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ABSTRACT 

Duong Thanh HAI 
 

The Graduate School of Natural Science and Technology 

OKAYAMA UNIVERSITY 

 

The objective of this study was to determine the roles of prostaglandin F2α (PGF) 

and cortisol in the regulation of bovine uterine and ovarian functions in vivo. In the first 

experiment, injection of a PGF analogue induced more than a twofold increase in the 

level of PGF in uterine venous (UV) plasma between 0.25 and 1 h after injection, but it 

did not affect the level of PGF in ovarian venous (OV) plasma. Injection of PGF 

significantly increased (P<0.05) the concentrations of cortisol in OV, UV and jugular 

venous (JV) plasma between 0.5 and 1 h after injection. The cortisol levels in OV, UV 

and JV plasma were similar. The PGF levels in UV plasma decreased after cortisol 

reached its highest levels. In a second series of experiments, intravaginal application of 

cortisone increased plasma concentrations of cortisol between 0.5 and 1.5 h after 

application in UV, at 0.5 h in vena cava caudalis (VCC), at 1 h in JV and at 1.5 h in 

aorta abdominalis (AA). The plasma concentrations of PGF in UV and the plasma 

concentration of a PGF metabolite in JV increased between 0.5 and 1 h, and then 

decreased to near the levels observed before cortisone treatment at 2 h. The levels of 

PGF in UV blood plasma decreased after cortisol reached its highest levels. In a third 

series of experiments, plasma concentrations of progesterone (P4) were lower in 

cortisol-treated heifers than in control heifers (application of gel only) on Days 17 and 

18 of the estrous cycle. However, inter-estrus intervals were not different between 

control and cortisol-treated animals (P<0.05). Moreover, treatment with metyrapone, an 

inhibitor of cortisol biosynthesis, increased P4 and prolonged the luteal phase (P<0.05). 

Interestingly, in inseminated heifers, pregnancy rate was greater (P<0.05) in cortisol-

treated animals than in control animals (9/12, 75% vs. 7/12, 58%, respectively), whereas 

pregnancy rate was lower (P<0.05) in metyrapone-treated animals than in control 

animals (2/12, 16.7% vs. 7/12, 58 %, respectively).  

The overall results of the present study indicate that 1) the uterus rather than the 

ovary increases PGF production in response to PGF injection, 2) the reproductive tract 

(uterus and/or vagina) has the capacity to convert cortisone to cortisol and that cortisol 
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may act to reduce the excessive uterine PGF secretion in non-pregnant cows in vivo and 

3) depending on the physiological status (pregnant vs. nonpregnant), cortisol modulates 

bovine CL function by influencing P4 secretion. Thus, cortisol may have a positive 

influence on CL function during early pregnancy, which would promote embryo 

implantation and thus result in higher rates of pregnancy in heifers. 
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CHAPTER 1: ACUTE CHANGES IN THE CONCENTRATIONS OF 

PROSTAGLANDIN F2α (PGF) AND CORTISOL IN UTERINE AND OVARIAN 

VENOUS BLOOD DURING PGF-INDUCED LUTEOLYSIS IN COWS 

 

INTRODUCTION 

 

In ruminants, prostaglandin F2α (PGF) is a hormone synthesised and secreted from 

the uterus [1-3]. This hormone is involved in the control of the oestrous cycle, ovulation, 

and regression of the corpus luteum (CL) [4, 5]. In non-pregnant cows, the uterus 

increases PGF production on Day 17 post-ovulation [6]. Uterine PGF is transported to 

the ovary by a countercurrent transfer mechanism [7], which is facilitated by a 

prostaglandin transporter-mediated mechanism [8] to induce regression of the CL [7, 9].  

Cortisol (Cr) is a steroid hormone produced by the adrenal cortex. Cr has been 

shown to be involved in the regulation of endometrial production of PGF in cattle [10]. 

Interestingly, a recent study using cultured bovine endometrial stromal cells 

demonstrated that PGF increase the expression and enzymatic activity of 11-

hydroxysteroid dehydrogenase 1 (HSD11B1), which converts inactive cortisone to 

active cortisol [11]. On the other hand, Cr suppresses PGF production in non-pregnant 

bovine endometrial stromal cells [10]. These findings suggest that Cr has a role in 

regulating uterine PGF production and that a dynamic interrelationship between uterine 

Cr and PGF exist in bovine endometrium. However, the temporal interrelationship 

between PGF and Cr in the ovarian and uterine circulations of non-pregnant bovine in 

vivo around the time of luteolysis remains unknown.  

PGF treatment has been shown to increase luteal production of PGF in ruminants 

in vitro [12]. More recent studies have suggested that endometrial/extraluteal PGF 

triggers intraluteal production of PGF, which induces PGF production in luteal cells by 

an auto/paracrine action in the regressing CL [12, 13]. Based on changes in the 

circulating levels of PGF metabolite, Kotwica et al. (1999) suggested that injection of 

PGF analogue stimulates the secretion of endogenous PGF from the uterus in cattle [14]. 

Moreover, PGF could regulate cyclooxygenase 2 (COX-2) expression in an 

autocrine/paracrine manner to establish a positive feedback system for regulating 
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endometrial tumorigenesis [15]. However, it remains unclear whether exogenous PGF 

mainly affects uterine and/or ovarian PGF production during the time of luteolysis in 

cow. 

After PGF is released into the circulation, it is rapidly metabolised in the lung, 

liver and kidney to 13, 14-dihydro-15-keto-prostaglandin F2 (PGFM) [16, 17] by the 

enzyme 15-hydroxy prostaglandin dehydrogenase [18]. In cattle, peaks of major pulses 

of PGF and PGFM during luteolysis occurred concomitantly, based on sampling at 4-h 

intervals. Therefore, PGFM is often measured to examine the circulating systemic 

concentrations of PGF [19]. However, there is no in vivo information available so far on 

the real-time changes in the concentrations of PGF in the blood plasma collected 

directly from the uterine vein (UV) and ovarian vein (OV) during PGF-induced 

luteolysis in cattle. 

This study was carried out to test whether exogenous PGF increases ovarian 

and/or uterine PGF production, and to determine the temporal relationship between PGF 

and Cr in ovarian and uterine circulations during PGF-induced luteolysis in cows.  

 

MATERIALS AND METHODS 

 

All procedures were approved by the Local Animal Care and Use Committee in 

Olsztyn, Poland (Agreement No. 31/2006/N and 06/2007/N). The experimental animals 

were conducted at the Faculty of Veterinary Medicine, University of Warmia and 

Mazury, Olsztyn, Poland. 

 

Animals and surgical procedures 

Healthy, normally cycling Polish Holstein Black and White cows were used for 

the present studies. The animals  were culled by their owners (Spolka Rolna “Wroblik”, 

Lidzbark Warminski, and Gospoka Rolne “Farmer”, Zalesie, Szczytno, Poland) from 

dairy cows herds because of low milk production. Oestrus was synchronised in the cows 

using implants of a progesterone (P4) analogue (Crestar: Intervet, International B.V. 

Boxmeer, Holland) with additional intramuscular (i.m.) injection of an analogue of PGF 
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(Cloprostenol; Bioestrophan, Biowet, Gorzow Wielkopolski, Poland), as recommended 

by the manufacturer for oestrous synchronisation of multiparous cows and described 

previously [20]. Oestrus was determined by observing external signs (i.e., vaginal 

mucus, standing behavior). Before surgery, the ovaries were examined daily by 

ultrasonography to determine the day and side of ovulation and CL development. The 

presence of a pre-ovulatory follicle, ovulation and normal CL development were 

confirmed by a veterinarian using a sectorial rectal probe connected to an ultrasound 

(Dranminski Animal Profi Scanner, Draminski Electronics in Agriculture, Olsztyn, 

Poland). The Day of ovulation was defined as Day 0 of the oestrous cycle. 

The cows were premedicated with an i.m. injection of xylazine at a dose of 25-30 

mg per cow (Sedanzin; Biolwet, Pulawy, Poland). Local anaesthesia was induced by s.c. 

and i.m. injections of 2% procaine hydrochloride (Polocainum Hydrochloricum; Biowet, 

Drwelew, Poland) in the paralumbar fossa of the side of the CL. On Day 9, catheters 

(Medicut Catheter Kit; Argyle, Japan Sherwood, Tokyo, Japan) were inserted into the 

ovarian vein (OV), uterine vein (UV) and jugular vein (JV) in 10 cows for frequent 

blood collection. A lateral laparotomy was performed for cannulation of the ovarian and 

uterine vein. At surgery, 18-gauge catheters were inserted into the ovarian and the 

uterine vein ipsilateral to the functional CL and fixed to the surrounding connective 

tissue [21]. After surgery, the cows were moved to a barn, where they were fed with 

grass hay twice daily and were given free access to water. On Day 10, the cows were 

divided randomly into two groups (n=5 cows/group). The animals in the first group 

received an i.m. injection of a luteolytic dose of 500 µg of cloprostenol (Estrumate; 

Mallinckrodt Burgwedel, Germany), a PGF analogue to induce luteolysis, whereas the 

second group received an i.m. injection of 5 ml of normal saline solution. Blood 

samples were simultaneously collected from OV, UV and JV at -0.25, 0, 0.25, 0.5, 1 

and 2 h and then at 2-h intervals until 12 h after PGF injection. The time of PGF or 

saline injection on Day 10 of the cycle was defined as 0 h. 

For P4, PGF and Cr measurement, blood samples were collected into sterile 10-ml 

tubes containing 200 µl of a stabiliser solution (0.3 M EDTA, 1% acid acetyl salicylic, 

pH 7.4). All tubes were immediately chilled on ice for 10 min, centrifuged at 2000 x g 

for 10 min at 4
o
C, and the obtained plasma was stored at - 30

o
C until further analysis. 
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 Progesterone determination 

The progesterone concentrations in the plasma samples were assayed using a 

direct enzyme immunoassay (EIA) as described previously [22]. The P4 standard curve 

ranged from 0.05 to 25 ng/ml, and the median effective dose (ED50) of the assay was 

2.56 ng/ml. The average intra- and interassay coefficients of variation (CVs) were 4.7% 

and 6.5%, respectively.  

 

Prostaglandin F2α determination 

The concentrations of PGF in the plasma was determined directly with a double-

antibody enzyme immunoassay as described previously [23] by using horseradish 

peroxidase enzyme-labeled PGF as a tracer (1:75,000 final dilutions) and PGF antibody 

(kindly donated by Dr. Seiji Ito of Kansai Medical University, Osaka, Japan; 1:100,000 

final dilutions). The cross-reactivity of PGF first antibody with cloprostenol injected to 

induce luteolysis and with PGFM at 50% binding were 0.95% and 0.1%, respectively. 

The samples (uterine and ovarian venous blood plasma) for the PGF assay were diluted 

10 times with EIA assay buffer. The standard curve ranged from 15.6 to 4,000 pg/ml, 

and the ED50 of the assay was 400 pg/ml. The intra- and inter-assay CVs were 7.34% 

and 13.16%, respectively.  

 

Cortisol determination 

The concentrations of Cr in the plasma were determined in duplicate after diethyl 

ether extraction by second antibody EIA as described previously [24] by using 

horseradish peroxidase enzyme-labeled Cr as a tracer (1:400,000 final dilutions) and Cr 

antibody (raised in a rabbit against cortisol-3-CMO; Cosmo Bio Co., Tokyo, Japan; 

1:80,000 final dilutions). Each plasma sample (200 l) was extracted by diethyl ether as 

described previously [21]. The residue was evaporated and then dissolved in 200 l 

assay buffer (40 mM PBS 0.1% BSA, pH 7.2). To estimate the recovery rate, Cr were 

added to plasma (1 ng/ml), and the obtained values were on average 75% (n=5). The 

standard curve ranged from 0.4 to 400 ng/ml, and the ED50 of the assay was 1.6 ng/ml. 

The intra- and inter-assay CVs were on average 5.4% and 6%, respectively.  
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Statistical analysis 

Experimental data are shown as the mean ± SEM of values obtained from five 

PGF-treated and five saline-treated cows. The concentrations of PGF and Cr in the 

blood collected at -0.25 and 0 h were used to calculate the individual baseline. The 

statistical significance of differences of P4, PGF and Cr in OV, UV and JV blood 

plasma between pre- and post-PGF injection period, and between OV, UV and JV were 

assessed by analysis of variance (ANOVA) using GraphPAD Prism Version 5.00, San 

Diego, CA, USA; followed by protected least significant difference (PLSD) as a 

multiple comparison test. Differences were considered significant when the probability 

was less than 5% (P<0.05).  

 

RESULTS 

 

Effect of an injection of a prostaglandin F2α analogue on the plasma concentrations of 

progesterone in ovarian venous blood 

An injection of a luteolytic dose of PGF induced a significant (P<0.05) decrease 

in the plasma concentrations of P4 in OV plasma at 2 h, indicating functional luteolysis, 

as expected (Fig. 1).  

 

Effect of an injection of a prostaglandin F2α analogue on the plasma concentrations of 

PGF in the ovarian and uterine venous blood 

On Day 10 of the oestrous cycle, the basal concentrations of PGF in OV plasma 

were not significantly different from those in UV plasma (Fig. 2). An injection of a 

luteolytic dose of PGF induced a transient increase of PGF concentrations (P<0.05) in 

UV blood plasma between 0.25 and 1 h, but not in OV blood plasma (Fig. 2). 

 

Effect of an injection of a prostaglandin F2α analogue on the plasma concentrations of 

cortisol in the ovarian, uterine and jugular venous blood 
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On Day 10 of the oestrous cycle, the basal concentrations of Cr in OV, UV and JV 

blood plasma were similar (Fig. 3). An injection of a PGF analogue induced an acute 

increase (P<0.05) in the concentrations of Cr in ovarian, uterine and jugular venous blood 

plasma between 0.5 and 1 h (Fig. 3). The plasma concentrations of Cr in OV, UV and JV 

were not significantly different. 

The increases in concentrations of Cr in OV, UV and JV blood plasma occurred 

after the increase in the levels of PGF in UV blood plasma. In addition, the levels of 

PGF in UV blood plasma decreased after Cr reached its highest levels (Table 1). 
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Fig. 1: Concentrations of progesterone (P4) in blood plasma collected from the ovarian vein. 

Cows were treated intramuscularly with cloprostenol, a prostaglandin F2 analogue (PGF-A, 

n=5) or saline solution (Control, n=5) on Day 10 of the oestrous cycle. Asterisks indicate 

significant differences (P<0.05) compared with the baseline (pretreatment period). 

Different superscript letters indicate significant differences (P<0.05) between the cow 

treated with PGF-A and control groups as assessed by ANOVA followed by protected 

least significant difference test (PLSD). 
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Fig. 2: Concentrations of prostaglandin F2α (PGF) in uterine venous blood plasma of saline-

treated group (Control), in ovarian and uterine venous blood plasma of cow treated with 

cloprostenol, a prostaglandin F2α analogue (PGF-A) group. Data are the mean ± SEM for 5 

samples/time-point. Asterisks indicate significant difference (P<0.05) compared with the 

baseline (before PGF-A or saline injection). Different superscript letters indicate 

significant differences (P<0.05) between uterine and ovarian venous blood plasma of cow 

treated with PGF-A group, or between uterine venous blood plasma of cow treated with 

PGF-A and control groups. Bars show PGF concentration in uterine venous blood of the 

saline-treated group (n=5), as determined by ANOVA followed by protected least 

significant difference test (PLSD). 
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Fig. 3: Concentrations of cortisol (Cr) in jugular, ovarian and uterine venous blood plasma 

of cows treated with cloprostenol, a prostaglandin F2α analogue (PGF-A). Data are the mean 

± SEM for 5 samples/time-point. Asterisks indicate significant difference (P<0.05) in Cr 

concentrations compared with the baseline (before PGF-A or saline injection), as 

determined by ANOVA followed by protected least significant difference test (PLSD). 
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Table 1: Acute changes in the concentrations of prostaglandin F2 (PGF) and cortisol (Cr) 

in uterine venous (UV) and ovarian venous (OV) blood plasma during prostaglandin F2-

induced luteolysis in cows. 

 

                           Time after prostaglandin F2α injection 

 0 h 0.25 h 0.5 h 1 h 2 h 

PGF 

(ng/ml) 

OV 1.4 ± 0.2 1.7 ±  0.2 1.6 ± 0.1 1.4 ± 0.1 1.6 ± 0.3 

UV 1.2 ± 0.2
a
 2.6

 
± 0.6

b
 2.9 ± 0.9

b
 2.2 ± 0.4

b
 1.6 ± 0.1

a
 

Cr 

(ng/ml) 

OV 4.2± 1.4
a
 5.0

 
± 0.5

a
 13.7

 
± 2.6

b
 13.6

 
± 2.0

b
 4.2

 
± 1.4

a
 

UV 4.4
 
± 0.6

 a
 5.1

 
± 0.6

 a
 10.6

  
± 2.1

b
 14.1

 
± 3.0

b
 5.3

 
± 1.4

a
 

 

Data are the mean ± SEM for 5 samples/time-point. Different letters indicate 

significantly different value (P<0.05) in Cr and PGF concentrations among time-points 

related to prostaglandin F2α injection, as determined by ANOVA followed by protected 

least significant difference test (PLSD). 
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DISCUSSION 

 

In cattle, injection of a luteolytic dose of PGF analogue induces luteolysis which 

is characterized by a decrease in the circulating levels of P4 and a concomitant increase 

in the levels of PGFM in the jugular venous plasma [14, 19]. It is well known that the 

bovine uterus and ovary both have the capacity to produce PGF [25, 26]. However, it 

had been unclear whether exogenous PGF affects uterine and/or ovarian PGF 

production. In the present study, injection of a PGF analogue induced a significant 

increase in the levels of PGF in UV plasma within 1 h, whereas the increase in the 

levels of PGF in OV plasma was not statistically significant. These results suggest that 

there is an increase in the luteal production of PGF, but the response to an intramuscular 

injection of PGF analogue is not as great as the observed in UV blood plasma. A recent 

in vitro study also demonstrated that bovine endometrium increases PGF production in 

response to PGF treatment and that the strongest stimulatory effect of PGF was 

observed between days 15 and 17 of the oestrous cycle [27]. These results imply that 

exogenous PGF increases uterine PGF production and that the endometrium becomes 

more responsive to PGF at the time of luteolysis. 

A study using a micro dialysis system demonstrated that administration of a PGF 

analogue induces an acute increase in intraluteal PGF secretion during the first 4 h post-

treatment [13]. The same study demonstrated that injection of a PGF analogue 

(Cloprostenol) did not induce a significant increase of PGF levels in OV plasma up to 

24 h after treatment, in agreement with the present results. Furthermore, PGF has the 

ability to activate PGF production within the CL of ewes and cows [25, 26]. These 

results indicate that the acute increase in the intraluteal production of PGF is not 

reflected in the profiles of PGF in OV plasma.  

Previous in vitro studies showed that PGF increases the levels of Cr in cultured 

bovine adrenocortical cells [28] and the conversion of cortisone to cortisol by 

stimulating HSD11B1 in non-pregnant bovine endometrium [11]. In vivo studies 

demonstrated that a luteolytic dose of PGF analogue induced an increase in the levels of 

Cr in the JV blood plasma [29, 30]. These findings suggest that PGF has the capacity to 

stimulate Cr in vitro and in vivo. Moreover, it has been shown that bovine endometrium 

[10] and corpus luteum tissues [31] have the capacity to convert cortisone to cortisol. It 
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is of interest to know whether the increase in the levels of Cr in blood plasma collected 

from the JV, reported by Baishya et al. (1994) [29] and Shrestha et al. (2010) [30], is Cr 

secreted from the adrenal cortex or converted from cortisone by the ovary or uterus. In 

the present study, injection of a PGF analogue increased the levels of Cr in ovarian, 

uterine and jugular venous blood circulation. However, we did not find any significant 

difference in the levels of Cr among OV, UV and JV blood plasma. These results 

suggest that PGF stimulates Cr release from the adrenal cortex and that the amount of 

Cr converted from cortisone by the ovary and uterus is not enough to affect circulating 

levels of Cr. A recent study demonstrated that PGF stimulates cortisol conversion from 

cortisone by increasing HSD11B1 activity in endometrial tissue and cultured stromal 

cells. It is also possible that PGF increase the capacity to convert cortisone to cortisol in 

other tissues including endothelial cells, making this effect systemic. 

It has been demonstrated that PGF is secreted from the uterus in pulses during 

luteolysis in cattle [32]. The sequential PGF pulses are required to induce natural 

luteolysis in cattle [19]. Although PGF increases Cr levels in JV blood plasma, it is not 

known how PGF and Cr in ovarian and uterine circulation change with time in vivo. Our 

previous in vitro results showed that Cr has the capacity to reduce basal and tumor 

necrosis factor α-stimulated PGF production in stromal cells of non-pregnant bovine 

endometrium [10]. It has been shown that glucocorticoids inhibit PG synthesis by 

inhibiting the expression of cytosolic phospholipase A2 that convert phospholipids to 

arachidonic acid (AA) [33], the primary precursor of PGF as well as COX-2, the 

enzyme that convert  AA to PGH2 [34, 35] in most tissues of the body. In the present 

study, the levels of Cr in OV, UV and JV blood plasma increased immediately after the 

rise of PGF in UV blood plasma. Interestingly, the present results also showed that the 

levels of PGF in UV blood plasma decreased after Cr reached its highest levels. These 

results suggest that Cr inhibits uterine PGF production within a short time period. Thus, 

Cr may act in reducing the high levels of uterine PGF and may be one of the factors 

responsible for the generation of PGF pulses in cattle. 

In conclusion, exogenous PGF increases uterine PGF production rather than 

ovarian PGF production. Based on the temporal changes of PGF and Cr in ovarian and 

uterine circulations, Cr may act to reduce uterine PGF production in non-pregnant cows 

in vivo. 
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SUMMARY 

 

Prostaglandin F2α (PGF) is considered to be the main luteolysin in cattle. We have 

previously demonstrated that cortisol (Cr) suppresses PGF production in non-pregnant 

bovine endometrium. The present study was performed to test whether exogenous PGF 

increases ovarian and/or uterine PGF production and to determine the temporal 

relationship between PGF and Cr in ovarian and uterine circulations during PGF-

induced luteolysis in cows. Catheters were inserted into the ovarian vein (OV), uterine 

vein (UV) and jugular vein (JV) of 10 cows on Day 9 of the oestrous cycle (Ovulation = 

Day 0) for frequent blood collection. On Day 10, the cows were divided randomly into 

two groups and treated with a luteolytic dose of a PGF analogue (cloprostenol) or saline 

solution. Blood samples were collected at -0.25, 0, 0.25, 0.5, 1 and 2 h and then at 2-h 

intervals until 12 h after treatment (0 h). The basal concentrations of PGF and Cr in OV 

and UV plasma were not significantly different. Injection of a PGF analogue induced 

more than two-fold increases in the levels of PGF between 0.25 and 1 h in UV plasma, 

but not in OV plasma. PGF increased (P<0.05) the concentrations of Cr in OV, UV and 

JV plasma between 0.5 and 1 h. The Cr levels in OV, UV and JV plasma were similar. 

The PGF levels in UV plasma decreased after Cr reached its highest levels. The overall 

results suggest that the uterus rather than the ovary increases PGF production in 

response to PGF injection. Based on the temporal changes of PGF and Cr in the ovarian 

and uterine circulations, Cr may act to reduce uterine PGF production in non-pregnant 

cows in vivo. 
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CHAPTER 2:  CONVERSION OF CORTISONE TO CORTISOL AND 

PROSTAGLANDIN F2α PRODUCTION BY THE REPRODUCTIVE TRACT OF 

COWS AT THE LATE LUTEAL STAGE IN VIVO 

 

INTRODUCTION 

 

Glucocorticoids (GCs), synthesised from cholesterol in the adrenal cortex, are 

involved in the regulation of a variety of physiological processes, including metabolism 

[36], immunological response [37] and female reproductive function [38, 39]. Cortisol 

(Cr), an active GC, is an anti-inflammatory agent that acts to modulate the production 

and action of cytokines and prostaglandins required for ovulation, luteolysis, embryo 

implantation, fetal growth and placenta development as well as parturition [38, 40, 41]. 

The effects of GCs on target tissues are modulated by 11β-hydroxysteroid 

dehydrogenases (HSD11Bs) [10, 42]. Two isoforms of the enzyme have been identified. 

The type 1 enzyme (HSD11B1) mainly converts cortisone to Cr (the active form), while 

the type 2 isoform (HSD11B2) inactivates Cr by metabolising it to cortisone [43]. We 

recently demonstrated that HSD11B1 mRNA expression in the bovine endometrium 

changes throughout the oestrous cycle, and that endometrial tissue has the capacity to 

convert inactive cortisone to biologically active Cr in vitro [10]. However, it remains 

unknown whether the bovine reproductive tract has the capacity to convert cortisone to 

Cr in vivo. 

Prostaglandin F2α (PGF), a hormone synthesised and secreted from the uterus [1-

3], has the capacity to stimulate conversion of cortisone to Cr by increasing the 

expression and enzymatic activity of HSD11B1 in bovine endometrial stromal cells [11]. 

We recently showed that injection of PGF in vivo induced acute increases in the levels 

of circulating Cr [44]. On the other hand, Cr can modulate tumour necrosis factor α-

regulated PGF production and may reduce basal PGF production in non-pregnant 

bovine endometrium stromal cells in vitro [10]. These findings indicate that Cr has a 

role in regulating uterine PGF production. However, it is unclear whether exogenous 

cortisone, an inactive GC, can be converted into active Cr and consequently affects 

uterine PGF production at the late luteal phase in cows. Moreover, the temporal 
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interrelationship between PGF and Cr in the uterine blood plasma of cows at the late 

luteal stage remains unknown. 

This study was carried out to test the hypothesis that bovine reproductive tract has 

the capacity to convert cortisone to Cr in vivo and to evaluate the effects of intravaginal 

application of exogenous cortisone on uterine PGF secretion during the late luteal stage. 

The temporal relationships between PGF and Cr levels in uterine blood plasma were 

also determined. 

 

MATERIALS AND METHODS 

 

All animal procedures were approved by the Local Animal Care and Use 

Committee in Olsztyn, Poland (Agreement No. 06/2007/N). 

 

Animals and surgical procedures 

Healthy, normally cycling Polish Holstein Black and White cows (n = 18) were 

used for the present studies. The animals were culled by their owners (the Farm of 

Polish Academy of Sciences in Baranowo, and a private agriculture farm in 

Cieszymowo, Poland) from dairy cows herds because of low milk production. The 

oestrus was synchronised using two injections of an analogue of PGF (dinoprost, 

Dinolytic; Upjohn - Pharmacia N.V.S.A., Belgium) with an 11-day interval, as 

described and recommended in our previous study [45]. Oestrus was determined by 

observing external signs (i.e. vaginal mucus, standing behaviour). Before surgery, the 

ovaries were examined daily by transrectal ultrasonography (USG) using a Draminski 

Animalprofi Scanner (Draminski Electronics in Agriculture, Olsztyn, Poland) to 

determine the day and side of ovulation and corpus luteum (CL) development. The day 

of ovulation was defined as Day 0 of the oestrous cycle. 

To determine the effective dose of cortisone on Cr and PGF output, a polyvinyl 

catheter was inserted into the jugular vein of 12 cows on Day 15 of the cycle for 

collection of the blood samples as described previously [46].  
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In the main experiment, the cows (n = 6) were premedicated with an 

intramuscular (i.m.) injection of xylazine at a dose of 25-30 mg per cow (Sedanzin; 

Biolwet, Pulawy, Poland). Local anaesthesia was induced by s.c. and i.m. injections of 

2% procaine hydrochloride (Polocainum Hydrochloricum; Biowet, Drwelew, Poland) in 

the paralumbar fossa on the side of ovary with CL. On Day 15, catheters (Medicut 

Catheter Kit; Argyle, Japan Sherwood, Tokyo, Japan) were inserted into jugular vein 

(JV) uterine vein (UV), vena cava caudalis (VCC) and aorta abdominalis (AA) for 

frequent blood collection. A lateral laparotomy was performed for cannulation of the 

uterine vein. At surgery, 18-gauge catheters were inserted into the UV 3-5 cm from 

uterine horn before joining the utero-ovarian vein ipsilateral to the functional CL [44, 

47], the VCC and AA and fixed to the surrounding connective tissue [48]. After surgery, 

the cows were moved to a barn, where they were fed with grass hay twice daily and were 

given free access to water.  

 

 Determination of cortisone doses 

Twelve cows were used to choose the effective doses of cortisone. All doses were 

applied to the vagina via a catheter near the cervix of the uterus on Day 16 of the 

oestrous cycle. The cows were divided randomly into four groups (n = 3 cows/group) 

and then infused with vaseline gel (10 ml; control group) or three different doses of 

cortisone (1 mg, 10 mg, 100 mg; cortisone groups; Sigma – Aldrich, Chemie Gmbh, 

Munich; Germany; No. C2755) dissolved in vaseline gel. The blood samples were 

collected from JV at -2, -1, -0.5, 0, 0.5, 1, 1.5 and 2 h and then at 1-h intervals until 6 h 

after vaseline or cortisone infusions. The time of cortisone or vaseline infusion was 

defined as 0 hour. Plasma concentrations of Cr and 13, 14-dihydro, 15-keto-PGF 

(PGFM) in plasma samples were measured. For further examination of cortisone action 

at the late luteal stage in cows, a dose of 100 mg cortisone was used. 

 

 Effects of cortisone applications on prostaglandin F2α and Cr concentrations 

To examine the possible influence of cortisone on PGF and Cr release from the 

reproductive tract, cows were divided randomly into two groups (n = 3 cows/group) and 

infused intravaginally with vaseline gel (control) or 100 mg of cortisone dissolved in 
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vaseline gel (cortisone) on Day 16 of the oestrous cycle. Blood samples were collected 

from the JV, UV, VCC, and AA at -2, -1, -0.5, 0, 0.5, 1, 1.5 and 2 h and then 1-h 

intervals until 6 h after treatments. The time of vaseline gel or cortisone infusion was 

defined as 0 hour. For Cr, PGF and PGFM determination, blood samples were collected 

into sterile 10-ml tubes containing 200 μl of stabiliser solution (0.3 M EDTA, 1% acetyl 

salicylic acid, pH 7.4). All tubes were immediately chilled on ice for 10 min, 

centrifuged at 2000 X g for 10 min at 4°C, and the obtained plasma was stored at -30°C 

until further analysis.  

 

13, 14-dihydro, 15-keto-prostaglandin F2α (PGFM) determination  

The concentrations of PGFM in the plasma samples were determined with direct 

EIAs following the method described previously [46] by using horseradish peroxidase 

enzyme-labelled PGFM as a tracer (1:40,000 final dilutions) and PGFM antibody 

(1:10,000 final dilutions). The anti-PGFM serum (WS4468-5) was kindly donated Dr. 

W.J. Silvia, University of Kentucky, Lexington, USA and characterised before [46]. The 

cross-reactivity of the PGFM first antibody with PGF at 50% binding was 2.8%. The 

sensitivity of PGFM assays was 50 pg/ml. The PGFM standard curve ranged from 32.5 

to 8,000 pg/ml and the median effective dose (ED50) of the assay was 315 pg/ml. The 

intra- and inter-assay coefficients of variation (CVs) were on average 7.6% and 10.4%, 

respectively. 

 

Prostaglandin F2α determination 

The concentrations of PGF in the plasma was determined directly with a double-

antibody enzyme immunoassay as described previously [1] by using horseradish 

peroxidase enzyme-labelled PGF as a tracer (1:75,000 final dilutions) and PGF antibody 

(kindly donated by Dr. Seiji Ito of Kansai Medical University, Osaka, Japan; 1:100,000 

final dilutions). The cross-reactivity of PGF first antibody with PGFM at 50% binding 

was 0.1%. The sensitivity of PGF assays was 30 pg/ml. The standard curve ranged from 

15.6 to 4,000 pg/ml, and the ED50 of the assay was 400 pg/ml. The intra- and inter-assay 

CVs were 7.3% and 13.2%, respectively.  
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Cortisol determination  

The concentrations of Cr in the plasma were determined in duplicate after diethyl 

ether extraction by second antibody EIA as described previously [24] by using 

horseradish peroxidase enzyme-labelled Cr as a tracer (1:80,000 final dilutions) and Cr 

antibody (raised in a rabbit against Cr-3-CMO; Cosmo Bio Co., Tokyo, Japan; 

1:400,000 final dilutions). The cross-reactivity of Cr first antibody with cortisone 

treated at 50% binding was 0.6%. The sensitivity of Cr assays was 0.5 ng/ml. Each 

plasma sample (200 l) was extracted by diethyl ether as described previously [21]. The 

residue was evaporated and then dissolved in 200 l assay buffer (40 mM PBS 0.1% 

BSA, pH 7.2). To estimate the recovery rate, Cr was added to plasma (1 ng/ml), and the 

obtained values were on average 75% (n=5). The standard curve ranged from 0.4 to 400 

ng/ml, and the ED50 of the assay was 1.6 ng/ml. The intra- and inter-assay CVs were on 

average 5.4% and 6%, respectively.  

 

Statistical analysis 

Experimental data are shown as the mean ± SEM (n = 3). The concentrations of 

PGF, PGFM and Cr in the blood collected at -0.5 and 0 h were used to calculate the 

individual baseline. The data were not normally distributed (no Gaussian distributions). 

The analyses of Cr, PGF and PGFM in plasma samples were performed using a 

repeated measures design approach with treatments and time of sample collection 

(hours) being fixed effects with all interactions included, as described before [48, 49]. 

The non-parametric Freidman and Kruskal-Wallis tests with post-hoc test (repeated 

measurement test - multiple comparisons of mean ranks) has been used (GraphPAD 

Prism Version 5.00, San Diego, CA; USA; P<0.05 was considered significant). Least 

adjusted means and standard errors, as well as median and quartiles were determined. 

The correlation between PGF and Cr concentrations after cortisone application in 

different blood vessels was additionally measured using linear regression and Pearson 

correlation (GraphPAD Prism). 
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RESULTS 

 

Determination of cortisone dose 

The concentrations of Cr and PGFM in JV plasma in fours groups are shown in 

Fig. 4. For the PGF and PGFM concentrations in JV plasma, the main effects of hour 

and group and the group x hour interaction were significant (P<0.05). The Cr 

concentration increased (P<0.05) between hours 0 and 2, decreased (P<0.05) between 

hours 2 and 4, and did not change thereafter in the 100 mg cortisone treated animals. 

There was not temporal change in Cr levels in control and animals infused with lower 

doses of cortisone (1 and 10 mg; Fig. 4a). Furthermore, the plasma concentration of 

PGFM in JV first increased between hours 0 and 1, decreased between hours 1 and 2, 

and again increased between hours 2 and 3, then decreased until hour 6 in the 100 mg 

cortisone treated animals. However, the Cr level did not change in the control and 

animals treated with lower doses of cortisone (1 and 10 mg; Fig. 4b). The Cr and PGFM 

levels were greater in the 100 mg cortisone treated animals than in the control and 

animals treated with lower doses of cortisone (1 and 10 mg cortisone; P<0.05) at 1 and 

3 h post treatment.  

 Based on these results, a cortisone dose of 100 mg was used for further studies to 

investigate the local effect of cortisone on release of Cr and PGF during the late luteal 

phase in cows. 

 

 Effects of cortisone application on Cr concentrations during the late luteal phase 

For the Cr concentrations, the hour effect was significant (P<0.05). Intravaginal 

application of cortisone on Day 16 of oestrous cycle induced a significant (P<0.05) 

increase in the plasma concentrations of Cr between 0.5 and 1.5 h in UV, at 0.5 h in 

VCC, at 1 h in JV and at 1.5 h in AA (Fig. 5). Furthermore, plasma Cr levels were 

highest in UV. 

 

Effects of cortisone application on prostaglandin F2α and PGFM concentrations during 

the late luteal phase 
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For the concentrations of PGF in UV and PGFM in JV plasma, the main effect of 

hour and groups and the group x hour interaction were significant (P<0.05). 

Concentrations of PGF in UV and PGFM in JV (Fig. 6) increased between hours 0 and 

1, decreased between hour 1 and 1.5 and did not change thereafter. The levels of PGF in 

UV and PGFM in JV plasma were greater (P<0.05) at 0.5 and 1 h in cortisone-treated 

animals than in control animals on Day 16 of the oestrous cycle. 

The increase in the concentration of Cr (Fig. 5) and PGF (Fig. 6) in UV plasma 

occurred at the same time and a high correlation between both measurements was found 

(Pearson r = 0.76; P<0.001). However, the levels of UV PGF decreased after Cr reached 

its highest levels. 
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Fig. 4. Plasma concentration of cortisol (Cr; upper panel, a) and prostaglandin F2α 

metabolite (PGFM; lower panel, b)  in jugular vein blood after intravaginal infusion of 

vaseline gel (Control; n=3) or cortisone at doses of 1 mg, 10 mg, 100 mg dissolved in 

vaseline gel (n=3/dose) on Day 16 of the oestrous cycle. Data are the mean ± SEM for 

three samples/time-point. Asterisks indicate significant differences (P<0.05) compared 

with baseline (before cortisone or vaseline gel treatment). Different superscript letters 

indicate significant differences (P<0.05) among groups at the same time point. Bars 

show Cr concentration in jugular venous plasma of the cows infused intravaginally with 

vaseline gel (Control, n=3). 
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Fig. 5. Plasma concentrations of cortisol (Cr) in uterine vein, vena cava caudalis, aorta 

abdominalis and jugular venous blood in cortisone-treated group (n=3) on Day 16 of the 

oestrous cycle. Data are the mean ± SEM for three samples/time-point. Asterisks indicate 

significant differences (P<0.05) in Cr concentrations compared with the baseline (before 

cortisone application). 
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Fig. 6. Plasma concentrations of prostaglandin F2α in uterine venous blood (PGF, upper 

panel, a) and prostaglandin F2α metabolite (PGFM, lower panel, b) in jugular vein of 

cortisone-treated group (cortisone, n=3) or vaseline-treated group (control, n=3) on Day 16 

of the oestrous cycle. Data are the mean ± SEM for three samples/time-point. Asterisks 

indicate significant differences (P<0.05) compared with baseline (before cortisone or 

vaseline gel treatment). Superscript letters indicate significant differences (P<0.05) 

between cortisone and control groups at the same time point. 
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DISCUSSION 

 

The present study clearly demonstrated that the bovine reproductive tract (uterus 

or/and vagina) has the capacity to convert cortisone to Cr at the late luteal stage in vivo. 

Moreover, intravaginal application of exogenous cortisone (converted to endogenous 

Cr) on Day 16 of oestrous cycle significantly increased uterine PGF output in cows. 

These findings support that Cr plays a role in regulating uterine PGF secretion at the 

late luteal phase in cows.  

Cr synthesised in the adrenal cortex affects many organs. The circulating 

peripheral levels of Cr are relatively constant throughout the oestrous cycle in cattle 

[50-52]. However, local Cr concentrations have been shown to be modulated by 

HSD11B1 and HSD11B2 in different organs of several species [43]. HSD11B1 acts 

predominantly as a NADP(H)-dependent reductase to generate active Cr from inactive 

cortisone. Our previous in vitro study demonstrated that bovine endometrial explants, as 

well as cultured endometrial cells have the capacity to convert cortisone to Cr [10]. It 

has been shown that the HSD11B1 is expressed in liver and adipose tissue, with the 

highest activity normally observed in the liver [53, 54]. In addition to liver, HSD11B1 

was previously found to be expressed in the ovine and bovine uterus during the oestrous 

cycle [10, 55, 56]. It was of interest to know whether the bovine reproductive tract has 

the ability to convert cortisone to Cr in vivo at the late luteal stage. In the present study, 

the concentrations of Cr increased in UV earlier than in VCC, JV and AA; and plasma 

Cr levels were highest in UV. These findings indicated that the increase in the levels of 

Cr detected in the UV plasma is mainly due to the conversion of cortisone to Cr by the 

bovine reproductive tract at the late luteal stage, and that Cr converted by the 

reproductive tract enters into the uterine vein and then is diluted in the systemic 

circulation. Therefore, more time is required to detect a significant increase of Cr 

concentrations in AA. 

Furthermore, intravaginal application of cortisone increased the concentrations of 

PGF and its metabolite-PGFM within 3 h after treatment. Presently, intravaginal 

administration is commonly used to administer antimicrobials, labour-inducing agents, 

prostaglandins and steroids [57, 58]. The vaginal mucosa has good absorption potential 
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[59]. Many vaginal formulations are applied in the form of suppositories [60, 61], 

gelatin capsules [62] and recently as bio-adhesive gels [63]. Intra-vaginal administration 

of progesterone avoids liver first-pass metabolism, and has no systemic side-effects [64]. 

Recently, vaginal drug delivery has gained further interest due to investigations 

showing the existence of uterine first-pass effect [65]. The findings indicate that drugs 

administered through the vaginal route are transported into the uterus achieving higher 

tissue concentrations than if administered orally or intramuscularly [66]. Thus, in our 

experiment we have used the intravaginal route to introduce the cortisone dissolved in 

vaseline gel into the cows to study its local biological effects. 

PGF was found to stimulate HSD11B1 in human placenta [67] and increased the 

local conversion of cortisone to Cr by increasing HSD11B1 in the cow [11]. GCs 

stimulated PG synthesis in fetal membranes of human [68, 69] and sheep [70]. These 

findings imply the presence of a positive feedback loop between local PGF and Cr 

synthesis during late pregnancy and labor [67, 71]. In cattle, our previous in vitro study 

showed that Cr reduces basal PGF production in non-pregnant bovine endometrial 

stromal cells, whereas it did not affect epithelial cells PGF production [10]. However, 

stromal cells are the main source of PGE2 production [72] while epithelial cells are the 

main source of PGF synthesis [1, 3].  Until now, it has been unclear whether exogenous 

cortisone, which is converted to endogenous Cr, affects uterine PGF secretion in cow at 

the late luteal stage in vivo. The increased levels of HSD11B1 mRNA and bioactivity 

were temporally coincident with the increase in the basal release of PGF during the 

oestrous cycle [10, 72, 73]. Furthermore, treatment of metyrapone, an inhibitor of 

HSD11B1, to reduce the local availability of Cr converted from cortisone in the bovine 

reproductive tract at the late luteal stage prolonged the luteal phase in cows [74]. Thus, 

Cr may play a role in regulating PGF secretion in vivo. A recent in vitro study using 

HSD11B1 inhibitor to block the conversion of cortisone to Cr showed that cortisone 

does not affect directly PGF production in nonpregnant endometrial tissue at late luteal 

stage (Duong HT, Okuda K & Acosta TJ, unpublished data). In the present study, we 

found that cortisone infusion increased PGF and PGFM concentrations in the UV and 

JV blood plasma, respectively and that the increase in uterine levels of PGF and Cr 

occurred synchronously. These findings suggest that Cr converted from exogenous 

cortisone can stimulate PGF secretion from the bovine uterus. In fact, PGF treatment 
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has been shown to increase the levels of Cr  in vitro [11] and in vivo [30, 44]. The above 

results suggest that a positive feedback loop between local Cr and PGF could play a role 

during luteolysis in the bovine uterus. However, the exact role of Cr, as well the 

mechanisms of it action on PGF output from the bovine uterus are not clarified yet.  

Regulation of the pulsatile PGF release could be a possible role of Cr during 

luteolysis. The pulsatile release of PGF from the uterus in the late luteal phase induces 

luteolysis in many species including cattle [4]. Many local, uterine factors may serve as 

signals or triggers of PGF output from uterus [73, 75]. Recent in vivo studies [30, 44] 

have shown that Cr plays a role in regulating PGF secretion in the bovine uterus during 

PGF-induced luteolysis. In addition, it has been demonstrated the temporal association 

between a PGFM pulse and a Cr pulse during spontaneous luteolysis in mare [76]. Thus, 

Cr may be also one of the factors responsible for the generation of PGF pulses during 

luteolysis [44]. However, it is unknown whether Cr directly regulates PGF secretion at 

the late luteal stage. Lee et al. (2007) showed that HSD11B1 mRNA expression and 

activity are highest during luteolysis and the follicular phase. The frequent-pulsatile 

release of PGF with high amplitude was also observed during spontaneous luteolysis 

and later (Days 17-20 of the cycle) [77-79]. Furthermore, a concomitant elevation of 

uterine PGF and Cr concentrations was observed after an analogue of PGF injection, 

and then concentration of PGF decreased after Cr reached its highest levels [44]. 

Interestingly, in the present study, the levels of PGF in UV blood plasma also decreased 

after Cr reached its highest levels. Thus, Cr may prevent excessive uterine PGF 

secretion within a short time period. The above findings support our previous 

hypothesis [44] that Cr is one of the factors responsible for the generation of PGF pulses 

in cattle. However, future studies are needed to clarify how Cr induces an acute 

elevation of PGF concentration and prevents long-lasting-excessive PGF secretion in 

the bovine uterus resulting in successive PGF pulses.  

In conclusion, the bovine reproductive tract has the capacity to convert inactive 

cortisone to bioactive Cr in vivo. Based on the temporal changes of PGF and Cr in the 

uterine circulation, a biphasic response in PGF secretion was found to be associated to 

the Cr increase induced by the cortisone treatment at the late luteal stage in nonpregnant 

cows. 
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SUMMARY 

 

 

Previous in vitro studies demonstrated that bovine endometrium has the capacity to 

convert inactive cortisone to biologically active cortisol (Cr) and that Cr inhibits 

cytokine-stimulated prostaglandin F2α (PGF) production. This study was carried out to 

test the hypothesis that bovine reproductive tract has the capacity to convert cortisone to 

Cr in vivo and to evaluate the effects of intravaginal application of exogenous cortisone 

on uterine PGF secretion during the late luteal stage. The temporal relationships 

between PGF and Cr levels in uterine plasma were also determined. Catheters were 

inserted into jugular vein (JV), uterine vein (UV), vena cava caudalis (VCC) and aorta 

abdominalis (AA) of six cows on Day 15 of the oestrous cycle (ovulation=Day 0) for 

frequent blood collection. On Day 16, the cows were divided randomly into two groups 

and infused intravaginally with vaseline gel (10 ml; control; n = 3) or cortisone 

dissolved in vaseline gel (100 mg; n = 3). Blood samples were collected at -2, -1, -0.5, 0, 

0.5, 1, 1.5, 2, 3, 4, 5 and 6h after treatments (0 h). Intravaginal application of cortisone 

increased plasma concentrations of Cr between 0.5 and 1.5 h in UV, at 0.5 h in VCC, at 

1 h in JV and at 1.5 h in AA. The plasma concentrations of PGF in UV and of PGF 

metabolite in JV were greater at 0.5 and 1 h in the cortisone-treated animals than in 

control animals. The levels of PGF in UV blood plasma decreased after Cr reached its 

highest levels. The overall findings suggest that the female reproductive tract has the 

capacity to convert cortisone to Cr in vivo. Based on the temporal changes of PGF and 

Cr levels in the uterine plasma, a biphasic response in PGF secretion was found to be 

associated to the Cr increase induced by the cortisone treatment at the late luteal stage in 

nonpregnant cows.  
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CHAPTER 3:  EFFECTS OF CORTISOL ON PREGNANCY RATE AND 

CORPUS LUTEUM FUNCTION IN HEIFERS:  AN IN VIVO STUDY 

 

INTRODUCTION 

 

Glucocorticoids (GCs) are involved in many physiological processes [36, 37], including 

female reproductive functions [38] in rabbits [80], ewes [81] and humans [82]. Cortisol-Cr, an 

active GC, is an anti-inflammatory agent that acts to modulate the production and action of 

cytokines and prostaglandins required for ovulation, luteolysis, embryo implantation, fetal 

growth and placental development [38, 40]. It is synthesized from cholesterol in the adrenal 

cortex and is locally regulated by 11β-hydroxysteroid dehydrogenases (HSD11Bs) [10]. The 

biological action of GCs is mediated through the activation of intracellular GR receptors (GC-

R). Two isoforms of GC-R, GC-Rα and GC-Rβ, have been identified [83, 84]. Access of GCs to 

GC receptors in target tissues is regulated by two HSD11Bs, bidirectional HSD11B type 1 

(HSD11B1) that mainly converts cortisone to active cortisol (Cr) [85] and HSD11B type 2 

(HSD11B2) that inactivates cortisol to cortisone [86]. Although both HSD11Bs and GC 

receptors are expressed in the bovine corpus luteum (CL) [31, 87] and endometrium [10] 

throughout the estrous cycle and early pregnancy [88], the role of GC in regulating CL function 

is still controversial. 

Our previous in vitro studies have suggested that cortisol suppresses tumor necrosis factor 

α (TNFα)-stimulated prostaglandin F2α (PGF) production in endometrial stromal cells [10] and 

inhibits apoptosis of cultured luteal cells induced by TNFα and interferon-γ (IFNG) [31]. Based 

on the results of in vitro studies, it seems that cortisol plays a role in preventing excessive 

uterine PGF production and protecting the CL against apoptosis in nonpregnant cattle [11, 31]. 

In addition, a previous in vivo study in cattle has shown that repeated administrations of 

exogenous GCs during the luteal phase prolong luteal life span and the length of the estrous 

cycle [89]. Dexamethasone treatment in cattle extended luteal function due to delayed or 

impaired preovulatory follicular development [90]. Moreover, dexamethasone injection 

increased CL size but reduced systemic progesterone (P4) concentrations [91]. However, 

whether and how endogenous Cr may affect bovine CL functions during the estrous cycle and 

early stages of pregnancy in vivo is poorly understood. Metyrapone, an inhibitor of Cr 

biosynthesis, influences peripheral GC metabolism by regulating the reductase and 

dehydrogenase activity of HSD11B1 [92]. Previous studies have indicated that metyrapone not 
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only blocks systemic Cr production, but also decreases the local interconversion of cortisone to 

Cr by directly inhibiting HSD11B in adrenal cells and hepatocytes [93-97]. Furthermore, the 

bovine endometrium [10, 98] and corpus luteum [31] have the capacity to convert cortisone to 

Cr. Thus, metyrapone may be used to reduce the local availability of Cr in the lumen of the 

reproductive tract and in the CL and to examine the effects of reduced levels of Cr on the 

pregnancy rate and CL function in cattle.  

Intravaginal administration is a widespread method of drug administration for 

antimicrobials, labor-inducing agents, prostaglandins and steroids [57, 58]. The vaginal mucosa 

has good absorption potential, and drugs administered via the vaginal route are easily, safely 

and effectively absorbed and distributed throughout the blood vessels of reproductive organs for 

a long period of time [59]. Recently, vaginal drug delivery has gained further interest due to 

investigations showing the existence of a uterine first-pass effect [65]. The above findings 

suggest that drugs administered through the vaginal route are transported to the uterus and 

achieve higher tissue concentrations than if administered orally or via intramuscular injection 

[66]. Thus, in our experiment in heifers, the intravaginal route was used to administer Cr and 

metyrapone (HSD11B1 inhibitor) dissolved in Vaseline gel to study their biological effects in 

this species. 

To determine whether glucocorticoids affect pregnancy rate and corpus luteum function, 

we examined the effects of intravaginal applications of exogenous Cr or reduced endogenous Cr 

by intravaginal applications of HSD11B1 inhibitor (metyrapone) on pregnancy rate and on the 

secretion of P4 during the estrous cycle and early stage of pregnancy in heifers. 

  

MATERIALS AND METHODS 

 

All animal procedures were approved by the Local Animal Care and Use Committee in 

Olsztyn, Poland (Agreement No. 06/2007/N). 

 

Animals and surgical procedures 

A total of 87 healthy Polish Holstein-Friesian heifers were used for experiments. The 

animals were made available for this study by their owners (Experimental Animal Farm of the 

Polish Academy of Sciences in Baranowo, and a private farm in Cieszymowo, Poland). After 

the study was finished, the heifers were returned to the owners as fully productive animals. 

Estrus in the heifers was synchronized using two injections of an analogue of PGF (dinoprost, 5 
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mg, Dinolytic; Upjohn - Pharmacia N.V.S.A., Belgium) with an 11-day interval, as described 

and recommended in our previous study [45]. The development of ovarian follicles, changes in 

the size of the CL and uterine structure during the estrous cycle and early pregnancy were 

monitored daily by a veterinarian via per rectum ultrasonography examination (USG) and 

confirmed by observing the signs of estrus (i.e., vaginal mucus, standing behavior). The onset of 

estrus was taken as Day 0 of the estrous cycle. Only heifers with signs of estrus were chosen for 

the studies. 

  

Determination of cortisol and metyrapone doses 

Thirty-three heifers were used to choose the effective doses of Cr and metyrapone. All 

applications were performed intravaginally on Day 15 of the estrous cycle via a catheter placed 

into  the vagina lumen down to the orificium uteri externum, as described previously [47]. The 

heifers were infused with Vaseline gel (10 ml; control group; n=6), TNFα (n=3), four different 

doses of Cr (Hydrocortisone, Sigma-Aldrich Chemie GmbH, Munich; Germany; No. H4001) 

dissolved in Vaseline gel (0.1 mg, 0.5 mg, 1 mg, 10 mg; Cr group; n=12) followed by an 

intrauterine infusion of 10 ng of TNFα (recombinant human TNFα: rhTNF HF-13; kindly 

donated by Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan) as previously shown [49] or 

four different doses of metyrapone dissolved in Vaseline gel (Metopirone
TM

, HSD11B1 

inhibitor; 2-Methyl-1,2-di-3-pyridyl-1-propanone, Sigma-Aldrich Chemie GmbH, Munich, 

Germany; No. 856525; 1 mg, 10 mg, 100 mg, 500 mg; metyrapone group; n=12). The dose of 

TNFα and days of experiment were based on our previous data [49]. It has been previously 

shown in vivo that infusion of a low dose (10 ng) of TNFα into the uterus on Day 15 of the 

estrous cycle increased luteolytic PGF output and induced luteolysis in cattle. Moreover, as 

shown by in vitro data, cortisol inhibited TNFα-stimulated PGF secretion by cultured 

endometrial cells [10]. Thus, a dose of cortisol, which could be able to inhibit the stimulatory 

effect of 10 ng of TNFα on PGF output in vivo, was tested to determine the effective dose of Cr.  

A polyvinyl catheter was inserted into the jugular vein on Day 14 of the estrous cycle for 

collection of blood samples as described previously [99]. The time of TNFα or metyrapone 

infusion was defined as 0 h. Blood samples were collected at -2, -1, 0, 0.5, 1, 2, 3 and 4 h and 

then at 2-h intervals until 12 h after infusions in the Cr and metyrapone groups. For further 

examination of Cr and metyrapone action during the estrous cycle and early pregnancy in 

heifers, the doses of 10 mg Cr and 500 mg metyrapone were used. Plasma concentrations of P4, 

Cr and 13,14-dihydro,15-keto-prostaglandin F2α (PGFM) in plasma samples were measured. 
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Effects of cortisol and metyrapone applications between Days 15 and 18 of the estrous cycle 

To demonstrate the possible influence of Cr on the circulating concentration of P4 during 

the late luteal phase of the cycle, the first group of heifers (n=18) were infused intravaginally 

once a day with Vaseline gel (10 ml; control group; n=6), Cr dissolved in Vaseline gel (10 mg; 

n=6) or metyrapone dissolved in Vaseline gel (500 mg; n=6) from Day 15 to 18 of the estrous 

cycle, as described for the preliminary experiment. Blood samples were collected from the 

jugular vein on Days 0, 6, 12, 15, 16, 17, 18, 19 and 21. Plasma concentrations of P4 in blood 

samples were measured. 

 

Effects of cortisol and metyrapone applications between Days 15 and 18 after artificial 

insemination 

To demonstrate the possible influence of Cr on P4 secretion during early pregnancy and 

on pregnancy rate, the second group of heifers (n=36) were inseminated with semen from the 

same bull 60 and 72 h after the second PGF injection. From Day 15 to 18 after insemination, 

heifers were infused intravaginally once a day with Vaseline gel (10 ml; control group; n=12), 

Cr dissolved in Vaseline gel (10 mg; n=12) or metyrapone dissolved in Vaseline gel 

(Metopirone
TM

, 500 mg; n=12), as described for the preliminary experiment. Blood samples 

were collected on the following days after insemination: Days 0, 6, 12, 15, 16, 17, 18, 19 and 

21. Pregnancy was confirmed by USG between Days 28-30. Plasma concentrations of P4 in 

blood samples were measured. 

For P4 and PGFM determination, blood samples were collected into sterile 10-ml tubes 

containing 200 μl of stabilizer solution (0.3 M EDTA, 1% acid acetyl salicylic, pH 7.4). All 

tubes were immediately chilled on ice for 10 min and centrifuged at 2000 x g for 10 min at 4C, 

and the obtained plasma was stored at - 30C until further analysis.  

 

Progesterone determination 

The concentrations of P4 in plasma samples were assayed using a direct enzyme 

immunoassay (EIA) according to the method described previously [46]. The P4 standard curve 

ranged from 0.39 ng/ml to 25 ng/ml, and the effective dose for 50% inhibition (ED50) of the 

assay was 2.85 ng/ml. The intra- and interassay coefficients of variation averaged 6.6% and 

8.4%, respectively. 

 

13,14-dihydro,15-keto-prostaglandin F2α (PGFM) determination  
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The concentrations of PGFM in the plasma samples were determined with a direct EIA 

according to the method described previously [46]. The PGFM standard curve ranged from 32.5 

pg/ml to 8000 pg/ml, and the ED50 of the assay was 315 pg/ml. The intra- and interassay 

coefficients of variation were on average 7.6% and 10.4%, respectively. 

 

Cortisol determination  

The concentrations of Cr in the plasma were determined in duplicate after diethyl ether 

extraction by second antibody EIA using horseradish peroxidase enzyme-labelled Cr as a tracer 

(1:80,000 final dilutions) and  Cr antibody (raised in a rabbit against cortisol-3-CMO; Cosmo 

Bio Co., Tokyo, Japan; 1:400,000 final dilutions), as described and characterized recently [34]. 

The standard curve ranged from 0.4 to 400 ng/ml, and the ED50 of the assay was 1.68 ng/ml. The 

intra- and interassay CVs were on average 5.5% and 6.3%, respectively.  

 

Statistical  analysis 

The analyses of P4, Cr and PGFM in plasma samples collected from the jugular vein 

during all experiments were performed using a repeated measures design approach with 

treatments and time of sample collection (hours or days) being fixed effects with all interactions 

included (two-way ANOVA tests followed by the Bonferroni Multiple Comparison Test; 

GraphPAD Prism Version 5.00, GraphPAD Prism Software, San Diego, CA, USA). P<0.05 was 

considered significant. Least adjusted means and standard errors were determined. The total 

amounts of P4 and PGFM released are shown by the area under the curve (relative units; Tables 

2 and 3; means ± SEM) and were analyzed using one-way ANOVA followed by the Bonferroni 

Multiple Comparison Test (GraphPAD Prism) as described previously [47]. The rate of 

pregnancy was analyzed using Chi-square (P<0.05).  

 

RESULTS 

 

Determination of cortisol and metyrapone doses 

Intravaginal application of cortisol on Day 15 of the estrous cycle did not significantly 

affect P4 levels as indicated by the analysis of area under the curve between 0 and 12 h post 

treatment (Table 2, Fig. 7a). However, Cr at a dose of 10 mg blocked the increase in PGFM 

induced by intrauterine infusion of TNFα (10 ng/animal; Table 2, Fig. 7b).  

Intravaginal application of 500 mg of metyrapone on Day 15 of the estrous cycle induced 

an acute increase in circulating P4 levels starting 3 h after application (Table 3, Fig. 8a). The 
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levels of PGFM did not change significantly during the period of 12 h after metyrapone 

treatment (Table 3, Fig. 8b). 

There was no significant effect of intravaginal application of Cr or metyrapone at any 

doses on the Cr level in peripheral blood compared with that found in the control animals (data 

not shown). 

 Based on these results, the most effective doses of Cr (10 mg) and metyrapone (500 mg) 

were chosen for the further studies to investigate the local effect of Cr on the luteal function in 

the estrous cycle and early pregnancy. 

 

Effects of cortisol and metyrapone applications between Days 15 and 18 of the estrous cycle on 

progesterone concentrations  

Plasma concentrations of P4 were lower in Cr-treated heifers than in the control heifers 

(only gel application) on Days 17 and 18 of the estrous cycle. However, the levels of circulating 

P4 did not decrease to less than 2 ng/ml until Day 19 (Fig. 9). The interestrus intervals were not 

different between the control and Cr treated groups (P<0.05). Moreover, metyrapone prolonged 

the functional life span of the CL as indicated by significantly greater levels of P4 compared 

with those in the control animals on Days 19 and 21 (P<0.05). In the heifers infused with 500 

mg of metyrapone, spontaneous luteolysis was prevented, and the length of the estrous cycle 

was prolonged compared with that in the control group (over 30 days versus 21.8  0.77 days; 

P<0.05). 

 

Effects of cortisol and metyrapone applications between Days 15 and 18 post-artificial 

insemination on pregnancy rate 

The effects of Cr and metyrapone on P4 secretion in pregnant and nonpregnant heifers is 

shown in Figure 10. Intravaginal application of metyrapone (500 mg, Fig. 10c) prolonged the 

functional life span of the CL in nonpregnant heifers as indicated by the levels of P4 higher than 

3 ng/ml until Day 21. However, in control (Fig. 4a) and Cr (Fig. 4b) heifers, the levels of P4 

were less 1 ng/ml on Day 21. The pregnancy rate of Cr-treated heifers was higher than that of 

control heifers (75% vs. 58%), whereas the pregnancy rate of metyrapone-treated heifers was 

lower (P<0.05) than that of the control group (16.7% vs. 58%; Table 4).  
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Table 2. Effects of intravaginal infusion with Vaseline gel (control, n=3),  a luteolytic dose 

of  TNFα (10 ng/heifer; n=3) or different doses of cortisol (0.1 mg, 0.5 mg, 1 mg, 10 mg, 

each dose n=3) followed by intrauterine infusion with TNFα 2 h later on the total amounts 

of progesterone (P4) and prostaglandin F2α metabolite (PGFM) released during the 

experiment, as measured by hormones concentrations in jugular venous blood of heifers on 

Day 15 of the estrous cycle. 

 

Treatment Progesterone Prostaglandin F2α metabolite 

Saline/vaseline (control) 81.7 ± 4.7 
a
 952 ± 51.8 

a
 

TNFα 67.9 ± 16.5 
a
 2510 ± 248.2 

b
 

Cortisol 0.1 mg + TNFα 76.5 ± 3.2 
 a
 2299 ± 292.0 

b
 

Cortisol 0.5 mg + TNFα 91.1 ± 17.8
  a

 2433 ± 533.7 
b
 

Cortisol 1 mg + TNFα 100.1 ± 10.0 
a
 1554 ± 194.3 

a
 

Cortisol 10 mg + TNFα 104.8 ± 13.0
  a

 1121 ± 68.5 
a
 

 

Values indicate the area under the curve (relative units, means ± SEM). The area under the 

curve was analyzed using P4 and PGFM data between 0 and 12 h after intrauterine infusion 

with a luteolytic dose of TNFα (0 h). 
a – b

 Different superscript letters within a column indicate 

significant differences (P<0.05) among treated groups. 
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Table 3. Effects of intravaginal infusion with Vaseline gel (control, n=3) or different doses 

of metyrapone (1, 10, 100 and 500 mg, each dose n=3) on the total amounts of progesterone 

(P4) and prostaglandin F2α metabolite (PGFM) released during the experiment, as measured 

by hormones concentrations in jugular venous blood of heifers on Day 15 of the estrous 

cycle. 

 

Treatment Progesterone Prostaglandin F2α metabolite 

Saline (control) 61.8 ± 9.7 
a
 1051 ± 162.0 

a
 

Metyrapone 1 mg 86.3 ± 11.2 
ab

 672 ± 47.6
 a
 

Metyrapone 10 mg 72.1 ± 19.4 
ab

 743 ± 59.4
 a
 

Metyrapone 100 mg 90.8 ± 16.4 
b
 775 ± 60.6

 a
 

 Metyrapone 500 mg 112.9 ± 10.8 
c
 722 ± 24.2

 a
 

 

Values indicate the area under the curve (relative units, means ± SEM). The area under the 

curve was analyzed using P4 and PGFM data between 0 and 12 h after intravaginal infusion 

with metyrapone (0 h). 
a-b-c

 Different superscript letters within a column indicate significant 

differences (P<0.05) among treated groups. 
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Table 4: Effects of intravaginal infusion with Vaseline gel (n=12), cortisol (n=12) or 

metyrapone (n=12) between Days 15 and 18 post artificial insemination on pregnancy rate 

 

Treatment 
Number of 

pregnant heifers 

Number of 

nonpregnant heifers 

Pregnancy rate 

(%) 

Vaseline (control) 7 5 58 

Cortisol 9 3 75 

Metyrapone 2 10 16 
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Fig. 7. Concentrations of progesterone (P4, Fig. a) and prostaglandin F2α metabolite (PGFM, 

Fig.b) in blood plasma from the jugular vein in heifers after intravaginal infusion with 

Vaseline gel (control; n=3),  TNFα at luteolytic dose (TNFα, 10 ng/heifer; n=3) or cortisol 

at doses of 0.1 mg, 0.5 mg, 1 mg and 10 mg (each dose n=3) dissolved in Vaseline gel 

followed by an intrauterine infusion of TNFα at a luteolytic dose  2 h later (n=12) on Day 

15 of the estrous cycle. Different superscript letters indicate significant differences (P<0.05) 

among treated groups. 
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Fig. 8. Concentrations of progesterone (P4, Fig. a) and prostaglandin F2α metabolite (PGFM, 

Fig.b) in blood plasma from the jugular vein in heifers after intravaginal application with 

Vaseline gel (control; n=3) or metyrapone at doses of 1 mg, 10 mg, 100 mg and 500 mg 

dissolved in Vaseline gel (MetopironeTM, HSD11B1 inhibitor; each dose n=3) on Day 15 

of the estrous cycle. Different superscript letters indicate significant differences (P<0.05) 

among treated groups. 
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Fig. 9. Changes in plasma concentrations of progesterone (P4) in heifers after intravaginal 

application with Vaseline gel (control; n=6), cortisol (10 mg; n=6) or metyrapone 

(MetopironeTM, HSD11B1 inhibitor; 500 mg; n=6) dissolved in 10 ml of Vaseline gel. 

Intravaginal Vaseline gel or Vaseline gel with cortisol or metyrapone was applied daily 

from Day 15 to Day 18 of the estrous cycle. Different superscript letters indicate significant 

differences (P<0.05) among treated groups. 
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Fig. 10. Change in plasma concentrations of progesterone (P4) in pregnant and nonpregnant 

heifers. Heifers were inseminated on Day 0 of the estrous cycle. Vaseline gel (control; n=12, 

Fig. 10a), cortisol (10 mg; n=12, Fig. 10b) or metyrapone (MetopironeTM, HSD11B1 

inhibitor; 500 mg; n=12, Fig. 10c) dissolved in 10 ml of Vaseline gel was intravaginally 

applied once a day from Day 15 to Day 18 after insemination. Different superscript letters 

indicate significant differences (P<0.05) between pregnant and nonpregnant heifers. 
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DISCUSSION 

 

The results of the present study demonstrated that intravaginal application of exogenous 

cortisol from Day 15 to 18 post insemination increased the pregnancy rate, whereas inhibition of 

local cortisol biosynthesis by intravaginal application of metyrapone decreased the pregnancy 

rate in heifers. The same treatment with cortisol during the estrous cycle (in noninseminated 

heifers) decreased P4 between Days 17 and 18, but did not affect the time of complete luteolysis. 

On the other hand, treatment with metyrapone prolonged the life span of the CL, and luteolysis 

did not occur until Day 30 post ovulation. The above findings suggest that cortisol differently 

modulates the life span of the CL depending on physiological status of heifers (pregnant vs. 

nonpregnant). 

We have previously shown that cortisol inhibits basal PGF production in nonpregnant 

bovine endometrial stromal cells, whereas it does not affect PGF production in epithelial cells in 

vitro [10]. This in vitro study suggests that cortisol could mainly act as an antiluteolytic factor 

suppressing PGF production in the bovine endometrium. To examine whether cortisol 

modulates CL function in vivo, heifers were treated with cortisol around the time of the cycle 

when luteolysis normally begins (Days 15-18 of the estrous cycle). In the present study, the fact 

that cortisol did not affect the interestrus interval in cycling heifers but significantly increased 

the pregnancy rate in inseminated heifers suggests that depending on the type of endometrial 

cells (stromal and epithelial) and physiological status (pregnant versus nonpregnant), cortisol 

has different roles in regulating CL function. Our previous in vitro studies demonstrated that 

cortisol suppresses PGF production in the endometrium [10] and suppresses apoptosis of luteal 

cells acting as a survival factor for bovine luteal cells [31] in cattle. Thus, cortisol may act to 

prevent luteolysis by decreasing luteolytic PGF production and decreasing luteal cell death in 

cattle.  

In ruminants, inhibition of the luteolytic mechanism to maintain the secretion of P4 is 

essential for the establishment of pregnancy. Interferon-tau (IFNT) has been identified as an 

embryonic signal responsible for the maternal recognition of pregnancy in ruminants [100]. 

During maternal recognition of pregnancy, the conceptus synthesizes and secretes IFNT with 

maximal production on Days 14-16 [101, 102]. It has been shown that the level of cortisol is 

locally regulated by IFNT in the ovine [55] and bovine [88] endometrium during pregnancy. 

Therefore, the different effects of exogenous cortisol or the inhibitor of cortisol biosynthesis in 

pregnant versus nonpregnant heifers observed in the present study may be due to the action of 

IFNT that is locally present at high concentrations in the uterine lumen of pregnant heifers but 
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not in nonpregnant heifers. IFNT acts locally within the uterus to inhibit PGF secretion [103], 

and IFNT inhibits PGF production but stimulates PGE2 production by the uterus during early 

pregnancy [104, 105]. PGF is a luteolytic factor [106], whereas PGE2 acts as a luteotrophic 

factor by stimulating P4 production [107-109]. In addition, poor embryo development is 

associated with low IFNT production, failed inhibition of luteolysis and embryo loss [110, 111]. 

These findings suggest that embryonic loss may occur because the embryos are unable to inhibit 

endometrial PGF secretion. In the present study, intravaginal application of exogenous cortisol 

from Days 15 to 18 post insemination increased the pregnancy rate and reduced TNFα-

stimulated PGFM levels, whereas the inhibition of local cortisol biosynthesis by intravaginal 

application of metyrapone decreased the pregnancy rate in heifers. These results agree with 

those of Boomsma et al. (2007),  who reported an increase in pregnancy rate as a result of GC 

administration [112]. The above results suggest that cortisol plays an important role in 

maintaining CL function by directly inhibiting uterine PGF secretion to support embryo 

implantation and early embryonic development.  

In the present study, intravaginal applications of cortisol reduced P4 production compared 

with those of control heifers between Days 17 and 18 of the estrous cycle; however, the length 

of the cycle did not change compared with the control group. In contrast, reduced endogenous 

cortisol production by metyrapone application extended the length of the estrous cycle and 

increased P4 production. Glucocorticoids decreased the plasma P4 concentration in cattle [90, 

113, 114]. Cortisol has the capacity to suppress luteal P4 secretion indirectly by inhibiting basal 

and luteinizing hormone-releasing hormone-induced release of luteinizing hormone from bovine 

pituitary cells [115]. At the end of the estrous cycle, cortisol can be involved in the luteolytic 

cascade by modulating uterine PGF secretion and its action on the CL. PGF released from the 

endometrium, especially the intercaruncular region of the surface epithelium of the uterus [116], 

in a pulsatile manner causes regression of the bovine CL [19, 77].  Thus, for the initiation of 

bovine luteal regression, the pulsatile character of PGF is much more important and plays a 

mandatory role rather than its absolute levels [19, 77]. Furthermore, cortisol has been suggested 

to act in reducing the high levels of uterine PGF and to be one of the factors responsible for the 

generation of PGF pulses in vivo in cattle [44]. Cortisol is well-known as a local 

regulator/modulator of PG secretion [10]. Therefore, it can be suggested that cortisol is one of 

the most important components of the intrauterine regulatory system responsible for the 

autonomous, episodic PGF output during luteolysis in cattle. Blockade of the endogenous 

cortisol production by metyrapone application may disturb the pulsatile PGF output from the 

bovine uterus, consequently inhibiting luteolysis and prolonging the life span of the bovine CL. 
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However, the effects and mechanisms of cortisol action on the autonomous, episodic PGF 

output and/or on the frequency of PGF pulses need to be determined in the future.  

In conclusion, cortisol, depending on the physiological status of the heifers (pregnant vs. 

nonpregnant), modulates CL function by influencing P4 secretion. Cortisol may have a positive 

influence on CL function during early pregnancy, leading to support embryo implantation and 

resulting in higher rates of pregnancy in heifers. 
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SUMMARY 

 

To determine whether glucocorticoids affect the function of the bovine corpus luteum 

(CL) during the estrous cycle and early pregnancy, we examined the effects of exogenous 

cortisol or reduced endogenous cortisol on the secretion of progesterone (P4) and on pregnancy 

rate. In preliminary experiments, doses of cortisol and metyrapone (an inhibitor of cortisol 

synthesis) were established (n=33). Cortisol in effective doses of 10 mg blocked tumor necrosis 

factor-induced prostaglandin F2 secretion as measured by its metabolite (PGFM) 

concentrations in the blood. Metyrapone in effective doses of 500 mg increased the P4 

concentration. Thus, both reagents were then intravaginally applied in the chosen doses daily 

from Day 15 to 18 after estrus (Day 0) in noninseminated heifers (n=18) or after artificial 

insemination (n=36). Pregnancy was confirmed by transrectal ultrasonography between Days 

28-30 after insemination. Plasma concentrations of P4 were lower in cortisol-treated heifers 

than in control heifers on Days 17 and 18 of the estrous cycle (P<0.05). However, the interestrus 

intervals were not different between control and cortisol-treated animals (P>0.05). Moreover, 

metyrapone increased P4 and prolonged the CL lifespan in comparison to control animals 

(P<0.05). Interestingly, in inseminated heifers, cortisol increased the pregnancy rate (75%) 

compared with control animals (58%), whereas metyrapone reduced the pregnancy rate to 

16.7% (P<0.05). The overall results suggest that cortisol, depending on the physiological status 

of heifers (pregnant vs. nonpregnant), modulates CL function by influencing P4 secretion. 

Cortisol may have a positive influence on CL function during early pregnancy, leading to 

support of embryo implantation and resulting in higher rates of pregnancy in heifers. 
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GENERAL CONCLUSION 

 

The present study determined the roles of PGF and cortisol in the regulation of 

bovine uterine and luteal functions in vivo. The experiment in chapter 1 demonstrated 

that the uterus rather than the ovary increases PGF production in response to PGF 

injection by showing that injection of a PGF analogue induced more than a twofold 

increase in the levels of PGF in uterine venous (UV) plasma between 0.25 and 1 h after 

injection, but it did not affect the levels of PGF in ovarian venous (OV) plasma. The 

series of experiments in chapter 2 demonstrated that the bovine reproductive tract 

(uterus and/or vagina) has the capacity to convert cortisone to cortisone and that cortisol 

may act to reduce the excessive uterine PGF secretion in non-pregnant cows in vivo. 

The series of experiments in chapter 3 demonstrated that depending on physiological 

status (pregnant vs. nonpregnant), cortisol modulates bovine CL function by influencing 

P4 secretion. Thus, cortisol may have a positive influence on CL function during early 

pregnancy, which would promote embryo implantation and thus result in higher rates of 

pregnancy in heifers. The overall results of the present study suggest that PGF and 

cortisol play the roles in regulating bovine uterine and ovarian functions. 
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