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Abstract 

Background: Klotho was originally identified in a mutant mouse strain unable to 

express the gene that consequently showed shortened life spans. In humans, low 

serum Klotho levels are related to the prevalence of cardiovascular diseases in 

community-dwelling adults. However, it is unclear whether the serum Klotho levels 

are associated with signs of vascular dysfunction such as arterial stiffness, a major 

determinant of prognosis, in human subjects with chronic kidney disease (CKD). 

Methods: We determined the levels of serum soluble Klotho in 114 patients with 

CKD using ELISA and investigated the relationship between the level of Klotho and 

markers of CKD-mineral and bone disorder (CKD-MBD) and various types of 

vascular dysfunction, including flow-mediated dilatation, a marker of endothelial 

dysfunction, ankle-brachial pulse wave velocity (baPWV), a marker of arterial 

stiffness, intima-media thickness (IMT), a marker of atherosclerosis, and the aortic 

calcification index (ACI), a marker of vascular calcification. 

Results: The serum Klotho level significantly correlated with the 

1,25-dihydroxyvitamin D level and inversely correlated with the parathyroid hormone 

level and the fractional excretion of phosphate. There were significant decreases in 

serum Klotho in patients with arterial stiffness defined as baPWV ≥ 1400 cm/sec, 

atherosclerosis defined as maximum IMT ≥ 1.1 mm and vascular calcification scores 

of ACI > 0%. The serum Klotho level was a significant determinant of arterial 

stiffness, but not endothelial dysfunction, atherosclerosis or vascular calcification, in 

the multivariate analysis in either metabolic model, the CKD model or the CKD-MBD 

model. The adjusted odds ratio of serum Klotho for the baPWV was 0.60 (p=0.0075). 

Conclusions: Decreases in the serum soluble Klotho levels are independently 

associated with signs of vascular dysfunction such as arterial stiffness in patients with 
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CKD. Further research exploring whether therapeutic approaches to maintain or 

elevate the Klotho level could improve arterial stiffness in CKD patients is warranted. 

 

Key words: soluble α-Klotho, chronic kidney disease, arterial stiffness, pulse wave 

velocity, vascular dysfunction, mineral bone disorder 
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Introduction 

Chronic kidney disease (CKD) may fundamentally underlie the development of 

cardiovascular disease (CVD) and appears to be a risk factor for CVD [1]. Patients 

with CKD are more likely to die of CVD than to develop end-stage renal failure [2]. 

CKD leads to increased levels of parathyroid hormone (PTH) and fibroblast growth 

factor 23 (FGF23) and decreased levels of circulating 1,25-dihydroxyvitamin D 

(1,25D) along with hypocalcemia, hyperphosphatemia, bone disease, vascular 

calcification and cardiovascular morbidities collectively referred to as chronic kidney 

disease-mineral and bone disorder (CKD-MBD) [3,4,5]. Recent reports suggest that 

increased levels of FGF23 are a common manifestation of CKD that develop earlier 

than increased levels of phosphate or PTH [6]. Additionally, the circulating FGF23 

level is independently correlated with endothelial dysfunction, possibly due to 

asymmetrical dimethyl arginine, an endogenous inhibitor of nitric oxide synthase [7]. 

 The Klotho gene, identified as an ‘aging suppressor’ gene in mice, encodes a 

single-pass transmembrane protein that is predominantly expressed in the distal 

tubular epithelial cells of the kidneys, parathyroid glands and choroid plexus of the 

brain [8,9,10,11]. Klotho was originally identified in a mutant mouse strain that could 

not express the gene, which developed multiple disorders resembling human aging 

and had a shortened life span [10]. The aging phenotypes include atherosclerosis, 

endothelial dysfunction, low bone mineral density, sarcopenia, skin atrophy and 

impaired cognition. In an atherosclerotic mouse model, the in vivo gene delivery of 

Klotho protects against endothelial dysfunction [12]. HMG-CoA reductase inhibition 

enhances the Klotho protein expression in the kidneys and inhibits atherosclerosis in 

rats with chronic blockade of nitric oxide synthase [13]. Emerging evidence suggests 

that a deficiency of Klotho is an early biomarker for CKD [14,15,16,17] and acute 
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kidney injury [18]. There are two forms of Klotho, a membrane form and a secreted 

form, and each has distinct functions. Membrane Klotho acts as an obligate 

co-receptor for FGF23, a bone-derived hormone that induces phosphate excretion into 

the urine [19]. Secreted Klotho is involved in the regulation of nitric oxide production 

in the endothelium [20,21], maintenance of endothelial integrity and permeability [22], 

calcium homeostasis in the kidneys [23] and inhibition of intracellular insulin and 

insulin-like growth factor-1 signaling [24]. Secreted Klotho proteins are present in 

human sera and cerebrospinal fluid, suggesting that post-translational cleavage results 

in the release of Klotho proteins from the cell membrane [25]. The extracellular 

domain of Klotho is clipped by the membrane-anchored proteases ADAM10 and 

ADAM17 in order to generate the secreted form [26]. 

 Recently, a sensitive and specific assay was developed for the measurement 

of soluble Klotho in humans [27]. Low serum Klotho levels have been reported to be 

associated with poor skeletal muscle strength [28] and the prevalence of CVD [29] 

and all-cause mortality [30] in community-dwelling adults. The expression of local 

vascular Klotho has been observed to decrease in human arteries in patients with CKD 

compared to healthy individuals [31]. Low serum Klotho levels have been reported in 

patients with diabetes mellitus [32]. However, whether the serum Klotho levels are 

closely related to signs of vascular dysfunction such as arterial stiffness in patients 

with CKD is largely unknown. We hypothesized that low serum Klotho levels are 

associated with signs of vascular dysfunction such as arterial stiffness in patients with 

CKD. To address this hypothesis, we measured the serum Klotho levels and 

extensively investigated the relationship between the serum Klotho level and signs of 

vascular dysfunction, including endothelial dysfunction, arterial stiffness, 

atherosclerosis and vascular calcification, in CKD patients. The data presented here 
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suggest that a decrease in the serum soluble Klotho level is an independent biomarker 

of pronounced arterial stiffness in patients with CKD. 

 

 

Results 

Patient characteristics 

The baseline characteristics of the study population are shown in Table 1. A total of 

114 CKD patients with a median age of 58 (47-66) years were included in the study. 

The background causes of CKD included 54 cases of glomerulonephritis (47%), 27 

cases of nephrosclerosis (24%), 13 cases of diabetic nephropathy (11%) and 20 cases 

of “other” (18%). A total of 83 patients were on antihypertensive therapy (71 patients 

were being treated with angiotensin receptor blockers (ARBs) or angiotensin 

converting enzyme inhibitors (ACEIs), 58 with calcium channel antagonists and 14 

with other agents). Antihyperlipidemic agents were administered to 35 patients and 

antidiabetic agents were administered to 16 patients. The median serum Klotho level 

was 616.3 pg/mL, with an interquartile range of 460.0 to 755.5 pg/mL, the value of 

which was comparable to that reported in a previous study of CKD patients [17] and 

was higher than that in hemodialysis patients [33,34]. 

 

Relationship between the serum Klotho level and age, renal function, 

CKD-related mineral metabolism and markers of vascular dysfunction 

Age-dependent changes were recognized in the serum Klotho levels in patients with 

CKD (Figure 1A), as has been reported in healthy subjects [27]. The serum Klotho 

level was significantly correlated with the eGFR (Figure 1B) and decreased along 

with CKD stages (Figure S1A). With regard to markers of CKD-MBD, the serum 



8 
 

Klotho level was positively correlated with the 1,25-dihydroxyvitamin D (1,25D) 

level (Figure 1C) and negatively correlated with the log intact parathyroid hormone 

(PTH) and fractional excretion of phosphate (FEPi) (Figure 1D, 1E). The FEPi 

significantly increased along with declines in the eGFR (univariate regression, 

r=-0.7228, p<0.0001). There were no correlations between the level of serum Klotho 

and the fractional excretion of calcium (FECa) (Figure 1F) or the 25-hydroxyvitamin 

D (25D) level (Figure S2C). However, correlations were observed between the level 

of serum Klotho and the level of serum calcium (r = 0.1618; p = 0.0855), the level of 

serum phosphate (r = -0.1454; p = 0.1426) and log intact FGF23 (r = -0.1751; p = 

0.0624) (Figure S2A, Figure S2B and Figure S2D, respectively).  

We next investigated the association between the serum Klotho level and 

various markers of vascular dysfunction, including flow-mediated dilatation (FMD), a 

marker of nitric oxide-dependent endothelial function, brachial-ankle pulse wave 

velocity (baPWV), a marker of arterial stiffness, maximum intima-media thickness 

(max IMT), a marker of atherosclerosis, and the abdominal aortic calcification index 

(ACI), a marker of vascular calcification (Figure 2). The serum Klotho levels tended 

to be lower in patients with FMD < 6.0 % compared to those with FMD ≥ 6.0 % (p = 

0.0863) (Figure 2A). The serum Klotho levels were significantly lower in patients 

with PWV ≥ 1400 cm/s, max IMT ≥ 1.1 mm and ACI > 0 % compared to those with 

PWV < 1400 cm/s, max IMT < 1.1 mm and ACI = 0 %, respectively (Figure 2B-D). 

 

A multivariate analysis of the determinants of signs of vascular dysfunction, 

including arterial stiffness, in CKD patients 

Separate multiple logistic regression models for markers of various signs of vascular 

dysfunction were analyzed (Table 2 and Table S1-S3). After adjusting for age, 
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gender, mean blood pressure, use of antihypertensive drugs, drinking and current 

smoking, the serum Klotho level was found to be a significantly independent predictor 

of baPWV ≥ 1400 cm/sec in a metabolic model that included non-HDL cholesterol, 

use of antihyperlipidemic agents, hemoglobin A1c and use of antidiabetic agents as 

other parameters (Table 2, upper panel). The serum Klotho level was also found to 

be a significantly independent predictor of baPWV ≥ 1400 cm/sec in a CKD model 

that included eGFR, albuminuria and hemoglobin as other parameters (Table 2, 

middle panel) and a CKD-MBD model that included serum calcium, phosphate, 

intact PTH, 1,25D and FGF23 as other parameters (Table 2, lower panel). We 

performed the same analysis using multiple logistic regression models of the serum 

Klotho level as a predictor of FMD ≥ 6.0 %, max IMT ≥ 1.1mm and ACI > 0 %; 

however, the serum Klotho level was not found to be a significant predictor of any of 

these parameters (Table S1-S3, respectively). Next, a multivariable logistic regression 

analysis was performed to evaluate the impact of serum Klotho on arterial stiffness 

assessed by baPWV in CKD patients. This model includes candidate predictors that 

were selected based on Table 2. The factors significantly associated with baPWV 

were age, MBP, albuminuria and serum Klotho. The adjusted odds ratios (ORs) for 

serum Klotho (per 100 pg/mL increase) and albuminuria (per 500 mg/day increase) 

were 0.60 (95% CI: 0.39 to 0.98; p=0.0075) and 1.97 (95% CI: 1.16 to 3.73; 

p=0.0219), respectively (Figure 3). 

 

 

Discussion 

In this study, we measured the serum Klotho levels and determined the relationships 

between the serum Klotho level and markers of CKD-MBD and vascular dysfunction, 
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including FMD, baPWV, max IMT and ACI in patients with CKD. We herein provide 

the first evidence in CKD patients that: 1) the serum soluble Klotho level is 

significantly correlated with markers of CKD-MBD, including the levels of PTH, 

1,25D and FEPi; 2) decreased levels of serum Klotho are significantly associated with 

signs of vascular dysfunction such as pronounced arterial stiffness evaluated by 

baPWV; and 3) in a multivariate analysis, the serum Klotho level was found to be an 

independent determinant of marked arterial stiffness, which has been reported to be 

associated with increased cardiovascular mortality and morbidity. 

 In this study, the group with lower levels of serum Klotho exhibited 

significantly lower eGFR levels, as previously reported in CKD patients [17] and 

patients on hemodialysis [34]. It has been reported that the mRNA and protein 

expression levels of Klotho are severely reduced in the kidneys of patients with 

chronic renal failure compared to control subjects [35]. However, it seems that the 

serum Klotho levels are not completely depleted, even in patients with stage 5 CKD 

on hemodialysis [34]. This finding suggests that a basal level of Klotho production 

from other organs than the kidneys, such as the brain and parathyroid glands, might 

exist in humans, as has been previously reported in mice [8,9,10]. A recent study 

indicated that the transcriptional suppression of Klotho by a protein-bound uremic 

toxin, indoxyl sulfate, results from CpG hypermethylation of the Klotho gene [36]. 

Since indoxyl sulfate may play a significant role in the vascular disease and higher 

mortality observed in CKD patients [37], epigenetic modification of the Klotho gene 

by a uremic toxin such as indoxyl sulfate might be a mechanism underlying the 

association between the decline of serum Klotho levels and arterial stiffness in CKD 

patients observed in the current study. 
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 With regard to markers of CKD-MBD, the serum Klotho level was inversely 

correlated with the FEPi and log intact PTH and positively correlated with the 1,25D 

level. The FEPi significantly increased along with declines in the eGFR in the CKD 

patients evaluated in this study and also in the Chronic Renal Insufficiency Cohort 

(CRIC) study [6]. The serum Klotho is unable to function as a decoy receptor for 

FGF23, because Klotho alone does not bind to FGF23 with high affinity. Unlike 

membrane Klotho, serum Klotho cannot efficiently support FGF23-induced activation 

of FGF signaling [38]. Instead, serum Klotho may inhibit Type 2a Na-phosphate 

co-transporter (Npt2a) by decreasing the number of cell-surface Npt2a, thereby 

reducing cellular phosphate uptake in renal proximal tubular cells [39]. The level of 

serum Klotho might therefore reflect increased phosphate excretion from the kidneys, 

which is one of the characteristics of disordered mineral metabolism observed in CKD 

patients.  

 To date, several markers have been utilized to assess cardiovascular 

dysfunction in CKD patients, including FMD, baPWV, IMT and ACI 

[40,41,42,43,44]. In the current study, we demonstrated that the level of serum Klotho 

is an independent determinant of arterial stiffness only defined as baPWV ≥ 1400 

cm/s, even after adjusting for age, gender, mean blood pressure, use of 

antihypertensive drugs, drinking and smoking. In addition, serum Klotho was also a 

significant predictor of arterial stiffness in the full model including confounders such 

as age, MBP, diabetes mellitus, dyslipidemia, eGFR, albuminuria, phosphate, PTH, 

1,25D and FGF23, and the adjusted odds ratio (OR) for serum Klotho (per 100 pg/mL 

increase) was 0.60 (95% CI: 0.39 to 0.98; p=0.0075). There have been some reports 

discussing the associations between baPWV and CKD-MBD parameters such as 

phosphate [45], 1,25D [46], PTH [47,48] and FGF23 [49,50]; however, these 
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associations are inconsistent. Several reports have shown that increases in aortic 

stiffness begin as early as CKD stage 2 and increase with the progression to stages 3 

and 4 [51,52]. Conversely, improvements in aortic stiffness have been associated with 

improved prognoses in patients with end-stage renal disease [53]. The role of serum 

Klotho in the progression of arterial stiffness has not yet been elucidated in human 

CKD; however, in vivo gene delivery of Klotho into skeletal muscle prevents medial 

hypertrophy of the aorta in an animal model of atherosclerotic disease [12]. It also 

improves endothelium-dependent relaxation of the aorta in response to acetylcholine 

in association with increases in nitric oxide production, suggesting that soluble Klotho 

plays a protective role against the development of vascular endothelial dysfunction. 

Although the receptor for soluble Klotho located in the vascular endothelium has not 

been identified, soluble Klotho regulates calcium influx to maintain the integrity of 

vascular endothelial cells in a mouse model and in in vitro endothelial cell culture 

studies [22]. The ‘local’ vascular Klotho in human arteries may act as an endogenous 

inhibitor of vascular calcification and as a cofactor required for vascular FGF23 

signaling [31]. Conducting further studies will therefore be necessary in order to 

investigate how ‘systemic’ serum Klotho interacts with the mechanisms of arterial 

stiffness in human CKD. 

 An association between Klotho deficiency and vascular calcification has been 

reported in aging mice and in a mouse model of CKD [10,16,24]. In the assessment of 

vascular calcification conducted in the current study, the levels of serum Klotho were 

decreased in CKD patients with ACI > 0% compared to those in patients without 

aortic calcification (Figure 2D), although the levels of serum Klotho were not 

significantly correlated with the degree of ACI (Figure S2H) or were not independent 

determinants of ACI (Table S3). There are two possible reasons why the serum 
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Klotho levels are not significantly correlated with the degree of aortic calcification in 

human CKD patients. First, soft tissue calcification in human CKD may progress 

more slowly than that observed in murine CKD [16], despite phosphorus and calcium 

playing major roles in the calcification process in CKD patients. The CKD cohort in 

our study comprised mostly patients with CKD of stages 1 to 3 (68.4%), which are the 

early to middle stages of CKD, rather than patients with severe renal dysfunction or 

uremia that may induce a more procalcific CKD phenotype [54]. 

Increased serum phosphorus levels are associated with cardiovascular disease 

in both patients with chronic kidney disease (CKD) and in the general population. 

High phosphate levels may play a direct role in vascular dysfunction. In the current 

study, however, there were no significant correlations between the serum phosphate 

levels and the FMD (r = -0.0530, p = 0.5596), baPWV (r = 0.1217, p = 0.2778), max 

IMT (r = 0.1030, p = 0.2695) or ACI (r = 0.0245, p = 0.7988). Kestenbaum et al. 

reported a significant increase in the mortality risk in patients with CKD with 

phosphate levels higher than 3.5 mg/dL [55] . In our cohort, only 41.4% (46 out of 

114) patients exhibited serum phosphate levels higher than 3.5 mg/dL, so the 

phosphate levels might not correlate with the vascular dysfunction in this study. A 

recent report demonstrated that a high phosphate level directly affects endothelial 

dysfunction [56] . Indeed, our data suggest that there is some relationship between the 

FEPi and FMD (r = -.02520, p = 0.0077), although the correlation was not statistically 

significant. Another report using an animal model indicated that changes in 

extracellular phosphorus concentrations may directly modulate the vascular smooth 

muscle function [57] . Based on these findings, phosphate could still be a major direct 

player in the pathogenesis of the vascular dysfunctions observed in patients with 

CKD. 
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 Membrane Klotho functions as a co-receptor for FGF23, a bone-derived 

hormone that induces phosphate excretion into the urine [19]. The presence of 

membrane Klotho determines the target organs of FGF23 and its signaling since most 

tissues express receptors for FGF. Nakano et al. recently reported that the serum intact 

FGF23 level is the earliest indicator among various CKD-MBD-related factors and 

that a high intact FGF23 level and a low 25-hydroxyvitamin D (25D) level 

independently predict poor renal outcomes, even after adjusting for other 

MBD-related factors, in patients with pre-dialysis CKD [58]. However, the serum 

Klotho level was not evaluated in that report, and the exact functions of serum soluble 

Klotho have yet to be defined [59]. Therefore, whether an excess level of FGF23 and 

the occurrence of adverse outcomes in patients with CKD are mediated by a 

deficiency of serum Klotho remains unclear [60]. 

There have been discrepancies among the study results concerning the 

correlation between the serum Klotho levels and GFR in patients with CKD 

[17,32,61]. One study found that the plasma Klotho level was not related to the kidney 

function in patients with CKD, but this study population included nearly 40% patients 

with diabetes mellitus (39.4%) [61]. In contrast, the serum levels of soluble Klotho 

were decreased in patients with early stages of CKD in a different study including 

15.4% diabetes mellitus cases [17]. These discrepancies may be due to two possible 

causes. First, including diabetic patients in the CKD cohort may underestimate the 

level of serum Klotho, since the level of serum Klotho is lower in diabetic patients 

compared to non-diabetic patients [32]. Second, several ELISA kits to detect the level 

of soluble Klotho are commercially available, potentially leading to different results 

in terms of the association of serum Klotho with the renal function. 
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 Our study has several limitations and strengths that should be kept in mind 

when interpreting the results. First, the cross-sectional nature of our observations 

precluded making any cause-effect inferences about the relationship between the 

serum Klotho level and arterial stiffness in CKD patients. Second, we lacked data 

regarding the patients’ dietary phosphorus intake, a critical factor for CKD-MBD and 

the CKD-associated incidence of CVD, which may be related to the serum Klotho 

level. However, this weakness is, in part, offset by the criteria of our study because 

patients who were being treated with vitamin D or phosphate binders were excluded. 

 In conclusion, the serum Klotho level was found to significantly correlate 

with markers of CKD-MBD and is an independent biomarker of arterial stiffness in 

patients with CKD. Further studies are required to elucidate which intervention(s) can 

modulate the level of serum Klotho, as has been reported in rodents [13,62,63], and 

whether any interventions to increase or maintain the serum Klotho level can prevent 

cardiovascular events and mortality in CKD patients. 

 

 

Subjects and methods 

Subjects 

The subjects in this study were patients admitted to the Renal Unit of Okayama 

University Hospital. All patients were diagnosed with CKD according to their 

estimated glomerular filtration rate (eGFR) and the presence of kidney injury as 

defined by the National Kidney Foundation K/DOQI Guidelines [64,65]. 

Hypertension was defined as systolic blood pressure (SBP) ≥ 140 mmHg or diastolic 

blood pressure (DBP) ≥ 90 mmHg or the use of antihypertensive drugs. The eGFR 

was calculated according to the simplified version of the Modification of Diet in 
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Renal Disease (MDRD) formula [eGFR=194×(sCr)-1.094×(age)-0.287(if female×0.739)] 

[66]. Smoking status (current smoker vs. non-smoker) was determined from a medical 

interview. Current drinking was defined as drinking alcohol at least two times per 

week in the last year. All procedures in the present study were carried out in 

accordance with institutional and national ethical guidelines for human studies, and 

guidelines proposed in the Declaration of Helsinki. The ethics committee of Okayama 

University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 

approved the study. Written informed consent was obtained from each subject. This 

study was registered with the Clinical Trial Registry of the University Hospital 

Medical Information Network (registration number UMIN000003614). According to 

the established protocol, we excluded any patients with established atherosclerotic 

complications (coronary artery disease, congestive heart failure or peripheral vascular 

disease). Patients with nephrotic syndrome and patients who were being treated with 

vitamin D or phosphate binders were excluded. None of the patients had an acute 

infection at the time of the study. 

 

Laboratory measurements 

Each subject’s arterial blood pressure was measured by a physician after a 10 minute 

resting period to obtain the systolic and diastolic pressures. The mean blood pressure 

(MBP) was calculated as DBP + (SBP – DBP)/3. All samples were obtained from 

patients in the morning after 12 hours of fasting. The soluble α-Klotho (Klotho) 

concentrations in the serum were measured using an ELISA system 

(Immuno-Biological Laboratories, Gunma, Japan) [27]. The serum levels of intact 

FGF23 were determined using a commercial sandwich ELISA kit (Kainos 

Laboratories, Inc., Tokyo, Japan). The serum levels of total protein, albumin, 
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creatinine, calcium, inorganic phosphate and glucose, as well as the urinary levels of 

albumin, creatinine, calcium and inorganic phosphate, were measured in all patients. 

The serum levels of 1,25-dihydroxyvitamin D (1,25D) and 25-hydroxyvitamin D 

(25D) were measured using a radioimmunoassay and the serum intact PTH levels 

were measured using an immunoradiometric assay. The fractional excretion of 

phosphorus (FEPi) and calcium (FECa) were calculated as (urine mineral × serum 

creatinine) / (serum mineral × urine creatinine). 

 

Vascular assessments 

Endothelial dysfunction  

Flow-mediated dilatation (FMD) and endothelium-independent vasodilatation 

(nitroglycerin-mediated dilatation; NMD) of the brachial artery were assessed 

noninvasively, as previously described [44]. The subjects were instructed to fast for at 

least 12 hours before testing and to abstain from smoking and ingesting alcohol, 

caffeine or antioxidant vitamins prior to testing. We obtained ultrasound 

measurements according to the guidelines for ultrasound assessment of the FMD of 

the brachial artery. Using a 10-MHz linear array transducer probe, the longitudinal 

image of the right brachial artery was recorded at baseline and then continuously from 

30 seconds before to at least two minutes after the cuff deflation that followed 

suprasystolic compression (50 mmHg above systolic blood pressure (SBP)) of the 

right forearm for five minutes. The diastolic diameter of the brachial artery was 

determined semi-automatically using an instrument equipped with a software program 

for monitoring the brachial artery diameter (Unex Co. Ltd., Nagoya, Japan). The FMD 

was estimated as the percent change in the diameter over the baseline value at 

maximal dilation during reactive hyperemia. A total of 10 minutes were allowed to 
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elapse for vessel recovery, after which a further resting scan was taken. Then, 0.3 mg 

of nitroglycerin was administered, and a final scan was performed five minutes later. 

We defined patients having endothelial dysfunction as those with FMD < 6.0 % in the 

current study based on previous reports [44,67,68]. 

 

Measurement of intima-media thickness (IMT) 

Ultrasonography of the carotid artery was performed using a high resolution real-time 

scanner with a 7.5 MHz transducer, as previously described [40]. The examination 

was performed with the subject in the supine position, and the carotid bifurcation, as 

well as the common carotid artery, were scanned on both sides. The maximum IMT 

value was measured as follows. The carotid artery was scanned in the longitudinal and 

transverse directions. The site of the most advanced atherosclerotic lesion that showed 

the greatest distance between the lumen-intima interface and the media-adventitia 

interface was located in both the right and left carotid arteries. When plaque was 

detected on ultrasonography, it was observed as localized thickening rather than a 

circumferential change in the vessel wall. The greatest thickness of the intima-media 

complex (including plaque) was used for the maximum IMT value. We identified 

patients having atherosclerosis based on atheromatous plaques of focal increases in 

IMT ≥ 1.1 mm in accordance with a prior study that showed the normal limit of IMT 

to be ≤1.0 mm [69]. 

 

Measurement of ankle-brachial pulse wave velocity (baPWV) 

Pulse wave velocity (PWV) measurements were obtained at the bedside of each 

subject using a volume plethysmographic apparatus (FORM/ABI; Colin, Komaki, 

Japan) after the subject had rested in the supine position for at least five minutes, as 
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previously described [40]. This instrument allows simultaneous recording of the 

baPWV and the brachial and ankle BPs on both sides, in addition to recording an 

electrocardiogram and heart sounds. We defined patients having arterial stiffness as 

those with baPWV ≥ 1400 since a baPWV ≥ 1400 cm/sec is an independent variable 

of the risk stratification according to the Framingham score and for the discrimination 

of patients with atherosclerotic cardiovascular disease [70]. 

 

Measurement and calculation of the aortic calcification index (ACI) 

The ACI was determined as previously described [42,43]. A non-contrast CT scan of 

the abdominal aorta was performed. Calcification of the abdominal aorta above the 

bifurcation of the common iliac arteries was evaluated semi-quantitatively in 10 CT 

slices at 1 cm intervals. Calcification was considered to be present if an area ≥ 1 mm2 

displayed a density ≥ 130 Hounsfield units. The cross-section of the abdominal aorta 

on each slice was divided into 12 segments radially. A segment containing an aortic 

wall with calcification in any section was defined as having aortic calcification. The 

number of calcified segments was counted in each slice and divided by 12. The values 

thus obtained for the 10 slices were added together, divided by 10 (the number of 

slices inspected) and then multiplied by 100 to express the result as a percentage: ACI 

(%) = (total score for calcification in all slices) / (12 [number of segments in each 

slice] × 10 [number of slices]) × 100. The ACI was used as a marker for the extent of 

aortic calcification. We defined CKD patients having abdominal calcification as those 

with ACI > 0 %, as described previously [42,43]. 

 

Statistical analysis 
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Non-normally distributed variables were expressed as the median (interquartile range) 

and normally distributed variables were expressed as the mean ± SD as appropriate. A 

value of P <0.05 was considered to be statistically significant. Differences between 

groups were analyzed using Student’s t-test and the Mann-Whitney U-test as 

appropriate. The Spearman rank correlation was used to determine the correlations 

between two variables. A multiple logistic regression analysis was applied to test the 

independent links between the vascular function and potential functional correlates of 

the outcome variables [71,72]. A multivariable logistic regression analysis was 

performed to determine the predictors of baPWV. This multivariate model was built 

using pre-specified variables including age, gender, MBP, diabetes mellitus, 

dyslipidemia, eGFR, albuminuria, phosphate, PTH, 1,25D, FGF23 and serum Klotho. 

The P values, odds ratios (ORs) and corresponding two-sided 95% confidence 

intervals (CIs) for the predictors are presented. The statistical analyses were 

performed using the JMP software package release 8 (SAS Institute Inc., Cary, NC, 

USA). 
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Figure Legends 

Figure 1. Correlation between the serum Klotho levels (pg/mL) and patient age 

(years) (A), estimated glomerular filtration rate (eGFR) (mL/min/1.73m2) (B) 

and markers of chronic kidney disease-mineral and bone disorder (CKD-MBD), 

including 1,25-dihydroxyvitamin D (1,25D) (pg/mL) (C), log intact parathyroid 

hormone (PTH) (pg/mL) (D), fractional excretion of phosphate (FEPi) (%) (E) 

and fractional excretion of calcium (FECa) (%) (F). The serum Klotho levels were 

inversely correlated with age and positively correlated with eGFR (A, B). Regarding 

CKD-MBD markers, the serum Klotho levels were significantly correlated with 

1,25D and negatively correlated with log intact PTH and FEPi; however, no 

significant correlation was observed with FECa (C-F). (A-F) N = 114. 

 

Figure 2. Box and line plots showing the levels of serum Klotho (pg/mL) 

according to the stratified levels of vascular dysfunction, including 

flow-mediated dilatation (FMD) (%), a marker of endothelial dysfunction (A), 

ankle-brachial pulse wave velocity (baPWV) (cm/sec), a marker of arterial 

stiffness (B), maximum intima-media thickness (max IMT) (mm), a marker of 

atherosclerosis (C), and the aortic calcification index (ACI) (%), a marker of 

vascular calcification (D). The serum Klotho levels were significantly lower in 

patients with FMD < 6.0 %, PWV ≥ 1400 cm/s, max IMT ≥ 1.1 mm and ACI > 0 % 

compared to patients with FMD ≥ 6.0 %, PWV < 1400 cm/s, max IMT < 1.1 mm and 

ACI = 0 %, respectively (A-D). (A) N = 70 and n = 40 in FMD < 6.0 % and FMD ≥ 

6.0 %, respectively. (B) N = 60 and n = 45 in PWV < 1400 cm/s and PWV ≥ 1400 

cm/s, respectively. (C) N = 82 and n = 29 in max IMT < 1.1 mm and max IMT ≥ 1.1 

mm, respectively. (D) N = 28 and n = 75 in ACI = 0 % and ACI > 0 %, respectively. 
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The boxes denote the medians and 25th and 75th percentiles. The lines mark the 5th 

and 95th percentiles. 

 

Figure 3. Multivariate odds ratio for ankle-brachial pulse wave velocity 

(baPWV) among patients with CKD displayed as the odds ratio (OR) (solid 

boxes) with 95% confidence intervals (CIs) (horizontal limit lines). For continuous 

variables, the unit of change is given in parenthesis based on the multivariate model 

described in Table 2. MBP, mean blood pressure; eGFR, estimated glomerular 

filtration rate; PTH, parathyroid hormone; 1,25D, 1,25-dihydroxyvitamin D; FGF23, 

fibroblast growth factor 23. 
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Supporting Information Legends 

Figure S1: Box and line plots showing the levels of serum Klotho (pg/mL) 

according to the estimated glomerular filtration rate (eGFR) (mL/min/1.73m2) 

(A) or the levels of serum log intact fibroblast growth factor 23 (FGF23) (pg/mL) 

according to the estimated glomerular filtration rate (eGFR) (mL/min/1.73m2) 

(B). The serum soluble Klotho levels significantly decreased in association with 

declines in eGFR (A), while the log-transformed intact FGF23 levels significantly 

increased in association with declines in eGFR (B). (A) serum Klotho levels, 

eGFR≥90 (stage 1), 799.0 (670.6-940.9); eGFR 60-89 (stage 2), 637.4 (546.2-637.4); 

eGFR 30-59 (stage 3), 595.4 (498.8-773.9); eGFR 15-29 (stage 4), 578.3 

(425.9-751.0); eGFR 0-14 (stage 5), 525.1 (389.0-661.4) pg/mL. (A, B) eGFR≥90, 

n=11; 60-89, n=36; 30-59, n=31; 15-29, n=16, 0-14, n=20. *, **, *** and **** 

indicate p < 0.05, p < 0.01, p < 0.005 and p < 0.001, respectively. The boxes denote 

the medians and 25th and 75th percentiles. The lines mark the 5th and 95th 

percentiles. 

 

Figure S2: Correlation between the serum Klotho levels (pg/mL) and the other 

markers of chronic kidney disease-mineral and bone disorder (CKD-MBD), 

including calcium (mg/dL) (A), phosphate (mg/dL) (B), 25-hydroxyvitamin D 

(25D) (C) and log intact fibroblast growth factor 23 (FGF23) (D) and various 

markers of vascular dysfunction, including flow-mediated dilatation (FMD) (%) 

(E), ankle-brachial pulse wave velocity (baPWV) (cm/sec) (F), maximum 

intima-media thickness (max IMT) (mm) (G) and the aortic calcification index 

(ACI) (%) (H). The serum Klotho levels tended to be positively correlated with 

calcium and phosphate and negatively correlated with log intact FGF23, while no 
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significant association was observed between the serum Klotho levels and 25D (A-D). 

Regarding markers of vascular dysfunction, the serum Klotho levels were positively 

correlated with FMD and negatively correlated with baPWV and max IMT, while the 

correlation between the serum Klotho levels and ACI was not significant (E-H). (A, B, 

D, E-H) N = 114. (C) N = 58. 

 

Figure S3: Multivariate odds ratio for flow-mediated dilatation (FMD) among 

patients with CKD displayed as the odds ratio (OR) (solid boxes) with 95% 

confidence intervals (CIs) (horizontal limit lines). For continuous variables, the unit 

of change is given in parenthesis based on the multivariate model described in Table 

S1. MBP, mean blood pressure; eGFR, estimated glomerular filtration rate; PTH, 

parathyroid hormone; 1,25D, 1,25-dihydroxyvitamin D; FGF23, fibroblast growth 

factor 23. 

 

Figure S4: Multivariate odds ratio for maximum intima-media thickness (max 

IMT) among patients with CKD, displayed as odds ratio (OR) (solid boxes) with 

95% confidence intervals (CIs) (horizontal limit lines). For continuous variables, 

unit of change is given in parenthesis based on the multivariate model described in 

Table S2. MBP, mean blood pressure; eGFR, estimated glomerular filtration rate; 

PTH, parathyroid hormone; 1,25D, 1,25-dihydroxyvitamin D; FGF23, fibroblast 

growth factor 23. 
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Figure S5: Multivariate odds ratio for aortic calcification index (ACI) among 

patients with CKD displayed as the odds ratio (OR) (solid boxes) with 95% 

confidence intervals (CIs) (horizontal limit lines). For continuous variables, the unit 

of change is given in parenthesis based on the multivariate model described in Table 

S3. MBP, mean blood pressure; eGFR, estimated glomerular filtration rate; PTH, 

parathyroid hormone; 1,25D, 1,25-dihydroxyvitamin D; FGF23, fibroblast growth 

factor 23. 

 

Table S1: A multiple logistic regression analysis of predictors of FMD ≥ 6.0%. 

 

Table S2: A multiple logistic regression analysis of predictors of max IMT ≥ 1.1 

mm. 

 

Table S3: A multiple logistic regression analysis of predictors of ACI > 0%. 
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