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A central issue of evolutionary developmental biology is how the eye is diverged morphologically and 
functionally.  However,  the unifying mechanisms or schemes that govern eye diversification remain 
unsolved.  In this review,  I first introduce the concept of evolutionary developmental biology of the eye 
with a focus on photoreception,  the fundamental property of retinal cells.  Second,  I summarize the 
early development of vertebrate eyes and the role of a homeobox gene,  Lhx1,  in subdivision of the 
retina into 2 domains,  the neural retina and retinal pigmented epithelium of the optic primordium.  
The 2 retinal domains are essential components of the eye as they are found in such prototypic eyes as 
the extant planarian eye.  Finally,  I propose the presence of novel retinal cell subtypes with photosen-
sory functions based on our recent work on atypical photopigments (opsins) in vertebrates.  Since 
human diseases are attributable to the aberration of various types of cells due to alterations in gene 
expression,  understanding the precise mechanisms of cellular diversification and unraveling the 
molecular profiles of cellular subtypes are essential to future regenerative medicine.
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yes are detectors and convert light waves trav-
elling through the atmosphere into visual images 

[1,  2].  Vision―the formation of an image or picture 
from light waves―is the most sophisticated form of 
light detection.  In contrast,  the elementary form of 
light detection might be called simply “light percep-
tion.” Although elementary light detectors are some-
times differentiated from “authentic” eyes because they 
do not form images,  here I will touch on the idea of 
light detectors as “ancient eyes” in my brief review of 
the evolutionary developmental biology of the eye.  For 

the present discussion,  I primarily adopt Darwinʼs 
definition of an eye as an organ consisting of at least 2 
different cell types,  photoreceptor cells and pigment 
cells [3],  and introduce our studies regarding how the 
two retinal components are formed in the vertebrate 
eye.  Finally,  I describe the expression of atypical 
photopigments in the retina,  proposing a hypothesis 
regarding retinal cell diversity and its novel photosen-
sory functions.  These studies on the eye and novel 
photoreceptors will help to elucidate the conserved 
molecular mechanisms of cellular diversification in the 
eye,  and could pave the way to regenerative ocular 
medicine and gene therapy for deceased ocular cells.
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Thoughts on the Origin of the Eye

　 There are various types of eyes in the animal 
kingdom,  such as the 2 compound eyes in honeybees,  
four pairs of ocellar-type eyes in jumping spiders,  and 
vesicular eyes,  which include the distinct camera-type 
eyes of cephalopod molluscs and the highly evolved 
camera-type eyes of humans <http://www.brh.co.jp/
seimeishi/journal/012/ss_1.html (accessed May 31, 
2013.)>.  It has been estimated that more than 95ｵ of 
modern animal species have eyes or some other form 
of specialized light-sensitive sensory structures.  
Andrew Parker says in his book,  “In the Blink of an 
Eye,” that the birth of so many different types of eyes 
may have been attributable to a great increase in the 
amount of light that reached the earth in the late 
stages of the Precambrian era [2].  It is widely known 
that the so-called “big bang of evolution” occurred in 
the Cambrian era,  when bizarre animals such as 
Opabinia,  the now extinct animal known to us only 
from its fossils in Burgess shale,  lived on the seafloor 
with 5 eyes at the front of its head [4].  Parker calls 
this idea the “light switch” theory in evolution of the 
eye,  since it posits the central role played by light in 
the development of the myriad types of eyes revealed 
by fossil records.  Furthermore,  it is intriguing to 
note that Trilobites,  which in the past has been consid-
ered an ancestor of insects,  although this theory is 
now controversial,  already had 2 distinct compound 
eyes and its size was increased according to the incre-
ment of light from the Precambrian era to the early 
Cambrian era,  which occurred,  so to speak,  just in 
the blink of an eye [2].
　 It may have been Charles Darwin who first 
referred to the diversity in structures of the eye from 
an evolutional viewpoint.  In his Origin of the Species 
(1859),  he says that the eye may be exceptional and 
monophyletic origin of the eye would not be applicable 
as the structure and morphology of the eye are so 
diverged in the animal kingdom [5].  There are many 
types of eyes such as the eyespot in Euglena,  which 
senses the direction and intensity of light,  and dis-
seminated photoreceptors in the body surface of 
earthworm,  which are reminiscent of light-avoidance-
mediating photoreceptors tiling the Drosophila larval 
body wall [6].  In the flat eyes of marine annelid 
worms,  the cupulate eyes of limpets,  and the pinhole 
eyes of Nautilus,  an image is formed on the retina 

either by a refractile lens,  by refraction at the cornea,  
or by reflection [7].  The compound eye is found 
throughout crustaceans and insects.  Both compound 
and vesicular eyes are image-forming devices.
　 So,  the fundamental question arises; did this great 
variety of eyes arise independently or did they have a 
common ancestry? As mentioned,  looking at the vari-
ety of structures and designs,  it is conceivable to 
imagine a separate polyphyletic origin.  However,  the 
evidence of common ancestry comes from the discovery 
of a homeobox gene,  Pax6 [8],  which was found to be 
a causal gene of rodent small eye phenotypes [9,  10],  
aniridia of humans [11],  and a fly eyeless mutant [12].  
In Drosophila,  the mouse or fly Pax6 gene can induce 
ectopic eye formation in imaginal discs of the antenna 
when overexpressed [13].  The Pax6/eyeless gene 
encodes a transcription factor that binds to DNA with 
a homeodomain or a paired domain and regulates the 
transcription of target genes.  It has been determined 
that Pax6 controls the development of various eyes 
ranging from planarian to human eyes [3].  In the box 
jellyfish Tripedalia,  a PaxB gene,  which may be a 
precursor of Pax6,  was found to be expressed in the 
eyes [14].  Although the nematode Caenorhabditis ele-
gans does not have eyes,  Pax6 is involved in the head 
formation and peripheral sense organs in the tail 
region of C. elegans,  implying that photoreception 
arose from other types of sensing [15,  16].  Since 
nematodes are one of the most diverse of all animal 
phyla,  eye-bearing nematodes are also known.  Their 
structural and molecular analysis suggests that photo-
receptors and eyes may be evolved from ancestral 
chemoreceptors or thermoreceptors [17].  In this 
regard,  it is interesting that C. elegans with a negative 
phototaxis has ciliary sensory neurons,  and that its 
phototransduction requires a G protein-dependent 
cAMP pathway through a taste receptor homolog [18].
　 Pax6 is also involved in congenital eye diseases 
other than aniridia,  such as Peterʼs anomaly,  con-
genital cataract,  late-onset corneal dystrophy,  auto-
somal-dominant keratitis,  macular hypoplasia,  and 
optic nerve dysplasia,  all of which depend on types of 
mutations <http://omim.org/entry/607108 (accessed 
May 31,  2013)>.  To date,  it has been found that 
numbers of genes in addition to Pax6 also contribute 
to eye development.  For example,  Rx/Rax is required 
for retinal formation and therefore mutations in Rx/
Rax result in anophthalmia or microphthalmia [19].  
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Other examples are Sox2, Pitx2, Pitx3, Chx10 (Vsx2), 
Vsx1, Crx,  and FoxL2,  whose mutations also lead to a 
variety of congenital eye diseases [20,  21].  Thus,  it 
is now self-evident that genes regulating the develop-
mental processes would be responsible for various 
congenital anomalies when they are mutated or their 
expressions are altered.
　 Again,  letʼs go back to the origin of diversified 
eyes in the animal kingdom.  Since the Pax6 homolo-
gous genes are expressed in the course of eye develop-
ment in most species,  a prototypic eye as found in 
planaria consisting of photoreceptor and pigment cells 
[1,  3,  22] would be formed through the action of 
Pax6.  Interestingly,  in the aforementioned jellyfish,  
unicellular photoreceptors contain both the putative 
photosensory microvilli and the shielding pigment 
granules within the same cell,  which also carries a 
motor cilium that enables the larva to show phototac-
tic behavior [3,  14].  In view of the evolution and 
presence of various types of eyes,  the most funda-
mental property of the initial eye is photoreception,  
which is accomplished by photopigments,  including 
opsins.  The opsin is a seven-transmembrane or 
G-protein-coupled receptor (GPCR) that binds to the 
retinal chromophore and absorbs photons at a distinct 
wavelength [23-25].  Thus,  it has been proposed that 
the origin of the eye goes back to the opsin-expressing 
cells,  and that Pax6 would organize the principal 
components of the photoreceptor and pigment cells 
(primarily for shielding from light scattering),  thereby 
producing a prototypic eye [26].  In this sense,  the 
opsin protein is key to the origin of the eye at the 
single cell level,  and light is crucial to the evolution 
and development of the eye.  Actually,  a recent work 
has shown that photoreception by melanopsin is 
required for the development of retinal neurons and 
elimination of hyaloid vessels [27].

Early Eye Development and the Unexpected 
Role of Lhx1 in the Optic Primordium

　 Since the structure of the eye is diversified,  we can 
easily imagine that its different structures developed 
in distinct ways.  Therefore,  I will here focus on the 
developmental processes of vertebrate eyes,  particu-
larly at the molecular level.  The retinal primordium 
emerges from the eye pit in the forebrain well before 
the neural fold closes at around 8 days post-coitum in 

mice and the third gestational week in humans [28,  
29].  As the neural folds meet at the midline,  the 
forebrain evaginates to form the optic vesicle,  the 
retinal anlage.  Then the optic vesicle invaginates to 
form the optic cup and concomitantly induces the lens 
vesicle from the overlying surface ectoderm in a pro-
cess known as secondary induction.  The induced lens 
further induces the corneal epithelium from the sur-
face ectoderm.  Thus,  the retinal component of the eye 
derives from the neural ectoderm,  and the lens and 
corneal epithelia from the surface ectoderm in the 
case of vertebrate eyes.  The surrounding mesenchyme 
of the neural crest origin also participates in eye for-
mation and forms the corneal endothelium and stratum,  
for example.
　 Recent molecular studies of developmental biology 
in embryogenesis and organogenesis have led to suc-
cess in making various organs and tissues from pluri-
potent cells such as embryonic stem (ES) cells [30-
33] as well as induced pluripotent stem (iPS) cells 
[34-36],  and even from differentiated cells,  via a 
process known as direct reprogramming [37].  In one 
of the more spectacular studies,  an optic vesicle was 
generated from a single layer of neuroepithelium 
derived from ES cells in culture [31,  38].  Although 
a self-organizing system of tissue architecture may be 
useful to produce a whole organ en bloc in culture,  it 
is nevertheless important to obtain single types of 
cells or tissues very efficiently for cell/tissue implan-
tation therapy,  and gene expression profiling of indi-
vidual cells/tissues is the first step in this process.  In 
this context,  the adult retinal stem cells,  which 
resides in the ciliary marginal zone (CMZ) abutting 
the ciliary epithelium [39],  is similar to the embry-
onic neural retina with regard to the expressions of 
Pax6, Chx10 (Vsx2), Rx, Six3, Six6 and other related 
genes [40].  Therefore,  the combinatorial expression 
of these genes is thought to constitute a molecular 
fingerprint of retinal stem cells [41],  and thus it is 
crucial to identify a factor(s) or regulatory gene net-
work that controls the transcription of these retinal 
stem cell marker genes.  Intriguingly,  all these genes 
are involved in eye development at very early stages,  
when a single eye field is present at the most rostral 
midline,  and/or at later stages when various types of 
retinal neurons differentiate,  indicating the reiteration 
of developmental toolkit genes during development 
[42].
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　 To elucidate gene expression profiling during reti-
nal development,  we performed sequencing analysis of 
Expressed Sequence Tags (EST) using cDNA from 
the chick embryonic neural retina [43 and unpublished 
data].  We first selected 200 known genes and exam-
ined their expression patterns on retinal sections from 
4 developmental stages,  embryonic day 6 (E6),  E9,  
E12,  E14 and post-hatching day 1 using a semi-auto-
matic machine for in situ hybridization.  Through this 
study,  we found that a member of the fibroblast growth 
factor (FGF) family,  Fgf19,  is expressed by retinal 
horizontal cells from their early migrating stage to 
later more mature stages [43].  FGF19 is known as an 
endocrine hormone-like FGF regulating bile acid 
metabolism in the liver [44],  and it would be intrigu-
ing to determine whether FGF19 also exhibits hor-
mone-like activity during early retinal development.  
We further found that Fgf19 is expressed by one sub-
set of horizontal cells [45].  It is known that retinal 
horizontal cells have 3 subtypes: one is axon-bearing,  
brush-shaped cells,  which express a LIM-type homeo-
box gene,  Lhx1,  and the other 2 are axon-less,  Lhx1-
negative,  Islet1-positive cells,  which are further 
divided into 2 subtypes by the expression of GABA 
(gamma-aminobutyric acid) or TrkA (a receptor for 
nerve growth factor) [46].  Fgf19 is expressed by 
Lhx1-expressing retinal horizontal cells.
　 The Lhx family,  LIM-type homeobox-containing 
genes are transcription factors which contain a pro-
tein-binding domain of LIM and a DNA-binding home-
odomain.  The Lhx family consists of 6 groups of 12 
members in vertebrates [47].  Since the Lhx1-null 
mice exhibit a headless phenotype,  Lhx1 is required 
for head formation [48].  In the mouse retina,  Lhx1 is 
expressed in the horizontal cells and the knockout of 
this gene in retinal progenitor cells leads to defects in 
horizontal cell migration,  showing that Lhx1 is required 
for correct positioning of retinal horizontal cells [49].  
To explore the relationship between Lhx1 and Fgf19 in 
the formation of retinal horizontal cells,  we overex-
pressed Lhx1 in the emerging optic vesicles of chick 
embryos (Hamburger-Hamiltonʼs stage 9-10,  after one 
and a half days of incubation).  Incidentally,  the chick 
embryo is a classical model animal in developmental 
biology,  as it develops in the egg independently from 
hens,  its embryonic tissues can be easily manipulated 
by cutting and grafting of other tissues/cells,  it can 
be manipulated by the placement of protein-containing 

beads,  and it can now be subjected to ectopic gene 
expression using simple electroporation methods.  
Although we were expecting the production of an 
additional population of horizontal cells after Lhx1 
overexpression,  we found a morphologically distinct 
thickening of the outer layer of the optic cup at 24 
hours post-electroporation.  Histological analysis showed 
that portions of the outer layer,  i.e.,  the prospective 
pigmented epithelium (RPE),  began to resemble a 
neural retina (NR) (Fig.  1A-C).
　 This histological change is reminiscent of the sec-
ond NR formation from the outer layer of the optic cup 
after ectopic FGF application [50].  It has been pos-
tulated that FGF secreted from the overlying surface 
ectoderm acts as a positive regulator for induction of 
the NR in the distal portion of the optic vesicle and for 
its separation of the NR and RPE domains [50].  
Other studies,  on the other hand,  support the idea 
that the TGF beta-like factors from the extraocular 
mesenchyme surrounding the optic vesicle have a 
positive effect on RPE induction in the dorsal portion 
of the optic vesicle [51].  These ideas seem to be 
incompatible with recent studies of ES cell-derived 
optic vesicle formation in culture,  as the optic pri-
mordium self-differentiates NR and RPE without the 
overlying ectoderm or surrounding mesenchyme [31].  
Our results concerning Lhx1 also support a different 
mechanism of NR/RPE differentiation,  since Lhx1 is 
expressed in the proximal region of the emerging optic 
vesicle (Fig.  1D-F) and overexpression of Lhx1 is not 
mediated by the early induction of Fgf expression 
[52].  Since the second NR induced by Lhx1 overex-
pression expresses Pax6, Chx10 (Vsx2), Rx, Six3,  and 
Six6,  and NR differentiation markers in later stages,  
Lhx1 is a candidate gene capable of regulating the 
aforementioned retinal stem cell marker genes.  We 
also performed in ovo RNA interference (RNAi) to 
reduce the expression of Lhx1 in the proximal region 
of the optic vesicle,  resulting in formation of a pig-
mented vesicle with up-regulation of RPE maker genes 
such as Otx2 and Mitf.  In a severe case,  there was no 
lens formation due to the absence of neural retina 
formation (unpublished data).  From these data,  we 
suggest that the proximal region of the emerging optic 
vesicle is essential for NR formation,  possibly via 
diffusible factors regulated by the transcription factor,  
Lhx1.
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Diversified Retinal Neurons and Assumed 
Roles of Atypical Opsins

　 Photosensory cells develop from the NR,  and 
NR-derived retinal cells were well observed in a series 
of studies by Santiago Ramón y Cajal.  He depicted the 
structures of the mammalian retina,  and his sketch 
distinctly showed 8 types of retinal cells: retinal 
ganglion cells,  amacrine cells,  bipolar cells,  a hori-
zontal cell,  rod cells,  cone cells,  a Müller glial cell,  
and an RPE cell <http://en.wikipedia.org/wiki/
Santiago_RamｵC3ｵB3n_y_Cajal (accessed May 31,  
2013)>.  All these retinal cells except for the RPE cell 
showed orderly formation in the NR [53].  How these 
morphologically and functionally diverse retinal cell 
types are determined is a central issue of developmen-
tal biology.  In the ongoing effort to address this 
question,  findings on transcription factors and growth 
factors elaborating the cellular specification and dif-
ferentiation of individual retinal cells continue to 
accumulate.  However,  there continues to be a dearth 
of ideas regarding the unifying developmental mecha-

nisms or strategies that govern the retinal cell diver-
sification.  Arendt (2003) postulated an attractive 
hypothesis that various retinal cell types in verte-
brates have been diversified from 2 prototypic photo-
receptors (PRs): rhabdomeric and ciliary PRs [54].  
The ciliary (c-) PR corresponds to the rod and cone 
PRs of vertebrate retina or photosensitive cells in the 
invertebrate brain,  while the rhabdomeric (r-) PR is 
typical in the invertebrate retina of compound eyes,  or 
intrinsically photosensitive ganglion cells of the verte-
brate retina,  which express melanopsin.  R-PRs are 
derived from microvilli cells,  while c-PRs are derived 
from ciliated cells.  Interestingly,  r-PRs and c-PRs 
have distinct GPCR signaling cassettes [54-56]: r-
PRs have the Gq-type alpha-subunit of trimetric 
G-proteins that has been linked with phospholipase c 
activity,  resulting in depolarization,  while c-PRs have 
the Gt-type alpha-subunit with phosphodiesterase 
activity,  resulting in hyperpolarization.  Arendt (2003) 
summarized the expression patterns of various tran-
scription factors,  neurotransmitter-related molecules,  
and opsins known to be expressed in retinal cells,  find-
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Fig. 1　 Lhx1 -overexpressed optic cup of the chick via electroporation [52].  A-C,  Lhx1  overexpression induced a second NR formation 
from the presumptive RPE.  The histologies of the control (A) and Lhx1 -overexpressing (B) embryonic retina,  where the outer layer of the 
optic cup is partly thickened (arrow) are shown.  (C) Overexpression of Lhx1  (magenta) in the outer layer of the optic vesicle.  An EGFP 
expression plasmid (green) was co-electroporated with an Lhx1  expression vector.  Nuclei were stained with 4ʼ, 6-diamidino-2-phenylindole 
(DAPI); D-F,  Lhx1  was expressed in the proximal region of the optic vesicle (dark blue).  Whole mount in situ hybridization (WISH) of 
embryos around Hamburger and Hamiltonʼs stages 10.  (D) Dorsal view.  (E) Lateral view.  (F) A transverse section cut after WISH is 
shown at the middle of the optic vesicle (ov).  Lhx1  is distinctly expressed in the proximal region of the ov and dorsal diencephalon (di).  
Outside these regions,  Lhx1  is expressed in the anterior neural ridge (anr).  Bar,  100μm.



ing that they are differentially expressed and never 
overlapped [54].  For example,  Crx, Otx2, Chx10, 
Mash1,  and rod/cone opsins are expressed by rod/
cone photoreceptors and/or bipolar cells,  but never 
expressed by horizontal,  amacrine or ganglion cells.  
Conversely,  Pax6, Brn3, Mash5, BarH, Prox1,  dop-
amine,  acetylcholine,  melanopsin,  and VAL opsin are 
expressed by horizontal,  amacrine,  and retinal gan-
glion cells,  but not expressed by rod/cone PRs or 
bipolar cells.  This expression profile implies that 2 
distinct retinal cell lineages may exist in the verte-
brate retina,  leading to the rhabdomeric and ciliary 
PRs with distinct molecular fingerprints,  respectively.
　 This hypothesis is associated with the discovery 
that melanopsin is expressed in the vertebrate retina 
by a small subset (1-2ｵ) of retinal ganglion cells,  i.e.,  
intrinsically photosensitive retinal ganglion cells 
(ipRGCs) [57,  58].  Melanopsin is phylogenetically 
grouped into the so-called rhabdomeric opsins (r-opsins),  
which also include Drosophila Rh1 being expressed by 
invertebrate retinal cells.  On the other hand,  Arendt 
et al.  (2004) found an opsin that is phylogenetically 
related to ciliary opsins (c-opsins) such as rod/cone 
opsin,  and that is expressed in the brain of a marine 
worm,  Platynereis dumerilii [55].  These findings have 
now led to the idea that there are 2 ancestral photore-
ceptors in the animal kingdom,  rhabdomeric and cili-
ary,  at least in the retina and brain.  Other studies 
have also suggested that photosensitive cells are pres-
ent in the vertebrate brain as well,  and that actually 
melanopsin,  VAL opsin,  opsin 5,  and encephalopsin＊ 
(＊whose photosensitivity has not been characterized),  
are expressed in small subsets of cells of the verte-
brate brain [59-64].
　 I have become interested in Arendtʼs working model 
and first anticipated that melanopsin,  a rhabdomeric 
opsin,  might be expressed by all the cells other than 
future ciliary PRs,  rods and cones during develop-
ment,  and that melanopsin-expressing immature retinal 
cells may be rhabdomeric in origin.  However,  the 
expression patterns of melanopsin in the differentiat-
ing retina did not agree with this hypothesis,  as a 
melanopsin,  cOpn4x [65],  is expressed by small sub-
sets of cells in the ganglion cell layer and the inner 
nuclear layer [66],  while a second melanopsin in 
chicks,  cOpn4m,  is expressed by a subset of cells in 
the inner nuclear layer [67].  These data prompted us 
to explore other atypical opsins that have been identi-

fied in the genome but whose photosensitivity or func-
tions have not been determined.  We therefore focused 
on the expression of opsin 5 in the developing retina.
　 In the human genome,  there are 9 opsin genes,  as 
shown in Table 1.  It is known that color blindness and 
retinal degeneration diseases are caused by muta-
tions/variations of classic visual opsin genes,  while 
direct evidence showing the involvement of atypical 
opsin genes in retinal diseases has not been uncovered.  
It is noteworthy that a missense variant of the melano-
psin gene is found in seasonal affective disorder [68].  
Based on the phylogenetic analysis of the opsin family,  
Rrh (retinal pigment epithelium derived rhodopsin;  
peropsin) and Rgr (retinal G-protein-coupled receptor),  
are likely photoisomerases that convert a chro-
mophore,  all-trans-retinal,  to 11-cis retinal without 
activation of the G-protein after photo-absorption 
[23].  On the other hand,  it was not known whether or 
not opsin 5 was a photoisomerase or a GPCR,  the 
latter of which would have the ability to activate the 
G-protein after photoabsorption,  or there was any 
information about the maximum wavelength of photo-
absorption by opsin 5.  Opsin 5 was originally identi-
fied by genome mining as a novel GPCR-like molecule 
that belongs to the alpha group of the rhodopsin fam-
ily [69-71].  We found that there are at least three 
opsin 5 genes in the chick genome and obtained the 
cDNAs with full coding sequences.  The three opsin 5 
genes are designated as Opn5m (a mammalian-type 
opsin 5),  Opn5L1 (opsin 5 like 1),  and Opn5L2 (opsin 5 
like 2) [72].  We found that mammalian species have 
only one opsin 5 gene,  while nonmammalian verte-
brates such as birds,  frogs,  fish,  and reptiles have 
more than three opsin 5 genes.  This tendency is also 
seen for other opsin genes—that is,  there are gene 
losses in the lineage leading to eutherian mammals and 
nonmammalian genes such as those of the chicken 
without eutherian orthologs [73].
　 Furthermore,  the platypus,  one of the few living 
species of monotremes,  the only mammals that lay 
eggs,  has two opsin 5 genes,  one of which corresponds 
to the fourth opsin 5 clade in nonmammalian verte-
brates [74].  After laborious experiments,  Yamashita 
and colleagues determined that Opn5m is an ultra-
violet (UV) sensor coupled with Gi-type G proteins 
[62].  Interestingly,  another opsin 5,  Opn5L2,  has 
the ability to bind exogenous all-trans retinal with a 
similar photo-spectrometric property to Opn5m [75].  
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Thus,  it seems that the opsin 5 family may occupy a 
pivotal place in the evolution of GPCRs,  although this 
awaits further elucidation.  The physiological functions 
of the opsin 5 genes have not been fully illuminated,  
but it was shown that Opn5m is involved in seasonal 
growth of the testes in quails [61].  Notably,  the 
Opn5m mRNA and protein are distinctly present in 
bipolar neurons of the paraventricular organ (PVO) of 
the hypothalamus as well as in the retina in birds 
(Fig.  2) [61,  62].  The PVO of the hypothalamus is 
known to be a photoreceptive organ and is only 
observed in nonmammalian species [76,  77].  There 
are morphologically distinct neurons in the PVO,  hav-
ing immunoreactivity against the light signal-transduc-
ing G-protein (transducin,  Gt),  and characterized as 
bipolar,  cerebro-spinal fluid (CSF)-contacting neu-
rons.  Since whether or not a short UV wavelength can 
penetrate the skull and reach the deep brain is still 
controversial,  the opsin 5-expressing CSF-contacting 
neurons might detect flow,  ions or chemicals of the 
CSF,  other than photons.  Although the mammalian 
brain has no PVO in the hypothalamus except during 
development [78],  our preliminary data show that 
opsin 5 is expressed in the hypothalamus of mammals,  
suggesting its relationship to the neuroendocrine sys-
tem.
　 Opn5m and Opn5L2 proteins are localized in dif-
ferent subsets of retinal ganglion cells and inner 
nuclear layer cells of the chick (Fig.  2A,  B) [62,  
75].  Another family of non-canonical opsins,  the 

opsin 3-related proteins,  are also present in subsets 
of retinal neurons (our unpublished data).  A recent 
paper [79] showed that a chick melanopsin,  Opn4x 
protein,  is localized in the axon-less candelabrum 
retinal horizontal cells (HCs),  which are known to be 
an Lhx1-negative,  Islet1-positive,  TrkA-positive HC 
subset.  Importantly,  the appearance of atypical opsin 
expression in subsets of retinal cells suggests the 
presence of novel types of photosensitive cells,  at 
least in birds,  and clearly shows further subtypes 
within the classical retinal cell types.  Considering all 
these results together,  there are clearly more than 2 
types of photoreceptors (rhabdomeric and ciliary) in 
the vertebrate retina with respect to opsin expression.

Perspectives

　 Here I briefly reviewed evolutional and develop-
mental aspects of the eye,  a visual organ,  mainly 
focusing on vertebrate retina and emphasizing retinal 
cell diversity labeled by expression of non-canonical 
photopigments,  opsins,  which also suggests novel 
functions of opsin-expressing cells in the retina,  brain 
and other organs.  From another point of view,  the 
retinal cells can be thought of as a model for studying 
the mechanisms underlying cellular differentiation and 
diversification.  The number of cell types in the human 
body is said to be 256 or more [80].  Of course,  this 
number would be much higher if all the cell subtypes 
were included.  Human diseases are thought to be 
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Table 1　 The human Opsin family <http://www.ncbi.nlm.nih.gov/omim/>

Opsin Names
Gene
Symbols

Gene
Loci Human Diseases

Absorption
Maximum (nm)

Red Cone Opsin Opn1lw Xq28 Red Colorblindness, Blue Cone Monochromatism 563

Green Cone Opsin Opn1mw Xq28 Green Colorblindness, Blue Cone Monochromatism 534

Blue Cone Opsin Opn1sw 7q32.1 Blue Colorblindness 420

Rhodopsin（Rod Opsin） Rho, Opn2 3q22.1
Retinitis Pigmentosa 4 (Autosomal Dominant/ Recessive), 
Night Blindness (Congenital Stationary, Autosomal Dominant 1), 
Retinitis Punctata Albescens

498

Opsin 3 (Encephalopsin) Opn3 1q43 (～460nm)＊

Opsin 4 (Melanopsin) Opn4 10q22 484

Opsin 5 Opn5 6p21-p12 360

Retinal Pigment Epithelium
　Derived Rhodopsin (Peropsin) Rrh 4q25

Retinal G Protein Coupled Receptor Rgr 10q23.1 Retinitis Pigmentosa 44
＊Data from pufferfish (Takifugu rubripes) Opn3 homolog TMT (PufTMT) and the mosquito (Anopheles stephensi) Opn3 homolog [82].



attributable to aberrations of various types of cells due 
to gene mutations and alterations in gene expression.  
Understanding the precise mechanisms of cellular 
diversification and unraveling the molecular profiling 
of cellular subtypes will pave the way to regenerative 
medicine and gene therapy for deceased cells,  includ-
ing therapies using cancer stem cells,  via the recently 
developed targeted genome editing technique [81].
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