.1.  We recover the same temperature dependence of these time 

correlation functions as that initiated with different coordinates reported 

previously [13].  The plastic phase emerges in the tem- perature range between 590 

and 890 K for heating while its range is a little narrower in cooling at 10 GPa.  That is 

caused by the hysteresis in transition between plastic and liquid.  Here, we set the 

pressure to 12 GPa so as to observe a facile transition in heating and cooling processes.  

Zt(t) �
� 1

N

N�

i=1

|ri(t)� ri(0)|2
�

Zr(t) �
� 1

N

N�

i=1

|ui(t) · ui(0)|2
�



 21 

 

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5
Time  / ps 

(a)

M
SD

  /
 (0

.1
 n

m
)2 Liquid

Plastic

Ice VII
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5
Time  / ps 

R
C

F

(b)

Liquid

Plastic

Ice VII

Figure 2.1 

Time-correlation functions, (a) the mean square displacements and (b) the reorientational 

correlation functions of ice VII (500 K; blue), plastic ice (640 K; black) and liquid water 

(960 K; red) obtained by molecular dynamics simulations. 
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2.3.2  Thermodynamic and structural properties in density-adjusted quenching 

In order to investigate the structural characteristics of the three phases in more 

detail, a direct consequence due to the density difference is removed by a simple 

scaling of the coordinates of water molecules; the cell size at a given instant for any 

phase is adjusted to have the mean cell size in the plastic phase at T = 640 K.  We 

examine various properties of the inherent structures, which are obtained by the 

steepest descent energy minimization.  The radial distribution functions (RDFs) for 

the density-adjusted structure exhibit almost complete agreement with those at the 

original density, from which we affirm that the present analysis is justified.  The 

potential function to describe a pair interaction for water is composed of Coulombic 

and Lennard-Jones (LJ) interactions.  The former is the essential part of HB in the 

three phases and the latter plays a role to maintain identity of individual molecules.  

The two sorts of interactions are equally important since a compact packing and a 

lower cohesive energy compete at a higher pressure.  The potential energies of those 

three phases and the individual components are tabulated in Table 2.1.  The potential 

energy increases in both transitions from ice VII to plastic and from plastic to liquid 

water in I-structure.  This is also true in Q-structure.  One of the most remarkable 

differences among the three phases is the higher LJ interaction in liquid water.  

Liquid water has a fairly different structure from either ice VII or plastic ice.  Some 

peaks in the ice phase are missing in liquid water or only a trace of them appears.  An 

intriguing feature is the position of the first peak in the oxygen-oxygen RDF for liquid 

water; it is closer by 0.02 nm than that for ice as shown in Fig. 2.2.  The higher LJ 

energy seems to be accounted for by this closer separation of the neighboring 

molecules.  Thus, a lower density in liquid does not mean a uniform expansion but 

some vacant space that results from a randomly arranged structure of liquid water, 

pushes water molecules close together, which may be caused by the intense thermal 
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motions at a high temperature.  In conjunction with the potential energies listed in 

Table 2.1, the binding energy distributions are calculated for the individual 

components, which are defined by 

                 (2.3) 

where 𝜙!" stands for a pair interaction energy between two molecules i and j, and 

…  denotes the ensemble average.  As shown in Fig. 2.3, the distribution for liquid 

water is almost symmetric against the binding energy and is nearly Gaussian as 

observed in an ambient condition [18].  It is, however, asymmetric for plastic ice.  

The origin of this asymmetry is explained in terms of the local hydrogen bonded 

network later in this section.    
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Table 2.1 

The potential energies and those for the Lennard-Jones term and the Coulombic term of ice VII, 

plastic ice and liquid water for I- and Q-structure. 

 I-structure  Q-structure 

Ice VII Plastic Liquid  Ice VII Plastic Liquid 

Potential energy  / kJ mol–1 –39.274 –24.705 –6.5635  –50.751 –45.283 –41.776 

LJ term  / kJ mol–1 18.289 23.380 39.750  13.526 18.181 27.778 

Coulombic term  / kJ mol–1 –57.563 –48.086 –46.313  –64.277 –63.465 –69.554 
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Oxygen-oxygen radial distribution functions of ice VII (blue), plastic ice (black) and liquid 

water (red) for Q-structure. 
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Q-structure. 
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The structure of the plastic phase is characterized by the existence of several 

peaks in the oxygen-oxygen RDF whose positions are the same as those in ice VII as 

shown in Fig. 2.2.  The ratio of the second peak position to the first one is around 

1.16, which indicates that both phases have a BCC lattice structure.  Since the water 

molecules in the plastic phase are fixed in principle to the lattice position in the same 

way as in ice VII, the LJ term for plastic ice in Table 2.1 should have a similar value to 

that for ice VII.  In reality, however, it is fairly higher than that for ice VII.  This 

could be caused by small but distinct deviation of molecules from the corresponding 

ideal lattice sites.  Indeed, the peaks in the RDF for plastic ice are blurred.  

Therefore, the deviation from the ideal lattice sites is examined for both ice VII and 

plastic ice in Q-structure.  The distribution of the dislocation is Gaussian whose 

standard deviation is 4.5×10!! nm for ice VII and is 2.7×10!! nm for plastic ice.  

This indicates that a deviation whose magnitude is similar to the mean deviation in 

plastic ice cannot be observed in ice VII.  Therefore, plastic ice seems to be not a 

variant of the ice VII form where only a small number of structural defects leaving 

molecules away from the lattice sites are embedded but a phase where a large number 

of dislocations are implemented by the Gaussian distribution with the large standard 

deviation.  (We examine this issue in the later subsec.)  The large deviation, i.e., 

dislocation of molecules, is associated with the higher LJ interaction energy because of 

the asymmetric nature of the LJ potential in the molecular separation.  While the 

extension of the molecular separation by 0.027 nm results in a decrease in LJ energy 

by 4.4 kJ mol–1 for an ideal neighboring distance in the BCC lattice, 0.267 nm, a 

contraction by the same amount gives rise to an increase by 18.6 kJ mol–1.  Thus, the 

dislocation accounts for the higher LJ energy in plastic ice.  The higher energy in LJ 

interaction is also consistent with the pair interaction energy distribution for the LJ 

term shown in Fig. 2.4, which is defined by 
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                  (2.4) 

where 𝜙!" stands for a pair interaction energy between two moledules i and j (here for 

the LJ term).  The pronounced peak associated with the nearest neighbors in ice VII is 

smeared out in plastic ice.  The actual dilatation of plastic ice compared with ice VII 

can also be associated to the large dislocation.  The difference between plastic and 

crystalline in simple quenching at constant volume is a little smaller in accordance 

with the dilatation upon transition to the plastic phase.  A more detailed scrutiny of 

the local environment of those three phases seems to be essential in order to provide a 

microscopic picture of plastic ice.  This is achieved from two view points; local 

energetic and structural aspects are examined and those are combined with the global 

network structure.  Local structures of water and ice are described by simply the 

coordination number of individual molecules, which is defined by the number of 

molecules around a tagged molecule.  An alternative expression of it is given by 

                   (2.5) 

where 𝜌 is the average number density of the system.  The upper bound of the 

integration, 𝑟!, is usually considered to be the distance at the first minimum of an 

oxygen-oxygen RDF, 𝑔!!(𝑟).  Since the cell size is adjusted to have the density of 

the plastic ice, it is natural to adopt the common rc value, 𝑟! = 0.306 nm (the first 

minimum for plastic), to the three phases.  The coordination distributions are shown 

in Fig. 2.5.  The crystalline phase (ice VII) has only 8-coordinated molecules.  In the 

plastic phase the 8-coordinated molecule is also the most dominant species but other 

species than the 8-coordinated one appear.  The coordination number distribution in 

liquid is widespread with its center at 9.  Especially, the populations of extremely 

small and large coordination number species increase in the liquid state.  The average 
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coordination numbers are 8.40 for plastic and 8.55 for liquid.  
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Figure 2.4 

Pair interaction energy distributions for the LJ term of ice VII (blue), plastic ice (black) and 

liquid water (red) for Q-structure. 
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Figure 2.5  

Coordination distributions of ice VII (blue), plastic ice (black) and liquid water (red) for 

Q-structure. 
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The energetic contribution to the local structure competes with the packing 

efficiency at a high density, a local energetic feature is represented by an HB number 

distribution, a distribution in which a tagged molecule has a specific number of HBs 

with other molecules.  The HB is defined by the geometric restriction on a pair of 

neighboring molecules where the OH distance for the pair is smaller than 0.22 nm and 

the angle between the OH bond of one molecule and the direction toward the adjacent 

oxygen is less than 𝜋 6 (this HB criterion is almost equivalent to a certain threshold 

for a pair interaction energy).  With this criterion we obtain the lifetimes of hydrogen 

bonds of those three phases.  In ice VII a hydrogen bond is almost completely 

retained, which is consistent with the reorientational correlation in Fig. 2.1.  In both 

liquid and plastic phases, a hydrogen bond decays in the same order as the relaxation 

time of the corresponding reorientational correlations.  In the plastic phase, however, 

a hydrogen bond is almost always reformed in later time.  Ice VII is composed of 

only molecules hydrogen-bonded with 4 neighbors but plastic ice has a wider 

distribution in HB number centered at 4 as shown in Fig. 2.6.  In the liquid phase, a 

much wider one is observed and there are many defects in HB.  The larger 

coordination number but the smaller number of hydrogen-bonded neighbors in liquid 

and plastic phases result in the higher potential energy than that in ice VII, since the 

small separation of two water molecules gives rise to the repulsive interaction without 

hydrogen-bonding. 
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Hydrogen-bond number distributions of ice VII (blue), plastic ice (black) and liquid water 

(red) for Q-structure.  
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Liquid water has the highest LJ energy and the lowest Coulombic energy in 

Q-structure as in Table 2.1.  The high LJ energy is associated with the closest 

separation of neighboring pairs as mentioned above.  The low Coulombic energy in 

liquid water is consistently explained by the smaller molecular separation, which 

seems to dominate unfavorable orientations.  This is confirmed by the pair interaction 

distributions for Coulombic energy depicted in Fig. 2.7, which is defined by Eq. 2.4 for 

the Coulombic term.  A low energy (strong interaction) region in liquid water is a 

little larger, which originates from the smaller OH distance for a neighboring pair as 

seen from oxygen-hydrogen RDFs (Fig. 2.8). 
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Figure 2.7  

Pair interaction distributions for Coulombic energy of ice VII (blue), plastic ice (black) and 

liquid water (red) for Q-structure. 
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Figure 2.8 

Oxygen-hydrogen radial distribution functions of ice VII (blue), plastic ice (black) and 

liquid water (red) for Q-structure. 
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2.3.3  Local hydrogen-bond network in plastic ice 

Ice VII is made up of the two interpenetrating ice Ic lattice structures.  Here we 

call individual sublattices A and B.  Any water molecule on sublattice A in ice VII 

forms no HB with any molecule on sublattice B.  Since all the water molecules sit on 

the lattice sites in plastic ice, each water molecule can be classified by its location on 

the lattice site; called either A or B in the same way as in ice VII.  Some HBs may 

bridge A and B sublattices by orientational defect in plastic ice.  Then, a global 

hydrogen bond network is disrupted.  It is of great interest to explore the local 

hydrogen bond patterns that exist in Q-structure of plastic ice.   

We search for various hydrogen bond patterns in a unit cell, which contains one 

molecule at the center and 8 at the vertexes of the cubic box.  The five most popular 

patterns are picked up, which are designated as type-(a) to type-(e) found in 

Q-structure of plastic ice.  In ice VII, four of the eight vertexes in tetrahedral 

positions belong to the sublattice A hydrogen-bonded with the center and the sublattice 

B comprises the remaining four forming no HB with the center.  The unique pattern 

observed in ice VII is type-(a) shown in Fig. 2.9(a) where all the HBs are oriented 

correctly to the four vertexes of the sublattice A (“right” HBs) as depicted by yellow 

lines in Fig. 2.9.  This pattern is the most popular one even in plastic ice.  The others 

suffer from the lack of HB and/or from orientational faults containing “wrong” HBs 

marked by green lines.  Type-(b) has one wrong HB out of its four HBs, which 

orients toward one of the vertexes of the sublattice B.  This is a bridging molecule 

disturbing a nominal HB network by combining the two sublattices.  One of the four 

HBs is missing but the remaining three are right HBs oriented correctly in type-(c).  

Type-(d) contains the same number of HBs as type-(c) but one of them is a wrong HB.  

All three HB partners are clustered on one side of the cell as shown in Fig. 2.9(d).  

There is an extra (necessarily wrong) HB in type-(e) with four right HBs.  The 



 38 

occurrence of those patterns is 28%, 21%, 13%, 9%, and 5% for type-(a) to type-(e), 

respectively.  Each molecule at the center has a different energy and therefore 

occurrence of those patterns in the local connectivity seems to lead to asymmetry in the 

binding energy distributions for plastic ice.  The Coulombic binding energy 

distribution of the central molecule for each type is shown in Fig. 2.10.  Type-(a) has 

a slightly lower energy than type-(b), which originates from the functional form of the 

pair potential; the most favorable directions are those heading to the tetrahedrally 

oriented protons and lone-pairs.  Type-(e) has the lowest energy among the five types 

due to its five HBs although one of the HBs may be a little weaker than that in type-(a) 

by about a few kJ mol–1.  This weaker HB is consistent with the higher energy in 

type-(b) compared with type-(a).  In contrast to the observation on the existence of 

one wrong HB, the energy in type-(d) is lower than in type-(c).  Since three HB sites 

in type-(d) are biased spatially, there might be some possibility for another molecule to 

interact with intermediate strength.  The other patterns are collected to one group in 

Fig. 2.10. 
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Type-(a) Type-(b) Type-(c) Type-(d) Type-(e)

Figure 2.9 

The five most popular hydrogen-bonding patterns in plastic ice at 12 GPa and 640 K.  

Spheres denote oxygen, which are divided into two subluttices, A and B, by colors blue and 

red.  Blue and yellow cylinders correspond to the hydrogen bonds, which connects water 

molecules on the same sublattice and bridges different sublattices, respectively.  Hydrogen 

atoms are not illustrated. 
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Coulombic binding energy distributions of the central molecule for type-(a) to (e) and in 

other types. 
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Considering fairly high occurrences of type-(c) and (d) as well as the patterns 

other than (a) to (e), they are responsible for the asymmetry in the binding energy 

distribution in plastic ice.  There are a large amount of hydrogen-bonds which do not 

orient to the tetrahedral directions such as type-(b), (d), and (e).  Frequent occurrence 

of these patterns leads to fusion of the two sublattices rather than defect-containing ice 

VII.  It is noted that there are a large amount of unit cells with orientational (HB) 

defects.  Each sublattice may not be connected by way of the unit cells having perfect 

local orientation, i.e., type-(a).  In fact, the site-percolation threshold for the diamond 

structure is known to be 0.43, which is much higher than the occurrence of type-(a), 

0.28 [38,39].
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2.4  Conclusion 

In the present study, the properties of the plastic ice phase are elucidated by the 

potential energy distributions decomposed into the Coulombic and LJ interactions and 

by classification of the local structures.  In comparison with liquid water and ice VII 

in density-adjusted I- and Q-structure, the following three characteristics of the plastic 

ice phase are found.   

Firstly, the LJ interaction in the plastic phase is found to be more repulsive than 

that in ice VII even though water molecules are placed on the BCC lattice sites in both 

phases.  In the plastic phase the water molecules rotate at the cost of potential energy 

in order to acquire rotational entropy, which is estimated to be about 12 J K–1 mol–1.  

This value is to be compared with 5 J K–1 mol–1 for the translational one at the melting 

from plastic ice to liquid water.  A large amount of HBs are broken due to the thermal 

motions at high temperatures and the hydrogen bond connectivity of water molecules 

is fairly disturbed, which causes the dislocation of the molecules in the plastic phase 

from their ideal lattice points.   

Secondly, Coulombic interaction in liquid water is stronger than that of any other 

phase.  In crystalline solid, the positions of molecules are fixed around the lattice 

points and the Coulombic interaction is well balanced with the LJ repulsion.  In liquid 

water, on the contrary, a pair of water molecules can be close together, say, within 0.25 

nm.  This short distance brings the stronger LJ repulsion but it is compensated with 

the stronger Coulombic attraction.   

Finally, we have focused on the asymmetric distribution in the Coulombic binding 

energy of plastic ice.  The main peak of the distribution is contributed from the water 

molecules having four regular hydrogen bonds with surrounding molecules while the 

shoulder comes from the disordered local structures, which have only three hydrogen 

bonds.  More than half of the water molecules have a HB bridging the two sublattices.  
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Thus the sublattices of ice VII are fused in the plastic ice.  
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Chapter 3  

Rotational dynamics of plastic ice 
 

The work here focuses on the dynamics of the water molecules in the phases at high 

temperature and pressure, i.e., ice VII, plastic ice, and liquid water.  The 

hydrogen-bond correlation function providing the lifetime of hydrogen bonds is 

compared to the reorientational correlation function to examine a relation between a 

rotation of an individual molecule and an energetic relaxation process.  The 

hydrogen-bond correlation function of plastic ice decays in a way similar to liquid but 

it converges to a finite value as seen in ice VII, reflecting the rotational motion of the 

water molecule at the fixed location.  In addition, the relaxation times of the two 

correlation functions for plastic ice resemble one another, confirming the fact that only 

the rotational motion invokes the hydrogen-bond rearrangements in plastic ice. 
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3.1  Introduction 

Water is the most ubiquitous substance on the earth and is indispensable for 

biological systems.  While a water molecule is simple, water exhibits various 

versatilities and anomalies, that is, diversity of the condensed phases.  In fact, the 

number of crystalline structures exceeds 16 according to experimental investigations 

and theoretical predictions as of the present time [2,24–26].  In addition, the most 

unique feature in condensed phase is its polyamorphism, which may be associated with 

the other anomalies in supercooled liquid state [40].   

The existence of the plastic phase (plastic ice) ––– the almost free rotational phase 

with no molecular diffusion ––– has been predicted by computer simulation, as one of 

the new stable states of water in high pressure region [13,16,41].  Plastic ice 

intervenes between ice VII and the supercritical fluid water as the two lattice types: 

one is the body-centered cubic (BCC) lattice and the other is the face-centered cubic 

(FCC) one.  The BCC-type plastic ice exists under lower pressure while the FCC-type 

one does un- der higher pressure.  The various properties of plastic ice have been 

elucidated in Refs. [13] and [16].  Ref. [16] poses an extended phase diagram of water 

including the plastic phase.  There are, however, unexplained structural and dynamic 

properties of plastic ice. 

In the present work, we analyze the rotational dynamics of ice VII, plastic ice, and 

liquid water at high temperature and pressure in order to elucidate the characteristics of 

the dynamics in plastic ice.  The reorientational correlation function and the HB 

correlation function are calculated from the simulation results and the characteristic 

relaxation time of liquid water and plastic ice are examined. 
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3.2  Methods 

In order to scrutinize the HB dynamics in plastic phase by comparing it with two 

other phases, three representative states are chosen at a fixed pressure of 12 GPa.  

Those correspond to crystalline ice VII, plastic structure, and liquid water, which are 

obtained at T = 500, 640, and 960 K.  Molecular dynamics simulations are performed 

for longer time than 8 ns with an initial ice VII structure.  The temperature and 

pressure are fixed by Nosé-Andersen thermo-barostat [42–44].  A simple periodic 

boundary condition is applied to a cubic box containing 432 water molecules.  

Water-water interaction is described by the TIP5P potential, which is made of two 

protons each with a positive fractional charge, two negative charge sites, and an 

oxygen nucleus interacting with Lennard-Jones potential [22].  The resultant densities 

of ice VII, plastic ice, and liquid water turn out to be 1.8703, 1.7699, and 1.6393 g cm–

3, respectively.
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3.3  Results and discussion 

3.3.1  Mean square displacement and reorientational correlation function 

In Fig. 2.1 in Chapter 2, I showed the mean square displacement (MSD) defined 

by Eq. 2.1 and the reorientational correlation function (RCF) defined by Eq. 2.2.  In 

ice VII, individual molecules stay at the original positions and that the MSD of ice is 

constant after a short rise period caused by vibrational motions.  The RCF is also 

constant, with an initial decay to 0.95 due to the librational motions.  In liquid water, 

on the other hand, the MSD increases linearly with time and orientational correlations 

are lost within 1 ps after a rapid decrease by the librational motions.  Plastic ice 

behaves similarly to crystalline ice in translational motion with a larger amplitude of 

vibrations while its rotational motion is a close analogue of liquid.  The ice-like MSD 

indicates the nondiffusional molecular motion in the plastic phase.  Random rotations 

of the molecules can also be identified by the convergence toward 0 of the RCF [41].  

Relaxation time of rotation is discussed in subsection 3.3.3. 
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3.3.2  Hydrogen bond correlation 

Individual water molecule in the liquid and the plastic phases makes rapid and 

incessant rotational motions, which inevitably induce the rearrangements of HB 

network structure.  While, the way of the alternation and the lifetime of the HB 

depends on the phase.  It is therefore intriguing to examine the HB time correlation 

which may feature the possible partners of HBs as well as the HB lifetime.  In order 

to shed a light on these properties, we adopt a history-independent correlation function 

of HB [45].  It is given as 

                   (3.1)  

where ℎ!"(𝑡) is a binary function defined as ℎ!" 𝑡 = 1 if a pair of water molecules i 

and j are hydrogen-bonded, and ℎ!" 𝑡 = 0 otherwise, and 𝛿ℎ!" 𝑡 ≡ ℎ!" 𝑡 − ℎ .  

The angular bracket indicates an average over all the pair of molecules and the time 

origin.  In the infinite system, ℎ  is zero and that the formula is written in much 

simpler form.  The averaged number of HBs per water molecule, say 𝑛!", is defined 

as 

                      (3.2) 

A hydrogen bond is defined according to the mutual geometry of a pair of 

molecules; the distance between an O atom on one molecule and a proton on another 

molecule is less than 0.22 nm and the angle for a vector connecting two oxygen nuclei 

and the OH arm is within ±30° [41]. 

𝑐!"(𝑡) indicates a probability of finding a hydrogen bond at the molecular pair i 

and j which are hydrogen-bonded at time t = 0.  Decay of 𝑐!" characterizes the 

lifetime of the bond.  𝑐!"(𝑡) converges to the different values in the different phases 

reflecting the HB network rearrangement dynamics.  In the liquid phase, 𝑐!"(𝑡) 

converges to zero.  This is because the hydrogen-bonded pair at t = 0 breaks off its 

cHB(t) � ��hij(0)�hij(t)�
�[�hij(0)]2� ,

nHB = (N � 1)�h�.
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adjacency after a long time by molecular displacements.  In ice, on the other hand, 

𝑐!" remains to be around unity after a long time, because all the HBs are maintained 

except the case when they are broken by thermal vibrations with probability q.  𝑐!" 

is then expected to converge to (1 − q) in a large system.  In the plastic phase, HB 

rearrangements are allowed but the molecules cannot be dislocated from the initial 

position.  The bond initially connected will be connected again with a certain 

probability after a long time.  In such a case, 𝑐!" remains finite.  𝑐!" is expected 

to converge to 𝑝 = 𝑛!" 𝑛! in a large system, where 𝑛! is the coordination number.  

Here 𝑛!" in the plastic phase is 3.08 and if 𝑛! is ideally set to be 8 (the number of 

neighbors per molecule in BCC lattice), the expected asymptotic value is 0.385. 

Figure 3.1 shows that 𝑐!"(𝑡) in liquid eventually decays to 0.  This behavior is 

roughly similar to that in the RCF.  This suggests that a HB cleavage is mainly 

dominated by rotational motion of an individual molecule.  Convergence to zero is, 

however, realized by additional diffusional motion.  A very fast initial decay of 

𝑐!"(𝑡) for ice VII is also observed in the reorientational correlation function and 

therefore this decay is associated with the librational motions.  A more interesting 

decay is indeed obtained for 𝑐!"(𝑡) for the plastic phase.  A hydrogen bond once 

formed in plastic ice exhibits a decay similar to liquid water.  However, an asymptotic 

behavior is different.  𝑐!"(𝑡) converges to a finite value, 0.323, indicating the 

recurrence of the HBs.  Thus, it is another evidence that water molecules rotate but do 

not translate diffusively. 
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Figure 3.1 

The hydrogen bond correlation functions of the three phases against time.  Blue, black, 

and red correspond to ice VII, plastic ice, and supercritical fluid water, respectively. 
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3.3.3  Relaxations of reorientational and hydrogen-bond correlations 

Figure 3.2 shows the short-time behaviors of the reorientational and the HB 

correlation functions for the plastic and the liquid phases.  After the initial very fast 

decay corresponding to the librational motions, a linear decay is observed.  The 

relaxation times for the reorientational and the HB correlation functions of the plastic 

and the liquid phases are listed in Table 3.1. 
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Reorientational and HB correlation functions plotted against time in lower and upper 

panels, respectively.  Red and black lines indicate the liquid and the plastic phases, 

respectively.  Dashed lines are approximations with the sum of two exponential functions. 
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Table 3.1 

Relaxation times of various correlation functions in the units of pico-second. 

 Reorientational Hydrogen bond 

Plastic 1.01 0.839 

Liquid 0.223 2.54 
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The clearest characteristic in Fig. 3.2 and Table 3.1 indicates the relevance of the 

slopes (relaxation times) between the plastic and the liquid phases in the RCF and the 

𝑐!".  That is, the RCF of liquid water has a shorter relaxation time than that of plastic 

ice, reflecting the temperature difference in both phases, while the relaxation time of 

𝑐!" for liquid is much longer than that for plastic ice.  To elucidate the origin of the 

discrepancy, they are compared from the different aspect.  The relaxation time of 

plastic ice is similar in the both correlation functions, and also close to those of liquid 

water at ambient condition [45,46].  Since each water molecule in plastic ice rotates at 

a fixed location and that the 𝑐!"(𝑡) depends mainly on the rotational motion, both the 

RCF and the 𝑐!" of plastic ice decay similarly.  A prominent difference is found in 

the relaxation times of the two correlation functions of liquid water where 𝑐!" decays 

much slower than the RCF.  In order to explain it, we focus on the liquid water’s 

relaxation time of 𝑐!", 2.54 ps.  The MSD at time t = 2.54 ps is about 7.8 Å2, i.e., the 

deviation from the position at time origin is 2.8 Å on average.  This distance 

corresponds to the distance between nearest-neighbor water molecules at the present 

pressure and temperature [13].  Displacement of the water molecules from the initial 

location provokes the permanent dissociation of the hydrogen-bonded pairs.  Thus the 

relaxation time can be considered as the lifetime of HBs induced by molecular 

translations. 

Debye-Stokes-Einstein relation [47] relates the rotational relaxation time 𝜏! with 

viscosity 𝜂  by 𝜏! = 4𝜋𝜂𝑅! 𝑘!𝑇 , where R is the hydrodynamic radius of the 

reorienting molecules, 𝑘!  the Boltzmann’s constant, and T the temperature.  It 

denotes that the relaxation time is proportional to the viscosity and the inverse 

temperature.  Rotational relaxation time of HDO at ambient condition is 2.5 ps to 3.0 

ps [46,48] and that of H2O should be shorter owing to its smaller moment of inertia.  

The viscosity 𝜂 of water at 960 K and 12 GPa is comparable to that at ambient 
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condition [49].  By taking them into consideration, the rotational relaxation time of 

liquid water at 960 K and 12 GPa is estimated to 0.5 ps, which is in quite a good 

agreement with our calculation result. 

There is no information available for the HB lifetime of the supercritical fluid 

water at high pressure, but Petrenko et al.  showed by computer simulation using 

TIP4P-HB model that the HB lifetime of the supercritical water depends only on 

density and is independent from temperature [50].  Their plot suggests the HB 

lifetime at the present density will be longer than 2 ps, which is in good agreement 

with our result. 

Molecular dynamics simulations with SPC/E water model elucidates that the HB 

lifetime of water at ambient condition is comparable to the reorientational relaxation 

time [45,51].  In our results at high temperature and pressure, on the other hand, they 

differ about one order of magnitude, suggesting that the mechanism of the HB 

rearrangements at high temperature and pressure, namely supercritical fluid water, is 

different from normal liquid water.  Further analyses are awaited.  The relaxation 

times for plastic ice are verifiable by the ultrafast infrared spectroscopy [46,48].
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3.4  Concluding remarks 

In this paper, we discuss the reorientational dynamics of water molecules in 

plastic ice, ice VII, and liquid water at high temperature and pressure.  The HB 

correlation function in plastic ice exhibits the intermediate behavior between ice VII 

and liquid state.  That correlation decays like liquid but it converges to a finite value 

like ice VII, reflecting the rotational motion of a water molecule at a fixed location.  It 

is found that the relaxation time of the HB correlation function is much longer than 

that of the reorientational correlation function for liquid water at high temperature and 

pressure, while the relaxation times of the two correlation functions for plastic ice are 

comparable.  This is probably because only rotational motion invokes HB 

rearrangements in plastic ice while a translational motion is coupled in liquid water 

giving a rise to an HB relaxation. 

It should be noted that discussion and conclusion in this paper are essentially 

independent from the HB definitions.  We also investigate HB correlations employing 

another major HB definition according to the pair interaction energy, in which two 

water molecules are regarded to be hydrogen-bonded if the pair interaction is lower 

than −16 kJ mol–1.  In fact, qualitative features in HB decay are found to be 

insensitive to the definition of HB.
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Chapter 4  

Yet another criticality of water 
 

A phase behavior around the transition between ice VII and a plastic phase of water is 

investigated by molecular dynamics simulation and the subsequent analysis on the 

basis of Landau theory.  The prior works have predicted that the phase transition 

between ice VII and plastic ice is a first-order transition on the ground of a weak 

hysteresis and so on.  Rigorous survey in the present report, however, augments their 

prediction with new evidences that a first-order phase transition line gives way to a 

second-order one at higher pressures, where a tricritical point joins these phase 

boundaries together.  Critical phenomena are also observed whereby, other than that 

associated with the hypothetical critical point in the deeply supercooled state, which 

could influence the physical properties in a wide range of temperature and pressure.  

A new critical behavior is affirmed by the result that the scaling law holds at any 

pressure on the second-order phase transition line for which the critical exponents are 

estimated.  We introduce an appropriate order parameter to obtain the Landau free 

energy functional and the change in the functional against temperature accounts for the 

phase behaviors.  This also enables to estimate the coexistence and the spinodal lines 

at pressures below the tricritical point, all of which compensate those obtained directly 

by molecular dynamics simulations.  These results allow us to anticipate that the 

critical fluctuations may give us clue for determining the phase boundary 

experimentally. 

 

 



 

 

4.1  Introduction 

Water has at least 16 crystalline polymorphs including metastable states and a 

non-molecular solid [1].  Almost all the polymorphs do not occur on Earth but surely 

distribute at many places inside and outside the solar system, and often play crucial 

roles in the planetary geology [52].  Among the molecular crystalline phases, ice VII is 

one of the densest ices and also occupies the widest area on the pressure-temperature 

plane.  Each polymorph of water has its mystery, and so does ice VII.  Melting curve 

of ice VII to high-pressure liquid water has not been settled by experiments [3–10].  

We have proposed the intervention of a plastic phase of ice (plastic ice) between ice VII 

and liquid water based on molecular dynamics (MD) simulations and the free energy 

calculations [13], which enables to account for large gaps among various experimental 

curves of ice VII [13,15,16].  In plastic ice, water molecules are fixed at the lattice 

points while they rotate freely [13,15,16,41].   

The phase transition between ice VII and plastic ice is reported to be first-order on 

the basis of i) appearance of small hysteresis in the forward and backward transition 

between them; and ii) the slopes of two free energy curves at the intersection [13,15,16].  

On the other hand, owing to the proton disorder in ice VII, its structure already acquires 

a high symmetry and the transition to plastic ice accompanies only a minor symmetry 

change.  Thus it can be a kind of order-disorder phase transition of either first- or 

second-order [53].  The transition, therefore, deserves a close scrutiny.  

Much attention has been paid to the critical phenomena of water.  Critical 

phenomena are spectacular collective ones accompanying the divergent character in 

fluctuations in both time and space.  In addition to the trivial vapor-liquid critical point, 

water is conjectured to possess the second (metastable) critical point.  It will terminate 

the coexistence line between two different liquid states of water in the supercooled 

region of the metastable phase diagram of liquid water, and its critical fluctuations may 



 

 

even affect the properties of liquid water at room temperature, which is observed as the 

anomalies of water [54–57].  Thus the single critical point wields influences to a wide 

area of the phase diagram, and that is the different point from the first-order phase 

transitions.  

In the present work, the phase behaviors are reexamined in more detail using 

TIP5P-E water model [23].  It is found that the behaviors are fairly complicated, that is, 

a first-order phase transition (“coexistence”) line gives way to a second-order 

(“critical”) one at higher pressures, where a tricritical point joins the boundaries 

together at around 13.3 GPa.  A further analysis is made according to the Landau 

theory with an appropriate order parameter as explained below.  We estimate the 

location of the coexistence and spinodal lines in the phase diagram by exploiting 

Landau free energy functional.  We also estimate the critical exponents and affirm the 

scaling law holds well regardless of pressure.  The phase boundaries, shown in Fig. 

4.1(a), will be explained in detail in the following sections.  



 

 

 

Figure 4.1 | Phase diagram of ice VII and plastic ice 

(a) Phase boundaries between Ice VII and plastic ice, deduced from computer simulations.  

Coexistence and critical lines are plotted with solid and dashed lines, respectively.  The 

dotted circle indicates the estimated location of the tricritical point (abbreviated as “TCP”). 

(b) Phase diagram plotted against the relative temperature from Tc.  Tc means the coexistence 

temperature (at pressures below TCP) or the critical temperature (above TCP).  Solid, 

dashed, and dotted lines are the coexistence, critical, and spinodal lines, respectively.  

Dotted circle indicates the estimated location of the tricritical point.  Squares below 13 

GPa are obtained by polynomial expansion of Landau free energy function and the 

remaining points are obtained by the finite-size scaling.  

(c) Snapshots of ice VII at 455 K (upper) and plastic ice at 456 K (lower).  Pressure is 5 GPa.  

Only one layer of crystal structure is cropped out.  Oxygen atom is painted in chessboard 

pattern to clarify the molecular orientation and also gradated from red (–1) to blue (+1) 

according to the bond order parameter defined in Methods section. 
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4.2  Methods 

Molecular dynamics simulation. 

Ice VII is heated and plastic ice is cooled in isothermal-isobaric ensemble 

molecular dynamics simulation [58].  Nosé-Andersen method is used for controlling 

temperature and pressure [42,44].  Pressure is set to 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 

18, and 26 GPa.  Cubic simulation cell with the periodic boundary conditions contains 

1024, 2000, 3456, or 5488 water molecules.  We employ the TIP5P-E rigid water 

model  [23], whose pair potential function is represented by the sum of Lennard-Jones 

interaction and Coulombic interaction terms.  Both interactions are truncated at 0.85 

nm and the long-range interactions are corrected by analytical formula [59] for 

Lennard-Jones term and by a reaction-field method [23,59] for Coulombic term.  

Simulation time is 1 to 10 ns including 500 ps of thermal equilibration time after 

heating or quenching. 

 

Hydrogen bond definition. 

A hydrogen bond is defined for a pair of water molecule whose intermolecular 

oxygen-hydrogen distance is less than 0.22 nm [41]. 

 

Order parameter discriminating ice VII and plastic ice. 

We introduce an appropriate order parameter distinguishing the essential structural 

difference between ice VII and plastic ice.  In ice VII, all water molecules are arranged 

in body-centered cubic (BCC) lattice and coordinated by 8 neighbors, and each water 

molecule is linked to the staggered four out of 8 sites by hydrogen bonds.  Note that 

there are two alternative ways in placing the bonds on the same BCC lattice to make up 

the perfect ice VII structure.  Let “A” and “B” denote the twin structures.  That is, a 

staggered half of 8 neighbors are hydrogen-bonded in twin A that are not bound in twin 
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B.  We therefore give bond parity aij for all neighboring pairs (i, j) in a BCC lattice: aij 

is +1 if the neighboring pair (i, j) is hydrogen bonded in structure A and –1 otherwise.  

Water molecules in plastic ice are also bound to the BCC lattice points but are allowed 

to change their HB partners almost freely [41].  The bond order parameter for a 

molecule i, say φi,is defined by 

,                          (4.1) 

where NN means the nearest 8 neighbor sites of molecule i and bij is 1 if there is a 

hydrogen bond between molecular pair (i, j) at a given instant and 0 otherwise.  Time 

average of φi becomes 0 if molecules rotate freely and remains finite if the structure is 

fixed to either A or B of the ice VII structure.  Order parameter of a system, say φ, is 

defined as the average over all molecules of the bond order parameter: 

,                          (4.2) 

with N being the number of molecules in the system.  φ is +1 or –1 for perfect ice VII 

and 0 for plastic ice.  Note that there exist water molecules that incessantly change 

their orientations even in ice VII by thermal fluctuation, but total flipping between the 

twin structures was not observed except in the vicinity of a certain thermodynamic state 

in our simulations.  Thus the order parameter is designed to distinguish three possible 

states (twin ice VII and a plastic ice). 

 

Finite-size scaling. 

A finite-size scaling technique is employed for estimating the critical temperature 

Tc and the critical exponent ν for the correlation length of the bond order parameter [60].  

We use a formulated scaling hypothesis for a physical quantity A as a function of 

temperature (T) and side length of system (L),  

�i =
1

4

NNX

j

aijbij

� =
1

N

NX
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�i
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                      (4.3) 

where xA is the critical exponents for A, 𝜖 ≡ 𝑇 𝑇! − 1 is the reduced temperature, and 

𝑓! ∙  denotes an arbitrary scaling function for quantity A.   

In this work, as the physical quantity A in Eq. 4.3, we choose the Binder parameter 

defined as a function of the order parameter of system, φ≡φ(T), by 

                       (4.4) 

The critical exponent for B(φ; T) is known to be zero [61], thus the Eq. 4.3 become 

simple: 𝐵 𝑇, 𝐿 = 𝑓! 𝐿! !𝜖 .  One can get Tc and ν simultaneously in determining the 

regression function 𝑓! ∙ . 

A(T,L) = LxA/�fA(L1/��),

B(�;T ) � 1
2

�
3� ��4�

��2�2
�
.
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4.3  Results and discussion 

Our simulations present a hysteresis at and below 7 GPa in the physical quantities 

between heating and cooling processes (Fig. 4.2(a)).  Thus the phase transition 

between ice VII and plastic ice is apparently first-order one.  Also, the density and 

potential energy shown in Fig. 4.2(a) indicate that these values are system-size 

independent.  Structural difference between ice VII and plastic ice is illustrated in Fig. 

4.1(c).  

At 8 GPa and higher pressures, hysteresis between heating and cooling processes 

disappears.  Moreover, at pressures not lower than 10 GPa, a high peak in the heat 

capacity at constant pressure (Cp) is observed, suggesting the emergence of the critical 

phenomena and second-order phase transition.  Interestingly, such a high peak persists 

even at much higher pressure, implying that the first-order phase transition line may not 

be terminated by the single critical point but replaced by the second-order phase 

transition line that continues to higher pressures.   
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Figure 4.2 | First-order phase transition  

(a) Hystereses of order parameter of system (φ), potential energy and density at the first-order 

phase transition.  Pressure is 5 GPa.  Open large and filled small symbols are values for 

systems of N=3456 and 1024, respectively, and squares and spheres are values for cooling 

and heating paths, respectively. 

(b) Landau free energy profiles g(φ; T) plotted against φ.  Only the right half is drawn.  

Three temperatures at 11 GPa are exemplified: open circles, filled squares, and crosses 

indicate the raw free energy curves obtained from the histogram of order parameters at 

618.75, 619.5, and 620 K, respectively.  Solid, dotted, and dashed lines are 6th-order even 

polynomial fits of them.  
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Here, we should examine the divergent characters with much caution.  When the 

system size is not large enough, incessant alternations occur between states, and the 

first-order phase transition looks as if it were second-order.  Thus, a simple time 

evolution of a thermodynamic property by computer simulation is not useful to 

discriminate whether the phase transition is first-order or second-order.  In the present 

case, such ambiguity of phase transition arises at pressures between 8 and 13 GPa.  To 

overcome this difficulty, we employ two different approaches: i) associating the 

observed transition with a phenomenological free energy (“Landau free energy”) 

profile [62] along the appropriate transition path in order to determine the asymptotic 

behavior of spinodal and coexistence lines; and ii) applying finite-size scaling [60] in 

order to determine the critical temperatures. 

The Landau free energy is defined as a function of the order parameter of system, 

φ (≡φ(T), defined in Methods section), by g(φ; T) = – kT ln W(φ; T), where k is 

Boltzmann constant, T is the temperature of system, and W(φ; T) is the normalized 

probability density that the order parameter has value between φ and φ+dφ.  Fig. 

4.2(b) shows g(φ; T) in the positive φ range for several temperatures at 11 GPa.  One 

can see g(φ; T) has three minima at an appropriate temperature, suggesting that three 

states can coexist if the system size is large enough.  g(φ; T) curves are then expanded 

in sixth-order even polynomial functions whose minima and inflection points can be 

determined analytically.  The coexistence and spinodal temperatures are estimated 

from the dependence of polynomial coefficients on the temperature.  (Detailed 

procedure is described in Appendix for Chapter 4.  See Fig. A4.1.)  These enable us 

to estimate the first-order phase transition line extended up to 12 GPa where a direct 

observation of the hysteresis is difficult.  Estimated coexistence and spinodal lines are 

listed in Table 4.1 and plotted in Fig. 4.1(b).   
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Table 4.1 | Coexistence and spinodal temperatures 

Tc indicates coexistence temperature.  T0 and T1 indicate lower and higher spinodal 

temperatures, respectively.  How to determine Tc, T0, and T1 is described in Appendix for 

Chapter 4 in detail. 

Pressure / GPa Tc / K T0 / K T1 / K 

12 640.28(3) 639.74(3) 640.47(6) 

11 619.66(5) 618.65(1) 620.00(7) 

10 597.69(8) 596.3(4) 598.16(9) 

7 (522)† 517.5* 523.5* 

6 (494)† 486.5* 496.5* 

5 (461)† 451.5* 464.5* 

* Determined by the hysteresis between cooling and heating processes.  

† Interpolated from two spinodal temperatures using an approximation described in Appendix 

for Chapter 4. 
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Next, we employ a finite-size scaling technique for pressures at and above 10 GPa 

to examine the scaling behaviors as well as critical temperatures.  At these pressures, 

as mentioned above and shown in Fig. 4.3(a), the peak position and height of Cp change 

by system size, suggesting the criticality of the finite-size system.  We show the scaled 

heat capacities at constant pressure at 14, 16, and 18 GPa in Fig. 4.3(b), which indicate 

the scalability of the quantity against the system size. 
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Figure 4.3 | Second-order phase 

transition 

(a) The heat capacity at constant pressure 

(Cp) at the second-order phase 

transition.  Pressure is 16 GPa.  Open 

circles, crosses, and dots correspond to 

systems of size N=1024, 2000, and 

3456, respectively.  Dashed line 

indicate Tc( N = ∞ ) estimated by finite 

size scaling technique.  Solid curves 

are for eye guide. 

(b) The scaled heat capacities at 14, 16, 

and 18 GPa against the scaled reduced 

temperature, which are based on the 

scaling hypothesis Eq. 4.3 in Methods 

section.  Here, ν and α are the critical 

exponents for the correlation length and 

for Cp, respectively.  We get ν by the 

finite-size scaling technique (see 

Methods section) and α by fitting Cp(T) 

with the relation Cp ~ | T/Tc – 1 |–α 

(written in the text in more detail; see 

Fig. 4.4(c)).  Estimated values of Tc, 

ν, and α at each pressure are tabulated 

in Table 4.2. 
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The results mentioned so far make us find that the first-order phase transition line 

continuously gives way to the second-order one as the pressure increases.  The Landau 

theory tells us the tricritical point should intervene between the two types of phase 

transition line.  Pressure dependence of the spinodal lines in Fig. 4.1(b) suggests the 

singularity at around 13.3 GPa, nevertheless scaling behavior seems to persist even at 

subcritical pressures because of the finite system size. 

In determining the critical point at each pressure, we first apply the finite size 

scaling technique to the Binder parameter to obtain the critical temperature at 

thermodynamic limit, Tc(N = ∞), and the critical exponent ν for correlation length (see 

Methods section).  The estimated critical line above the tricritical point at 13.3 GPa is 

also shown in Fig. 4.1.  We then assess three other critical exponents α, β, and γ, for 

Cp, φ, and thermal fluctuation of φ (χφ), respectively, using the system of size N=3456.  

Their asymptotic behaviors, 𝐶! ∼ 𝜖 !! , 𝜙 ∼ 𝜖 ! , and 𝜒! ∼ 𝜖 !! , where 𝜖 ≡

𝑇 𝑇! − 1 is the reduced temperature, allow us to estimate them by regression method.  

Divergent behaviors of these quantities and their linear approximations are shown in Fig. 

4.4(a).  Estimated critical temperatures and exponents are listed in Table 4.2 [63–66].  

Critical exponents are found to be almost independent from pressure.  These values are 

different from the critical exponents for 3-dimensional Ising model, and rather close to 

the numerically estimated tricritical exponents of Blume-Capel spin-1 Ising model and 

those determined experimentally for ammonium chloride crystal, which also exhibit the 

crossover from first- to second-order phase transitions.  At 26 GPa, which is the 

highest pressure in the present work, the exponents slightly shift to those for 3D Ising 

critical point.  Note that all the obtained exponents above 10 GPa roughly obey 

Rushbrooke’s scaling law [67]: α + 2β + γ = 2 (Fig. 4.4(b)).  
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Table 4.2 | Critical temperature and exponents 

 

Pressure Tc(N=∞) α β γ ν α+2β+γ 

/ GPa / K T < Tc T < Tc T < Tc   

26 855.0(2) 0.41(3) 0.179(1) 1.03(4) 0.55(4) 1.81(5) 

18 746.5(2) 0.53(4) 0.172(1) 1.16(5) 0.58(4) 2.04(6) 

16 714.3(2) 0.59(4) 0.165(1) 1.09(5) 0.55(4) 2.01(7) 

14 679.5(2) 0.58(3) 0.157(2) 1.16(3) 0.55(5) 2.05(4) 

13* 660.2(2)* 0.60(4) 0.152(1) 1.18(4) 0.55(7) 2.08(6) 

12 640.3(2) 0.63(5) 0.139(1) 1.12(6) 0.55(7) 2.03(8) 

11 619.8(1) 0.61(3) 0.132(1) 1.09(3) 0.55(6) 1.96(4) 

10 597.1(3) 0.58(4) 0.123(1) 1.13(6) 0.55(11) 1.95(7) 

Critical point by mean field approx. 0 1/2 1 1/2 2 

Tricritical point by mean field approx.a 1/2 1/4 1 1/2 2 

Tricritical point of Blume-Capel modelb 0.6 0.26 1.12 0.505 2.24 

Tricritical point of NH4Cl by experiment 0.57d 0.16c    

a Ref. 28 

b Ref. 29  

c Ref. 30  

d Ref. 31  

* Closest data point to the estimated tricritical point (13.3 GPa, 665 K). 
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Figure 5.4 | Asymptotic behavior of 

physical properties in the vicinity of the 

critical point 

(a) Heat capacity at constant pressure (Cp), 

order parameter of the system (φ), and 

fluctuation of φ (χφ) are plotted against 

the reduced temperature T/Tc(N) – 1 

below the temperature of the maximum Cp 

in finite size system, Tc(N), in log-log 

plot.  The system size is N = 3456.  The 

fitting lines embody the critical 

exponents.   

(b) Plots of estimated critical exponents α, β, 

γ, and their sum, α + 2β + γ, against 

temperature.  Dashed line indicates 

Rushbrooke’s scaling law: α + 2β + γ = 2. 
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Extrapolation of spinodal lines suggests that the tricritical point for TIP5P-E water 

model resides at around (T, p) = (665 K, 13.3 GPa).  However, we should be careful 

enough to tell where the actual tricritical point is, since even the phase transition 

between ice VII and plastic ice has not been observed experimentally, and also the 

water model is not designed so as to reproduce the properties of water at such high 

pressures and temperatures precisely.  We just anticipate that the critical fluctuations 

may give us clue for determining the phase boundary between them by experiments.  

(Comparison with the precedent researches is made in Appendix for Chapter 4.  See 

Fig. A4.2.)  Theoretical studies also predict the plastic ice polymorphs of close-packed 

structure at the present thermodynamic conditions [16].  However, structural phase 

transition from ice VII has not been identified experimentally.  More careful surveys 

are awaited both experimentally and theoretically. 

Note that similar phase behavior was also observed in the case of order-disorder 

phase transition in NH4Cl crystal [68].  The phase transition between a disordered 

phase II and an ordered phase IV of NH4Cl is first-order below the tricritical point at 1.5 

GPa and second-order above it.  In the phase transition from II to IV, NH4Cl crystal 

acquires tetrahedral symmetry by fixing the orientation of NH4
+ ion, similarly to the 

case of plastic to VII phase transition where orientations of water molecules are fixed 

and the crystal acquires tetrahedral symmetry.  It is therefore worthwhile to address a 

similarity and a difference between ice VII and ammonium halide.  The structures of 

both crystals have tetrahedral arrangement doubly degenerated in the spatial orientation 

of protons.  It is this degeneracy that gives rise to the sixth-order polynomial of an 

appropriately chosen order parameter in the Landau free energy, which is, in turn, an 

origin of the tricritical point and the phase boundary of second-order transition.  The 

disordered phase of ammonium halide is still crystalline but the corresponding phase in 

ice VII is plastic where the reorientational motion is much faster than that in the 
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crystalline form.  This difference seems to be elucidated in the following way.  The 

cohesion energy to form the crystal in ammonium halide is mainly due to the 

Coulombic interaction between two sorts of ions and the orientational order is governed 

by a different interaction from the cohesive energy.  On the other hand, both cohesion 

energy and orientational ordering are dominated by hydrogen bonds in ice VII.  The 

orientational disordering in ice VII necessarily accompanies breaking of a fairly large 

number of hydrogen bonds while keeping the basic lattice structure intact because of 

high pressure.  (This situation should be distinguished from occasional breakdown and 

recovery of local hydrogen bond network involving only several molecules, which may 

take place even at a low temperature.)  Such a disordering in ammonium halide is 

caused by a rather small amount of energy compared with the ionic interaction and 

therefore the transition is observed at low temperatures.  This difference could be a 

main source of appearance of the plastic phase in ice VII.  The role of hydrogen bonds 

becomes less significant with increasing the pressure (density) and this leads to 

vanishing the first-order transition under high pressure.  That is, compression 

undermines the tetrahedral coordination of hydrogen bonds and the packing effect 

gradually prevails so that the second-order transition takes over the first-order one.  

We should also mention that we limit our calculation up to 26 GPa because of the 

reliability of rigid TIP5P-E water model.  Experimentally, ice VII changes to ice X at 

62 GPa and ambient temperature, in which the OH bond is symmetrized [69].  The 

energy barrier for proton hopping in ice VII will become lower from much lower 

pressure than the VII-X phase boundary, but rigid water models cannot deal with the 

migration of hydrogen atoms.  It is of interest how the critical line approaches and 

connects to the phase boundary with ice X, and how the critical behavior changes 

accordingly.  The phase behaviors of ice VII and plastic ice at higher pressure should 

be investigated by more realistic method, such as the ab initio MD technique.  
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We want to stress the importance of analyzing the critical phenomena of molecular 

system.  Several decades’ researches on critical phenomena by computer simulations 

have been devoted mainly on spin models.  However, phase diagram of the real 

material is more complicated than that of spin models, and the critical point is usually 

not isolated on the phase diagram.  Critical fluctuation may affect the adjacent phase 

transition.  Even the metastable critical point might play very important roles in phase 

behavior, as we learnt from the studies on second critical point of water [70].  Water 

has many polymorphs and many other order-disorder phase transitions according to the 

proton disorder.  There might be another criticality yet to be discovered. 
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Appendix for Chapter 4 

Estimation of spinodal and coexistence temperatures via polynomial fitting of 

Landau free energy functional. 

Here we describe the method to estimate the spinodal and coexistence 

temperatures at a given pressure by fitting the Landau free energy functional with a 

6th-order even polynomial, which is defined as a functional of the order parameter φ 

as follows: 

                  (A4.2) 

where we redefine the coefficients as 𝑟 = 𝑟! 𝑢!  and 𝑢! = 𝑢!′ 𝑢! .  We 

assume 𝑢! is always positive by stability condition.  When 𝑢! < 0, this polynomial 

has three minima at 𝜙 ≤ 0  and at two non-zero 𝜙  values with different sign.  

Differentiation of this polynomial readily tells us that the coexistence of the three 

states, i.e., the condition where the values at three minima are the same, occurs when 

𝑟 = 𝑢! 4, and the spinodal points correspond to the condition where the number of 

minima changes, which occurs when 𝑟 = 0 or 𝑟 = 𝑢!! 3.  

Therefore, when the values 𝑟 − 𝑢! 4 , 𝑟 , and 𝑟 − 𝑢! 3  are plotted against 

temperature, their intersection points with the x axis (temperature axis) correspond to 

the unbiased estimates of the coexistence and two spinodal temperatures, respectively.  

With the real data obtain by the simulation, the se values change almost linearly 

against temperature in the vicinity of the phase boundary and therefore we can estimate 

the intersection points fairly precisely.  Fig.A4.1 illustrates the actual process of 

estimating these temperatures.  
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Figure A5.1 

Blue, red, and green points are values  𝑟, 𝑟 − 𝑢! 4⁄ , and 𝑟 − 𝑢! 3⁄  obtained by fitting the 

Landau free energy functional with 6th-order even polynomial (Eq. A4.1), respectively.  

Intersection points of the linear fitting lines of them with the abscissa axis give the unbiased 

estimates of spinodal and coexistence temperatures.  Pressures are 10, 11, and 12 GPa. 
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When r changes linearly and u4 is constant against temperature, we obtain a 

simple relation between coexistence temperature Tc and lower and higher spinodal 

temperatures T0 and T1, that is 

                      (A4.2) 

Actually, one can see this relation approximately holds at the pressures between 

10 and 12 GPa in Fig. 4.1(b).  We therefore also make use of this relation to estimate 

the coexistence temperature from two spinodal temperatures below 10 GPa where 

determination of coexistence temperature by direct molecular dynamics simulation is 

difficult. 

  

Tc � T0 = 3(T1 � Tc).
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Comparison with experimental data. 

Shown in Fig. A4.2 are the phase boundaries between ice VII and supercritical 

fluid water determined by experiments [3–10] and by computer simulations [13,16].  

Note that the phase boundaries obtained by Takii et al. [13] and by Aragones et al. [16] 

by computer simulations have two branches corresponding to fluid-plastic and 

plastic-VII transitions.  
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Figure A5.2 | Phase boundaries between ice VII and the supercritical fluid 

water 

Takii (the water’s potential model is TIP5P) [13], Aragones (TIP4P/2005) [16], and 

Himoto’s data (the present work; TIP5P-E model) are obtained by computer simulations; 

other data are by experiments [3–10].  Takii and Aragones’ data include the melting points 

of plastic ice to the fluid water.  The red star in Himoto’s series indicates the pressure and 

temperature of the tricritical point discovered in the present work.  
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