鐵化合物の肥料分解に及ぼす影響に就て

豊學 博士 板

農

學 +

辻

野

新

夫

康

物の連合により行はれるものであり、且土壌中に於ける影響は多少趣きを異にするものと考へられるが故に、 鐵化合物の數種の土壌微生物に及ぼす影響に就ては既に報告でしたところである。然し肥料の分解は更に多數の微生 更に之等

の點に就て研究を行はんとした。

以下に其結果を述べる事とする。

驗 之部

試

結果より枸櫞酸第二鐵、硫酸第一鐵及び硫酸第二鐵の三種を撰んだ。 使用したる肥料は大豆粕、魚肥(各種締粕の混合せるもの)及硫酸アムモニヤであつて、鐵化合物としては前報のの

B 驗 方 法

織化合物の肥料分解に及ぼす影響に就て

(一) 州地狀態に於ける試験

研究所圃場の無肥料區の土壤を風乾し、2mm の篩を通し、50g に肥料を窒素として 0.1% に相當する様に加へてよ

く攪拌したる後、内容 150cc の三角版に入れた。

び硝酸態窒素の定量を行ひ、又硫酸アムモニヤに就ては硝酸態窒素の定量を行ひ、生成量を標準(全く鐵鹽を加へさる 之等は 28°C の恒溫器中に二週間保溫したる後取出し、大豆粕及び魚肥を加へたるものに就てはアムモニャ態窒素及 鐵化合物は各鐵として 0·1%、0.05%、0·01%、0·005% の割合とし、注加すべき水 20cc 中に溶解して施した。

(二) 水田狀態に於ける試驗

の水に溶解して注加し、

水田狀態とした。

もの」と比較して鐵化合物の影響を調査した。

土壌の使用量及び鐵化合物の添加量は畑地狀態と同様であるが、肥料は大豆粕と魚肥のみを用ひ、 鐵化合物は 50cc

の恒溫器中に二週間保溫したる後アムモニャ態窒素の生成量を測定した。

(三)H、鐵、アムモニヤ態窒素及び硝酸態窒素の定量法

pH は 週間保温後新鮮土壌の儘蒸溜水を一:一の割台に加ヘキンヒドロン電極法により測定した。

鐵 は窒素を定量せる際獲存せる水溶性含量を測定したのであつて、定量法は大杉で氏等の方法に從つた。

ア モニヤ態窒素はHorr() 氏の方法に依り炭酸マグネシヤを加へて蒸溜し、硝酸態窒素は Phenoldisulphonic acid

法に從つて定量した。

成量は第三表の如くである。 徴化合物の各濃度に於ける硝酸態窒素の生 硫酸アムモニヤを加用したるものに就き 硫酸アムモニヤ 一表参照)

窒素の生成量は第二表の如くである。 (第

各濃度に於けるアムモニヤ態窒素及硝酸態 一表多川

無肥を加用したるものに就き鐵化合物の 肥 酸無窒素の生成量は第一表の如くである。 の各濃度に於けるアムモニヤ態窒素及び硝 大豆粕を加用したるものに就き鐵化合物 大 豆 粕

A 實 畑地狀態に於ける結果 驗 結 果

I

大豆粕の分解に及ぼす影響 表

鐵化合物	濃度 (%)	рн	N出: -N (原土100g中) (mg)	NO3 +N (原土100g中) (mg)	台 計 (原土100g中) (mg)
*	0.1	7.41	33.04	38.46	71.50
	(.05	7.31	36-14	24-20	60 34
枸櫞酸第二鐵	0.01	7.33	36.96	26 54	63.50
	0.005	7.19	35.28	26.78	62.06
硫酸第一鐵	0.1	6.86	38.36	44.12	82.48
	0. 5	6.91	. 35.56	39.48	75 04
	0.01	6.86	35.28	27.28	62.56
	0.005	7.33	37.57	34.88	72.45
	0.1	4.96	54.88	15.88	70.76
	0.05	6.63	46.48	24.20	71.08
硫酸第二鐵	0.01	7.07	45.08	30.62	. 75.7)
	0.005	7.24	39.48	44.12	83.60
標準	-	7.34	39.90	33.34	73.24

第	tra-di	表	魚肥の分解に及ほす影響
-	-		I NB N I NO

鐵 化 合 物	濃度 (%)	рн	NH ₃ —N (原土100g中) (mg)	NO ₃ —N (原土100g中) (mg)	合 計 (原土100g中) (mg)
	0.1	6.93	4.76	25.42	30-18
11. 140 WA AND AND	0.05	6.70	3.36	48-38	51.74
枸櫞酸第二鐵	0.01	6-48	3.32	22 06	25.38
	0.005	6.27	3 92	65.14	69.06
	0.1	6.17	20-16	27.78	47.94
硫酸第一鐵	0.05	6.32	11.48	35.72	47.20
	0.01	6.44	2.81	24.2	27.00
	0.005	6.39	3.78	22.20	25.98
	0.1	4.60	26.88	14.28	41.16
water 200 Arrs ARR	0.05	6.05	21.84	13.50	35.34
硫酸第二鐵	0.1	6.88	4.20	12-82	17.02
	C:005	6.32	3.92	40.54	44.46
標準		6.32	3.08	86-20	89-28

得られる。

では 0.01% 及び 0.005% であつて魚肥を
に就て考察するに、大豆粕を加用したるも
のに於て標準に優りたるものは、枸櫞酸第
二徴を加へたるものには無く、硫酸第二鐵に
にては 0.01% 及び 0.005% であつて魚肥を

異るものであるが故に、以上の第一表及び硝酸化成力はアムモニヤ生成量によつて

酸化成力の個々に就て論ずる事は不可能で第二表の結果よりアムモニヤ生成力及び硝

あるが、先づ有機質肥料が分解され總て一

されるものと假定すれば、アムモニヤ態窒

度アムモニヤに變化したる後に硝酸に化成

素と硝酸態窒素の總和はアムモニヤ生成力

を表はすものとして差支へないものと考

るが、枸櫞酸第二鐵は其傾向を異にして居る。

	1 - 100 - 100		NO: -N
鐵化合物	(%)	рн	(原土100g中) (mg)
	0.1	5.92	1.66
枸櫞酸第二鐵	0.05	6.03	2.86
門幣 段 另 一藏	0.01	6.13	0.98
	0.005	6.17	4.36
	(.1	4.87	(-36
Th #4 75 015	0.05	5.34	1.50
硫酸第一鐵	0.01	5.79	3.58
	0.005	5.91	3.30
17	0.1	3.91	1.04
Tric Bills ACC and City	0.05	4.43	1.02
硫酸第二鐵	0.01	5.41	1.38
	0.005	5.65	2.98
標準	_	5.84	10.00

硫酸第二鐵は 0.005% であつて、大體逆の傾向を示して居る。

鐵は 0:1% が最も分解力が旺盛であるが、

酸第二鐵は0.005%、0.1%、0.05%、0.01%の順序であつて、硫酸第一鐵と硫酸第二鐵の關係は大體大豆粕と同様であ 魚肥に於ては枸櫞酸第二鐵は 0.005%、0.50%、0.1%、0.01%、硫酸第一鐵は 0.1%、0.05%、0.01%、0.005%、硫

である。魚肥に於ては枸櫞酸第二鐵最も良好であつて、硫酸第一鐵及硫酸第二鐵は殆ど差異がない。肥料に就ては魚肥 次に各銭化合物に就て比較すれば大豆粕に於ては、枸櫞酸第二銭が最も悪く、硫酸第一銭、硫酸第二銭とは殆ど同様

加川したるものに於ては標準に比較し總て

0.1%、0.05%、0.005%、0.01%、硫酸第 其他は著しい差はなく、硫酸第一鐵では 劣つてゐる。 の順序であつて枸橼酸第二銭及び硫酸第 二鐵では0.005%、0.001%。0-05%、0.1% 於て枸櫞酸第二鐵は 0:1% が最も多く、 量の差異を見るに大豆粕を加用せるものに 鐵化合物の各々の濃度の變化による分解

を加用したるものは大豆粕に比較し鐵化合物による抑制作用の程度が著るしく、且濃度の變化による分解量の差異も類

があり、硫酸第二鐵は此の逆であつて、枸櫞酸第二鐵に於ては一定の傾向を認め難い。又各鐵化合物の影響の程度に就 ては硫酸第一鐡と硫酸第二鐡とは大體差異なく、枸硫酸第二鐡との間には一定の傾向を認め得られなかつた。 以上畑地狀態に於ける有機質肥料の分解力に及ぼす鐵化合物の影響としては一般に硫酸第一鐵は濃度高き方に最適點

0.05% 生成力に比し鐵化合物により可成り著しく害されるものと想像される。濃度に依る傾向を見るに枸櫞酸第一 肥料の分解の場合に比較し、硫酸第一鐵の濃度の變化による影響の傾向が最も異つて居る。 %、0.05%、0.1%、0.01%、硫酸第一鐵は 0.01%、0.005%、0.05%、0.1%、硫酸第二鐵は 0.005%、0.01%、0.1%、 各鐵化合物の差異 硫酸アムモニヤを添加したるものに就て硝酸化成力を見るに標準に比較し總て劣つて居り、 の順序であつて、大體何れも同様なる傾向を示し、濃度の高くなるに從ひ抑制作用も著しいものと考へられる。 は顯著ではないが、枸櫞酸第二鐵最も良く、 硫酸第一鐵、 硫酸第二鐵の順序を示して居る。有機質 硝酸化成力はアムモニヤ

(B) 水田狀態

水田狀態に於ては硝酸態窒素は殆ど生成されざるものと考へられるが故に、大豆粕及び魚肥に於てアムモニヤ生成力

I 大 豆 粒

に及ぼす影響に就て調査を行つた。

大豆粕を加用したるものに就き銭化合物の各濃度に於けるアムモニヤ生 成量を測定したる結果は第四表の如くであ

魚肥

を加

用

した

るも

のに

就

き

鐵

化

合物

0

各濃度 に於け る 7 4 モ --+ 生 成 量 を 测

定

たる結 果は第五 表 の如くで ある。 (第五 表

多照

大豆 粕に就て標準より分解力 の良好 なる

8

0

は、

枸

機酸第

一鐵に於ては

0.05%

及

0.005% U 0.01% 硫 硫 酸 酸 第 第 鐵では 0.01% 鐵では 0.05% 6 あ 及 TI

大豆粕の分解に及ぼす影響(水田) 第四表

NH; 一N (原土100g中) (mg) 濃 鐵化 合 рн (%) 0.1 7.83 46.80 0.05 7.90 64.40 枸櫞酸第二鐵 0.51 7.86 65.80 0.CO5 7.88 59.36 0.1 7.57 58.52 0.05 8.00 61.32 硫酸第 0.01 8.19 59.92 0.005 7.95 60.48 0.1 7.69 47.04 0.05 785 56.56 硫酸第 0.01 7.83 63.56 0.005 7.90 59.08 標 準 8.12 59.92

4 E 枸櫞酸第一 = ヤ 態窒素の 一鐵の 生 成せら 0.005% 礼 たの 硫酸第 は枸櫞酸第二鐵の 一鐵 0 0.01% 0.01% である 硫酸第一 一鐵の 0.005% は標準と殆ど同様であ る。 最も多 量に

魚肥

に於て標準に優

るも

10

は枸櫞酸第二鐵には

無

<

硫酸第

餓

10

は

0.1% 0.05%

及び

0.01%

硫酸第一

Sex.

で

7

E

---+ は

態窒素の生成され であつて、 た 枸橼酸第 のは 硫酸第一 鐵 鐵 0 0 0.1% 0.01% 0.005% であ る。 硫酸第一 鐵 0 0.05% は大體同様である。 最も多量 KC 7 4

次に各鐵化合物の濃度による傾向を見る爲に 鐵化合物の肥料分解に及ぼす影響に就て 7 4 七 ---+ 態窒素の生 成量により順序を示せば、 天豆粕 に於ては枸櫞酸

第二鐵は0.01%、0.05%、0.005%、

硫酸第一鐵は 0.05%、0.005%、

鐵化合物 機及 PH (股 PH (股 PH (%)) PH (D (R))		影響(水田)	
鐵化合物	後度(%)	рн	NH: -N (原土100g中) (mg)
	0.1	7.34	29.14
Selected acts have not Adde	0.05	7.48	28.56
柯際毀第二藏	0.01	7.52	28.28
	0.005	7.54	29.14
	0.1	7.46	32.76
under 1871s. Auto- Auto-	0.05	7.50	32.62
硫酸第一纖	0.61	7.48	30.24
	0.005	7.52	28.84
	0.1	6.93	20.44
硫酸第二鐵	0.05	7.41	29.96
	0.01	7.54	35.56
	0:005	7.48	28.56
標準	-	7.50	29.96
			100

5%、0.1%、酸硫第二鐵では0.01%、0.05%、0.005%、0.1%の順序を示し、大體大豆粕の場合と同様である。 なく硫酸第一鐵は 0.05%、 0.01%、0.00

が最高の分解量を示して居る。

魚肥に於ては枸櫞酸第二鐵は殆ど差異

分解量の少き點では一致して居り其他で

は多少の變動があるが 0.01 乃至 0.05%

0.05%

0.1% であつて、0.1% が最も

硫酸第二鐵は 0.01%、 0.005%、

各鐵化合物の影響する程度に就て見るに、大豆粕に於ては硫酸第一鐵及枸櫞酸第二鐵は大差なく、

硫酸第二鐵が最も

素生成量は大豆 粕及び魚肥を通じ、 大體硫酸 第一鐵、 枸櫞酸第二鐵及び硫 酸 第二鐵の順位を示すものと考へられ 魚肥に於ては硫酸第一鐵最もよく 枸櫞酸第二鐵及び硫酸第二鐵は殆ど同樣である。 從つてアムモニヤ態 窒

悪〉、

る

般に魚肥のアムモニャ態窒素の生成量は大豆粕に劣るけれども、標準も大體同様な傾向を示して居り、銭化合物の

以 0.05% 上水 、田狀態 に最適濃度が存在 に於け る有機 質 肥料の分解力に及ほす鐵化合物の影響としては、 叉各鐵化合物の間では硫酸第 鐵、 枸櫞酸第二鐵、 大體 硫酸第一 0.1%

一鐵の順位を示す如く考

が最

0:01%

75

以 1 畑 地及び水田を通じて考察するに、 硫酸第 鐵及び硫酸第一 二鐵洪に濃度の變化による傾向に於て灿地狀態と水

狀態と異るのであるけれども、

硫

酸 HI られる。

殘存せる鐵含量 水溶性鐵含量(土壤100g中) 化 合 Fe ... 合 計 mg mg mg 0.99 2.35 枸橼酸第二鐵 1.36 0.58 硫酸第 034 0.24 4.07 5.88 硫酸第二鐵 1.81 0.49 0.24 0.73 標 準

大豆粕を加用せる場合

魚肥を加用せる場合殘 第七表 たよる婦会量

AMD 11 A 11	水溶性鐵含量(土壤100g中)			
鐵化合物	Fe·· mg	Fe ··· mg	合 計 mg	
枸櫞酸第二鐵	0.46	0.34	0.80	
硫酸第一鐵	1.25	1.55	2.80	
硫酸第二瞬	0.77	4.40	5.17	
標 準	0.40	痕跡	0.40	

致して居るが、

枸櫞酸第二鐵に於ては必

物の純粹培養に於で行へる結果と大體

版す影響は良好

と考へられ、

從のて微生

鐵は硫

酸第

一銭に比較し分解力に

3 水溶性鐵含量 趣きを異にして居る。 影響を認あ得られず、 **すしも之等無機化合物に比較**

し良好なる

此の 點

に於て稍其

なる原因により不 溶解性 に變化するものと考へられるが故に、其程度を知らんとし で窒素測

鐵化合物の肥料分解に及ぼす影響に就て

定當時殘存せる水溶性含量

の測定を行つた。

添加

世 る鐵化

合物は種々

第六表

更に 畑地狀態、 50cc の蒸溜水を加 水田狀態共に各鐵化含物を 100mg (鐵として)加用せるもの及び標準に就てのみ定量を行つたのであつて へ、手を以て適當に攪拌したる後濾過し畑地狀態にては 10cc' 水田狀態にては

一鐵を定量した。

分析せる結果は第六表、第七表の如くである。(第六表及第七表参照 畑地狀態に於ては何れも第一鐵、第二鐵共に僅に痕跡を認め得たに過ぎなかつたのであるが、水田狀態のものに就て

り硫酸第二鐵は硫酸第一鐵及び枸櫞酸第二鐵より稍多量に殘存してゐる。 以上の如く水田狀態に於ても殘存せる水溶性鐵含量は第一鐵、第二鐵共に非常に僅少であるが、培養基の場合でと異

準として鐵化合物の影響を考察したものである。 を調節する事は極 斯の如く水溶性鐵含量は添加量に比較すれば著しく減少し、 めて困難である。從つて或は當を得ざるものと考へられるのであるが、前項に於ては單に添加量を基 當初の目的と可なり懸隔せる結果を得たのであるが、之

190

括

及ぼす枸櫞酸第 大豆 粕、 一鐵、 魚肥 硫 及び硫酸アム 酸第 一鐵 及び硫酸第 E = に就 一鐵 て、 の影響に 畑地狀態及び水田狀態に於けるアムモニヤ生成力及び硝酸化成力に 就て調 作した。

魚肥に於ては枸櫞酸第二鐵最も良好であり、硫酸第一鐵、硫酸第二鐵の間には大差が認められない。 加 地 狀態に於ける大豆 粕の分解力に 對 しては枸櫞酸第二鐵最も惡く、 硫酸第 一錢、 硫酸第一 鐵 硫酸アムモニヤの には差異なく、

硝酸態窒素生成量は枸橼酸第二鐵最も良好であつて、硫酸第一鐵と硫酸第二鐵は大體同様であつた。

水田狀態に於けるアムモニヤ生成力に就では、大豆粕及び魚肥共に硫酸第一鐵、枸櫞酸第二鐵、硫酸第二鐵の

順位を示してゐる。

められなかつた。 く、反つて稍硫酸第一鐵が良好なる如き傾向を示したるも、枸櫞酸第二鐵は必ずしも之等無機化合物に優れる如くは認 四 畑地及び水田狀態を通じアムモニヤ生成力及び硝酸化成力に及ぼす影響は、硫酸第一鐵及硫酸第二鐵は大差な

多考 文 獻

- -) HARB, J, Soil Science 18: 409, 1924.
- 1)大杉 繁、西垣直久 土壤肥料學雜誌 第七卷 一二〇頁、四〇七頁、昭和八年
- 3) 近日酸表の豫定