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Abstract  

 Esophageal squamous cell carcinoma (ESCC) remains one of the most 

aggressive cancers with poor prognosis regardless of a several reports that indicate 

a better therapeutic efficacy using some new chemotherapeutic agents. Recent drug 

development has contributed to an improved specificity to suppress mTOR activity 

by which many types of malignancies can be explosively progressed. Temsirolimus 

(CCI-779, TricelTM) is one of recently synthesized analogues of rapamycin and has 

provided better outcomes for patients with renal cell carcinoma. In this study, we 

experimentally evaluated an efficacy of targeting mTOR by temsirolimus for ESCC 

treatment, with an assessment of its survival advantage using an advanced ESCC 

animal model. 

 First, we confirmed that the expression of phosphorylated mTOR was 

increased in 46 of 58 clinical ESCC tumor tissues (79.3%) and appeared to get 

strengthened with tumor progression. All of ESCC cell lines used in this study 

revealed an increase of mTOR phosphorylation, accompanied with the upregulation 

of hypoxia inducible factor-I alpha (HIF-1α), one of the critical effectors regulated by 

mTOR. Temsirolimus treatment apparently suppressed the activation of mTOR and 

its downstream effectors, resulting in the reduced ability of ESCC cell proliferation. 
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Finally, the weekly administration of temsirolimus significantly diminished the size 

of subcutaneous tumors (vehicle: 3261.6±722.0, temsirolimus: 599.2±122.9; p=0.007) 

in nude mice and effectively prolonged orthotopic esophageal cancer-bearing mice 

(median survival periods; control: 31 days, temsirolimus: 43 days; p = 0.0024). 

These data suggests that targeting mTOR by temsirolimus may become a 

therapeutic alternative for esophageal cancer, with a contribution to a better 

outcome. 

 

Keywords: temsirolimus, esophageal cancer, mTOR, prolonged survival, 

molecular-targeted therapy. 
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Introduction 

 Esophageal cancer is an aggressive malignancy with poor prognosis.1 

Pathologically, it mainly consists of adenocarcinoma and squamous cell carcinoma, 

the former often occurs in Western countries, whereas the latter predominates in 

Asia.2 The surest current therapy for esophageal cancer is surgical treatment. 

However, we often find both types of esophageal cancer at an advanced stage, 

resulting in the consideration of a combination therapy with both surgical and 

non-surgical treatments. Squamous cell carcinoma of the esophagus is relatively 

susceptible to many kinds of new medicine for chemotherapy that have been 

developed and introduced in clinical practice, but the mortality rate has not been 

improved.3 Recently, drug development strategy has focused on targeting particular 

molecules that are supposedly critical for cancer progression. Several molecules in 

growth factor receptor pathways are preferentially employed for specific targeting 

since those molecules are well recognized as being aberrantly regulated in cancers. 

For example, epidermal growth factor receptor (EGFR) and its downstream 

pathway are often upregulated due to gene amplification or mutation4, and 

therefore targeting EGFR is a major therapeutic strategy for cancer treatment. 

However, in some cases these drugs only show a minimal effectiveness due to the 



6 

 

 

aberrant regulation of downstream molecules located beneath the receptor tyrosine 

kinase pathways such as Ras-Raf-MAPK and phosphatidylinositol 3’-kinase 

(PI3K)-Akt.5-8 Among these downstream molecules, mammalian target of 

rapamycin (mTOR) is one of the major effectors regulated by the PI3K-Akt 

signaling pathway and plays a central role in this stimulated growth and survival 

signaling.9,10 Therefore, several compounds that selectively inhibit mTOR activity 

have been developed for clinical use.11,12 Temsirolimus (CCI-779, TricelTM), an 

analogue of rapamycin, was recently synthesized to specifically inhibit mTOR and 

has provided better outcomes for patients with renal cell carcinoma.13 It was also 

reported that temsirolimus showed an antitumor effect on other types of cancer 

including breast cancer, 14 glioblastoma, 15 neuroendocrine carcinomas,16 and mantle 

cell lymphoma.17 Based upon this evidence, we questioned whether temsirolimus 

treatment could be a good alternative strategy for ESCC. In this study, we 

evaluated the antiproliferative and antitumor effects of temsirolimus on ESCC in 

vitro and in vivo, with an assessment of its survival advantage in an advanced 

ESCC animal model. 
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Results 

The activities of mTOR and its downstream molecules are upregulated in 

esophageal squamous cell carcinoma.  

 First, the expression status of mTOR and phosphorylated mTOR in 

surgically resected tissues of esophageal squamous cell carcinoma was examined by 

immunohistochemistry. The expression of mTOR was equally detected both in 

normal esophageal epithelia and in cancer tissues (Figure 1A, upper panels). The 

expression of phosphorylated mTOR was also detected in the cytoplasm of cancer 

tissues while its intensity in normal esophageal epithelia was very faint (Figure 1A, 

left lower panel). Of note, the phosphorylated mTOR was highly expressed at the 

edge of the tumors (Figure 1A, right lower panel). Progressive cancer cases tended 

to have a poor prognosis, and the intensity of p-mTOR expression became high in 

aggressive cases (Figure 1B). 

 Immunohistochemistry was also performed to evaluate the expressions of 

mTOR and phosphorylated mTOR in cultured cells. As shown in Figure 2A, the 

expression of mTOR was detected in esophageal cancer cells (TE-1, TE-8, and 

TE-10) as well as in KOB9N and KOB12N cells, both of which were primary 

esophageal epithelial cells that were isolated from surgically resected human 
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esophageal tissues.18 KOB9N and KOB9C cells, which were isolated from the 

surgically resected esophageal epithelia and tumor tissues of a single esophageal 

cancer patient, respectively, were used to compare the expression status of mTOR 

and phosphorylated mTOR to each other (Figure 2A). Interestingly, both showed a 

similar expression of mTOR, while the intensity of phosphorylated mTOR in the 

cancer cells (KOB9C) was definitely stronger than in the normal epithelial cells 

(KOB9N). Similarly, all of the TE-1, TE-8, and TE-10 cells showed a higher 

intensity of phosphorylated mTOR than the normal esophageal epithelial cells 

(KOB9N and KOB12N) (Figure 2A). These results indicated that mTOR appeared 

to exist ubiquitously regardless of tissue type, whereas cancer tissues/cells 

definitely increased the mTOR activity.  

 The activation of mTOR is known to positively regulate protein translation 

and cell proliferation by upregulating downstream molecules such as hypoxia 

inducible factor-1 -subunit (HIF-1 ),21 which plays a critical role in cancer 

proliferation and angiogenesis. The expression status of HIF-  in primary 

esophageal epithelial cells and in esophageal cancer cells was determined by 

western blot. Strikingly, all of the cancer cells had an apparent increase of HIF-  

expression, while the normal esophageal cells revealed no detectable level of 
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expression (Figure 2B). This suggests that the upregulation of downstream 

molecules such as HIF-  paralleled that of mTOR, leading to the idea that 

targeting mTOR activity can be a potential therapeutic strategy for esophageal 

squamous cell carcinoma. 

 

A selective mTOR inhibitor, temsirolimus, reveals an antiproliferative effect in 

esophageal cancer cells by inhibiting the mTOR pathway.  

 Using temsirolimus, an analogue of rapamycin that has recently been 

synthesized as a selective mTOR inhibitor, we aimed to inhibit mTOR activity to 

evaluate its possible anticancer effects in esophageal cancer cells. After the cancer 

cells (TE-1, TE-8, and TE-10) were treated with temsirolimus at different 

concentrations (0-1000nM), the expressions of mTOR and S6, a major downstream 

molecule, were examined by Western blot. Temsirolimus treatment did not affect 

the expressions of total mTOR or S6 in esophageal cancer cells, but it significantly 

reduced the expressions of phosphorylated mTOR and phosphorylated S6 around a 

concentration of 1nM and the effect was observed in a dose-dependent manner, 

regardless of cell line (Figure 3). Interestingly, the expression and activity of 

4E-BP1, another downstream molecule of the mTOR pathway, did not change after 
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temsirolimus treatment (Figure 3).  

 Next, we assessed the effect of mTOR inhibition from temsirolimus on cell 

proliferation in esophageal cancer cells. When the cancer cells were treated with 

temsirolimus at different concentrations (0-1000nM), their growth was 

dose-dependently suppressed (Figure 4). These results indicated that the inhibition 

of the mTOR pathway by temsirolimus negatively affected the growth of esophageal 

cancer cells, and that targeting mTOR can be a potential alternative for esophageal 

cancer treatment.  

 

Temsirolimus provides a survival advantage to tumor-bearing mice by retarding 

tumor growth. 

 To clarify the potential effectiveness of temisrolimus for esophageal cancer 

treatment, we applied this selective mTOR inhibitor to animal experiments. An 

intravenous administration of temsirolimus was given to mice with subcutaneous 

tumors of TE-8 cells according to the schedule described in the Materials and 

Methods section and the tumor volume was measured once a week. The growth of 

the subcutaneous tumors was significantly reduced by temsirolimus treatment in a 

dose-dependent manner (Figure 5A). On day 28, the mice treated with 10mg/kg of 



11 

 

 

temsirolimus had an approximately 6-fold less tumor volume than the control 

(vehicle only) mice (vehicle: 3261.6 ± 722.0, temsirolimus: 599.2 ± 122.9; p=0.007). 

During the observation period the body weight of each mouse was tracked as a 

surrogate marker of drug toxicity and we observed no significant differences in body 

weight between the groups (data not shown).  

 Furthermore, we applied a similar treatment with temsirolimus to an 

orthotopic esophageal cancer model that was recently established.19 As shown 

previously, this orthotopic mouse model shows a quick outcome from a lack of food 

intake due to esophageal stricture by the orthotopic tumor. Thus, we hypothesized 

that the inhibition of orthotopic tumor growth by temsirolimus would prolong the 

survival of this mouse model if the esophageal stricture could be retarded and 

normal food intake maintained. An intraperitoneal administration of temsirolimus 

or PBS as a vehicle was given to the mice with an orthotopic esophageal tumor once 

a week, and their survival was tracked (Figure 5B). The mice with temsirolimus 

treatment significantly extended their survival compared to the control mice 

(median survival periods; control: 31 days, temsirolimus: 43 days; p=0.0024).  

 These results support our idea that the inhibition of mTOR could provide a 

survival advantage for advanced esophageal cancer patients, and therefore, we 
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propose that temsirolimus might be a potential alternative strategy for esophageal 

cancer treatment.   

 

Discussion 

 Recent cancer therapy studies have been paying close attention to the key 

molecules of the signaling pathways that are important for cell migration, 

proliferation, progression and the invasion of tumors. mTOR is one of the molecules 

associated with basic biological processes such as the signal transduction of cell 

proliferation, migration, angiogenesis, and synthesis of tumorigenic proteins. In 

addition to its role as a basic controller in organisms, mTOR is also known to be 

involved in tumor progression.22 Aberrant PI3K-dependent signaling and protein 

translation may contribute to the development and progression of human cancers. 

Activation mutations of growth factor receptors and PI3K, as well as the 

amplification and/or overexpression of PI3K and Akt have been reported in different 

types of malignancies.23 If cancer cell growth and survival is dependent on the 

PI3K-Akt pathway, it is possible that this dependency in cancer cells would result 

in increased sensitivity to mTOR inhibitors.  

 In in vitro studies, it was revealed that mTOR is activated in esophageal 
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squamous cell carcinoma cell lines and that mTOR expression is inhibited by 

rapamycin.21 There is an immunohistochemical study in which activated mTOR was 

detected in one-quarter of esophageal squamous cell carcinoma tissues.24 Our data 

in this study showed that the expression of phosphorylated mTOR was significantly 

higher in cancer tissues than in normal esophageal epithelia. In addition, the 

expression tended to be concentrated at the invasive front of tumors. This may 

suggest that intense tumor proliferation and progression may largely rely on a 

strong activation of mTOR signaling in esophageal cancer. Thus, it makes sense to 

apply mTOR inhibition to esophageal cancer treatment, and we believe that at least 

a certain population of esophageal cancer patients may potentially benefit from this 

therapy.  

 Hou G. et al. reported that the mTOR-p70S6K pathway is activated in 

esophageal squamous cell carcinoma and that rapamycin and siRNA rapidly 

inhibited the expression of mTOR and the phosphorylation of its major downstream 

effectors, p70S6K and 4E-BP1.25 They also reported that the inhibition of mTOR 

induced G0/G1 cell cycle arrest and apoptosis of esophageal squamous cell 

carcinoma cells. In our study, temsirolimus, an analogue of rapamycin, suppressed 

the phosphorylation of mTOR and S6 at a concentration of 1nM in all of the tested 
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esophageal cancer cell lines. Interestingly, 4E-BP1, another downstream molecule 

beneath mTOR, was not affected by this treatment in our experiments (Figure 3). 

Moreover, our observation by cell cycle analysis and TUNEL assay did not show any 

apparent cell death or the induction of apoptosis from temsirolimus treatment (data 

not shown). In general, the inhibition of mTOR downregulates the translation of 

specific mRNAs that are required for cell cycle progression from the G1 phase to the 

S phase.26,27 Taken together, we speculate that temsirolimus induced the inhibition 

of cell proliferation with cell accumulation in the G0/G1 phase rather than leading 

to apoptosis and therefore the intrinsic effect of temsirolimus in human esophageal 

cancer is cytostatic. 

 In our study, treatment with a nanomolar level of temsirolimus was enough 

to suppress the phosphorylation of mTOR and its substrates S6. Shor B. et al. 

proved that a low micromolar concentration of temsirolimus completely suppressed 

the proliferation of a broad panel of tumor cells including lung cancer, colon cancer, 

breast cancer, and human embryonic kidney cell lines.28 They hypothesized that the 

response of tumor cells to the commonly used nanomolar concentrations of 

rapamycin may be limited by the feedback loop, whereas the suppression of S6 

signaling by rapamycin stimulates the IRS-PI3K pathway to promote AKT activity. 
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Our data did not support their opinion, but further experiments will be needed in 

the future. 

 Using our established primary human esophageal epithelial cells and 

cancer cells,18 we compared the expression and activation of mTOR and HIF-1 , a 

downstream molecule affected by the mTOR pathway. Our data that these proteins 

showed less activity in normal esophageal epithelial cells led us to investigate the 

tolerance of these normal esophageal cells to an mTOR inhibitor, specifically 

temsirolimus. This may provide some knowledge to help determine the most 

effective dose of this drug for cancer therapy. Although we used esophageal 

squamous cell carcinoma cells in this study, we also recently reported that a dual 

tyrosine kinase inhibitor for focal adhesion kinase (FAK) and insulin-like growth 

factor-I receptor (IGF-IR) exhibits anticancer effects in esophageal adenocarcinoma 

in vitro and in vivo.29 We also confirmed that this dual tyrosine kinase inhibitor 

suppressed mTOR activity in esophageal cancer cells.30 It would be intriguing to 

evaluate the effectiveness of temsirolimus in esophageal adenocarcinoma in further 

basic and clinical studies. 

 In conclusion, we showed the importance of the mTOR signaling pathway 

on the regulation of cell proliferation in the esophagus and temsirolimus could 
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inhibit the activity of mTOR and its downstream molecule S6. Temsirolimus may be 

useful for esophageal cancer treatment as a novel therapeutic instrument. 

 

Materials and Methods 

Clinical tissues 

 Fifty-eight esophageal squamous cell carcinoma tissues were used in this 

study. These tissues were surgically resected from individual patients who had 

surgery at the Okayama University Hospital between 2000 and 2002. Informed 

consent was fully given by each patient involved in this study. These tissues were 

subject to immunohistochemical analysis. 

 

Cell lines 

 Human primary esophageal epithelial cells KOB9N and 12N, both of which 

were isolated from normal esophageal epithelia that were surgically resected from 

two independent patients, were maintained as monolayer cultures in KSFM 

supplemented with EGF, BPE, 100 units/ml of penicillin G and 100 μg/ml of 

streptomycin.18 Human esophageal cancer cells, KOB9C cells, were also isolated 

from an esophageal squamous cell carcinoma tissue that was resected from the 
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same patient as the KOB9N cells. Established esophageal squamous cell carcinoma 

cell lines (TE-1, TE-8, and TE-10) were also used in this study and all of these 

cancer cells were cultured in a medium consisting of RPMI1640 supplemented with 

10% heat-inactivated fetal calf serum (FCS), 100 units/ml of penicillin G and 100 

μg/ml of streptomycin. Those normal and cancer cells were maintained in a 

humidified 5% CO2 atmosphere at 37 °C.  

 

Antibodies and Reagents 

 The following antibodies used in this study were purchased from Cell 

Signaling Technology, Inc. (Beverly, MA); Phospho-mTOR (Ser2448) (Cat.No.2971), 

mTOR (Cat.No.2972), Phospho-p70 S6 Kinase (Thr389) (Cat.No.9205), p70 S6 

Kinase (Cat.No.9202), Phospho-S6 Ribosomal Protein (Ser235/236) (Cat.No. 2211), 

and Hydroxy-HIF-1α (Pro564) (D43B5) (Cat.No.3434). β-actin (Cat.No.A1978) was 

obtained from Sigma-Aldrich (St. Louis, MO).  

 The selective mTOR inhibitor temsirolimus, commercialized as ToriselTM 

(Cat.No.45714) by Wyeth K.K. (Madison, NJ), was purchased from OZ International 

Inc. (Tokyo, Japan). Temsirolimus was dissolved in attached diluents and diluted to 

the working concentrations (0-1000nM) with culture media before use in vitro. 
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When temsirolimus was used for animal experiments, it was dissolved in attached 

diluents, and diluted to a final concentration of either 2 mg/kg or 10mg/kg with 0.9% 

sodium chloride. 

 

Immunohistochemistry 

 Formalin-fixed, paraffin-embedded tissue sections mounted on silanized 

slides were deparaffinized in xylene for 20 min and rehydrated through a graded 

ethanol series. Endogenous peroxidase was blocked by incubating the sections in 

3.0% H2O2 in methanol for 15 min. Antigen retrieval on the paraffin sections was 

performed by heating two times in a 10 mM citrate buffer solution (pH 6.0) in a 

microwave. After blocking nonspecific reactivity with rabbit serum for 10 min at 

room temperature, sections were incubated overnight at 4°C with the primary 

antibodies, followed by immuno-bridging with Avidin DH-biotinylated horseradish 

peroxide complex (Histofine SAB PO kit; Cat.No. 424031; Nichirei, Tokyo, Japan). 

Immunostaining was developed using a 3,3’-diaminobenzidine tetrahydrochloride 

(DAB)/hydrogen peroxidase solution (Histofine DAB substrate kit; Cat.No.415192; 

Dako Japan, Tokyo, Japan), and sections were counterstained with Mayer’s 

hematoxylin. Culture cells that were seeded into chamber slides were fixed in 4% 
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paraformaldehyde for 10 min at room temperature, and then were made permeable 

by treating them with Triton X-100 for 2 min at room temperature before the 

subsequent incubation step with the antibodies. 

 

Western blotting 

 Cells were collected by trypsinization 48 hours after treatment with 

temsirolimus and washed twice in cold PBS. Whole cell lysates were extracted as 

follows. Cell pellets were dissolved at 4°C for 30 min in a protein lysis buffer 

containing 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.5% Triton X-100, and 

protease inhibitors (0.2 mM phenylmethylsulfonyl fluoride, 0.2 mM 

4-(2-aminoethyl) benzenesulfonylfluoride, 10 μg/ml leupeptin, 10 μg/ml pepstatin, 

and 1 μg/ml aprotinin). Cell lysates were centrifuged at 15,000 rpm and the 

supernatants were employed to determine the protein concentration using the 

Bio-Rad protein determination method (Bio-Rad, Hercules, CA). Equal amounts 

(15μg) of proteins were first electrophoresed under reducing conditions on 12% (w/v) 

polyacrylamide gels, and then were electrophoretically transferred to Hybond- 

polyvinylidene difluoride transfer membranes (Amersham, Arlington Heights, IL) 

and incubated with the primary antibodies, followed by incubation with a 
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peroxidase-linked secondary antibody. An ECL Western Blotting System 

(Cat.No.RPN2109; Amersham) was used for signal detection. 

 

Cell proliferation assay 

 To determine the growth inhibitory effect of temsirolimus, esophageal 

cancer cells were seeded into 24-well culture plates at a density of 1.0 x 105 per well 

and incubated for 24 hours in culture medium. The medium was then replaced with 

a fresh one containing 10% FBS with different concentrations of temsirolimus (0, 

0.1, 1, 10, 100, or 1000nM) (day 0) and was refreshed every 48 hours. On days 1, 3, 

and 5, the cells were trypsinized and were counted using the Trypan blue exclusion 

method. 

 

Animal experiments   

 For animal studies, six week-old male BALB/cA nude mice were purchased 

from Clea Japan (Tokyo, Japan) and were maintained in a barrier facility in 

accordance with the Institutional Animal Care and Use Committee regulations of 

Okayama University (Okayama, Japan). A cell suspension of 3 x 106 TE-8 cells 

mixed with Matrigel (BD Biosciences, San Jose, CA) was inoculated subcutaneously 
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into those nude mice (day 0). From day 7, the tumor-bearing mice were randomized 

into three groups and an intravenous administration of either 2mg/kg or 10mg/kg of 

temsirolimus or phosphate buffered saline (PBS) as a vehicle was given to each 

group. The treatment was repeated once a week and continued for four weeks. 

During the treatment, tumor volume [(length x width2) / 2] was measured with a 

digital caliper every week and was tracked up to day 28.  

 To prepare an orthotopic esophageal cancer model, we followed a procedure 

that we recently reported on.19. Briefly, a cell suspension of 5x106 TE-8 cells mixed 

with Matrigel (Cat.No.356234) was injected via the lumen into the esophagus of an 

anesthetized mouse (day 0) using a needle and barrel. The orthotopic tumor-bearing 

mice were randomized into 2 groups and from day 7 the intraperitoneal 

administration of either 10mg/kg of temsirolimus or PBS as a vehicle was given to 

each group. The treatment was repeated once a week and was continued until the 

mice died. The survival period of each mouse was tracked for comparison between 

the two groups. The doses of temsirolimus used in the animal studies were based on 

our previous study using lung cancer cells.20 

 

Statistical Analysis  
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 Overall survival was calculated using the Kaplan–Meier method and 

compared by the Wilcoxon test. A P-value less than 0.05 denoted the presence of a 

statistically significant difference. 
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Figure Legends 

Figure 1 The expression and activation of mTOR is increased in esophageal 

cancer tissues. 

 A. Esophageal tissue samples were procured via surgery from the Okayama 

University Hospital and immunohistochemical analysis of mTOR and 

phosphorylated mTOR was done to compare its expression status between in cancer 

tissues (right panels) and in adjacent normal epithelia (left panels).  B. Fifty-eight 

cases of esophageal cancer whose tissues were used for this immunohistochemistory 

were categorized according to their pathological staging, which described briefly in 

“Materials and Methods” section, and the positive staining rate of phosphorylated 

mTOR in each stage was shown in histogram.  

 

Figure 2 The activation of mTOR and its downstream effector is increased in 

esophageal cancer cell lines. 

 A. The expression status of mTOR (upper panels) and phosphorylated 

mTOR (lower panels) was determined in human primary normal esophageal 

epithelial cells (KOB9N and KOB12N) and in human esophageal cancer cell lines 

(KOB9C, TE-1, TE-8 and TE-10).  B. The expression of hypoxia inducible factor-1α 
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(HIF-1α), a downstream effector of mTOR, was compared between in human 

primary normal esophageal epithelial cells (KOB9N and KOB12N) and in human 

esophageal cancer cell lines (KOB9C, TE-1, TE-8 and TE-10) by western blot. 

 

Figure 3 The mTOR inhibitor temsirolimus inhibits the activation of mTOR 

and its downstream molecules in esophageal cancer cells. 

 Three esophageal cancer cell lines (TE-1, TE-8, and TE-10) were treated 

with different concentrations of temsirolimus (0-1000nM) and western blot was 

performed with appropriate antibodies to detect the expression of mTOR and its 

downstream effectors. β-actin was served as an internal control. 

 

Figure 4 Temsirolimus suppresses cell proliferation of esophageal cancer 

cells.  

 Three esophageal cancer cell lines (A: TE-1, B: TE-8, C: TE-10) were treated 

with different concentrations of temsirolimus (0-1000nM) and the cell number at 

the indicated time point (day0, 1, 3, and 5) was counted to draw these growth curve.  

 

Figure 5 Administration of temsirolimus reduces tumor growth and 
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prolongs the survival of tumor-bearing mice. 

 A. Subcutaneous tumor-bearing mice were subgrouped into three groups for 

intraperitoneal administration of either 2 different doses of temsirolimus 

(2mg/kg and 10mg/kg) or phosphate buffered saline (PBS) as a control group at 

the scheduled dates, as described in “Materials and Methods” section. Tumor 

volume [(length x width2) / 2] was measured to draw a histogram.  B. 

Orthotopic esophageal cancer-bearing mice were divided into two groups for 

intraperitoneal administration of either temsirolimus or PBS (control) at the 

scheduled dates, as described in “Materials and Methods” section. Their survival 

was tracked to draw Kaplan–Meier survival curves and log-rank test was 

performed for the statistical comparison between two groups. 

 


