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Abstract

This thesis proposes the Cyclic Vector Multiplication Algorithm (CVMA) for Gauss period Nor-
mal Basis (GNB). It is an efficient multiplication algorithm in extension field which is flexible
for the restriction and scalability of the extension field parameters required by next generation
asymmetric—key cryptosystems. Additionally, this thesis also proposes Redundantly Represented
Basis (RRB) and More Miscellaneously Mized Bases (MMMB) in order to accelerate the compu-
tations of several symmetric-key cryptosystems such as Advanced Encryption Standard (AES).

Recently, pairing—based cryptosystems and their applications have attracted much attentions
as next generation asymmetric-key cryptosystems. In order to accelerate the computations of
these cryptosystems, not only pairing computations but also arithmetic operations, especially
multiplications, in the extension field need to be improved. On the other hand, the cryptosys-
tems often restrict the parameters of the extension field F,m, namely the characteristic p and
the extension degree m. Thus, the cryptosystems require an efficient multiplication algorithm
which fast performs multiplications in the extension field and is flexible for the above parameters.
Several types of CVMAs have been proposed for these demands, and they adopt special classes
of GNBs. GNB and its special classes are characterized with a certain positive integer h in ad-
dition to p and m. The parameter h needs to satisfy some conditions, and there infinitely exists
such h for each pair of p and m; however, such a practical h is limited because the conventional
CVMASs become more inefficient as h is larger. In some cases, GNB has the smaller h for p and
m than its special classes. Thus, in order to utilize the practical A in more situations, this thesis
improves CVMA for GNB. Then, this CVMA acquires the higher flexibility for the parameters
of the extension field than the conventional ones. Additionally, in order to demonstrate the
flexibility of the improved CVMA this thesis also proposes an important theorem to derive the
existence probability of GNB for any h. According to this theorem, it is theoretically shown that
the improved CVMA has the high flexibility.

In the field of symmetric—key cryptosystems, a lot of improvements and optimizations have
been reported for the hardware implementation of AES cipher and its similarities. In order to
accelerate SubBytes and InvSubBytes of AES which are the most complex procedures, many of
these implementations often utilize inversions in the isomorphic towering field (composite field)
F((22)2)2 or F(24)2, instead of those in the AES original Fys. This thesis focuses on F(34)2 which
provides higher-speed inversions than F((;2)2)2, and proposes RRB technique which accelerates
the inversions. Within the author’s knowledge, the best conventional implementations perform
an inversion in IF(24)2 at 47anp + 107%or. On the other hand, the implementation with RRB
technique achieves to perform an inversion in IF(24)2 at 4TanxDp + 7Txor. The adoption of IE‘(24)2
also requires the acceleration of multiplications between the constant (8 x 8)-bit matrix and an
8-bit vector (an element in IF(54)2). Because this matrix is derived from a basis conversion matrix
between the Fos and Fy2, in order to perform the above multiplication faster, an efficient basis
conversion matrix must be prepared. Thus, this thesis also proposes MMMB technique which
facilitates to select an efficient basis conversion matrix by a computation trick of multiplications
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in F(g4y2 inside MixColumns and InvMixColumns of AES. Within the author’s knowledge, the
best conventional implementations perform an automorphism at 37Txor. On the other hand,
the implementation with MMB technique achieves to perform an automorphism at 27xor- By
adopting RRB and MMMB, both of the encryption and decryption procedures of AES can be
performed at 4Tanp + 13TX0OR.
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S

KT, IR O IR 5 DRI IERIB DT A= 2K &, [T DRK D DL
D/XT A—ZITKRET DILRMEIS, K0 FHRICKHE TE DIERIETOREEE LT, U REHIE
FIELIE (Gauss period Normal Basis: GNB) A H L72fEER~27 FARE T LT Y XA (Cyclic
Vector Multiplication Algorithm: CVMA) ZH&ZR L, % OFRikMEEFmIICHRAET 2. £z,
Advanced Encryption Standard (AES) Z 1% U® & 5 %IFrEERE 5 OB 2 HERFELE LD &
b T 572012, JUEERHIEE (Redundantly Represented Basis: RRB) 35 X OVEMER & ZL K
(More Miscellaneously Mixed Bases: MMMB) %% 5.

A, WHRIERIFRgERE 5 e LT, X7 U U IS HARNEREZED TN D, 2
DS ANOMBL Z @l b § 2 FB L LT, BRI TORNERE, & ICRROmEIIIHRIC
A ThHD. —hHT, ZORFHATIE, EREKFm DT X —2 Th HFH p I L OHERKE
m X L CRERFNZRTIEERH L. DI, bOREOREHELELZREE L, N oOpB XL
Om Tk U TERERICKHE TE A RBEENPME L S Dd. ZOERE M- TILRIRTORRIEL L
T, CVMA BERINTWS. ZO CVMA ZEHT2720I121%, IERE A Y 22 EHIEE T
BT DMEND DN, TOEMRKEILZ GNB O—# Thsd. ZNOOIEREEKIE, Hkp &Ik
RKEEEm LISMT, p & m D OEREMT ENDEREE L Z0E LT 50, FIAERTIE, Z0hiX
ZHEND p & m ORUTK L TERIZFET 2. LarL, CVMA TiX h MERT 5 & Empy7a
HEE T 2R 720, FEMICh ORE SIWZIFEERBFETD. D22, pEmiZi->THRY 9
DEND WX - TE, HEmIZEWT CVMA PNEHMC 22 5mbELDH. £ 2 TABTI,
kD CVMA 725, GNB %l L7z CVMA ~BRBAE1TH. ZOHRICE - T, Kv/h&7kh
ZFRHTE L0122 %. 61T, CVMA OFKRMZFFET 272012, h 2L O GNB OFFEHE
REGHT D ODEHRERETSH. ZOTHNS, HEmEEB LIS, p & mick LTk
B L7z CVMA BEEREOE N DO TH D Z L &2 HRITRT

— 5T, XIPEE S DS TIE, AES B L UOENUCERIT 55 XD — N0 = 7 F24E0E
DEEANATOI TS, ZhbDEEDL X, AES WO AL « 18750 Tl b RH 22 JLBR ¢
& % SubBytes 3 LT InvSubBytes & mid b 272012, Ak AES TERH I TWD X 9 7efk
KIEFys TOWTHFEIZRED Y, ZORBRBRIERIE (K THD F((22)2)2 % F(24)2 To
TEPEZE L CW5. K#H LTI, F((22)2)2 X0 b WiTER N EE F(24)2 WZEHL, F(24)2 S
DU T CE 5 RRB 2K 5. ZOMKE, Foup COUTAEE, HEIMBIEY
DEEAFIIIE TlE ATanD + 10Tx0or TSI N D L T A%, ATanDp + TIxor TEHTH. 72721,
TanD BEONTxor ¥ AND BL O XOR 77— FOBERMZER L TWD. £/2, Ein kol
Floay2 TOWTRIREZ AT 256, WratHaTk THEL S D (8x8)-bit DEATHI & 8-bit ~
7 MVEDORFEERELT O L bEETH D, ZOETIHNL Fos 235 Faaye ~DOILEIZHATSI
PHEMINDZD, K0 EHIC ERROREEIT O 2OIE, RO BRWEREHATY 2 HF 7
HMLENDD. I TAMILTIE, AES WOLELTH % MixColumns 35 X O InvMixColumns ©
FITSNDHERETORFELZTRT DL LT, BROR Fos 205 Fgaye ~DIEELAHATS
& DWEHATHIOM A RINATEEICT 5 MMMB #4287 5. TOREE, 17518~ 7 M ROR
Ha, ZEENPHMDHIRY OBEFE TIX 3TXOR, TiRftshd &2 A%, 2TX0OR THEHATH., O
RRB & MMMB #7325 Z LIZL > T, AES Ok - 504 & $12 4Tanp + 13Tx0R
TEITTED LIRS,
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Notations

p

p

m
Fpm
Fim
E(Fpm)
Moy, Sy Amy, Dy
m | nand m{n
(m, n: positive integers)

ged(m,n)
(m, n: positive integers)

Hw(t)

a characteristic of prime field (namely, a prime number)

a prime field with a characteristic p

an extension degree (generally, a positive number larger than 1)
an m—th extension field over F,

the multiplicative group in Fym

an elliptic curve additive group over Fym

the calculation costs of a multiplication, a squaring, an addition

or a subtraction), and a doubling in F,m, respectivel
g P P y

They mean that m does and does not divide n.

the great common divisor for positive integers m and n

the Hamming weight of a positive integer ¢
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Chapter 1

Introduction

In the modern society which utilizes Information and Communication Technology (ICT), more
information security incidents have been reported as computer and network systems have become
more complex. Above all, there is no end to the numbers of identity thefts and data falsifications
although this thesis avoids to refer to the concrete incidents. The author concludes that one of the
causes is the incompatibility between the CIA triad (Confidentiality, Integrity and Availability
[1]) and the usability for their systems. In order to overcome the incompatibility, recently, as next
generation asymmetric—key cryptosystems and their applications, ID-based encryption |2, 3] and
functional encryption |4] have been contrived to provide the confidentiality, and group signature
[5] has been proposed to provide the integrity.

On the other hand, in recent years, the damages caused by the above incidents become
much larger since the amount of information becomes huge due to the increasing network traffic
and external storage capacity. Thus, the high—performance cryptosytems are imperative to
continuously achieve the practical uses of them. Especially, it is very important to accelerate
symmetric—key cryptosytems such as Triple Data Encryption Standard (TDES) |6] and Advanced
Encryption Standard (AES) [7] because the contributions of them are much important for the
confidentiality.

Severals of both asymmetric—key cryptosystems and symmetric—key cryptosystems are based
on arithmetic operations in finite field (Galois field) such as prime field and extension field as
illustrated in Fig. 1.1. The purpose of this thesis is to propose high—performance arithmetic
operations in extension field. Note that the author considers that the properties required for the
arithmetic operations differ between the above introduced asymmetric-key and symmetric—key
cryptosystems.  This thesis contributes for each cryptosystems. In order to make a certain
next generation asymmetric—key cryptosystems more scalable, this thesis proposes the Cyclic
Vector Multiplication Algorithm (CVMA) for Gauss period Normal Basis (GNB). It is an efficient
multiplication algorithm in extension field which is flexible for the restriction and scalability of
the extension field parameters required by next generation asymmetric—key cryptosystems. On
the other hand, in order to accelerate the computations of several symmetric—key cryptosystems
such as Advanced Encryption Standard (AES), this thesis also proposes Redundantly Represented
Basis (RRB) and More Miscellaneously Mized Bases (MMMB).

1.1 Contribution of Asymmetric—key Cryptosystems

Recently, as next generation asymmetric-key cryptosystems, several pairing-based cryptosys-
tems have been proposed such as ID-based encryption [2, 3], group signature [5] and functional
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Figure 1.1: The research layers of cryptographies

encryption |4]. In order to accelerate these cryptosystems, not only pairing algorithms but also
arithmetic operations, especially multiplications and Frobenius mapping in extension field, need
to be improved [§].

As a widely—used extension field which has efficient arithmetic operations, Bailey et al. have
proposed Optimal Extension Field (OEF) [9]. It is constructed by the polynomial basis whose
modular polynomial is an irreducible binomial. This polynomial basis is sometimes called Opti-
mal Polynomial Basis (OPB). In the case of OEF, some efficient multiplication algorithms can
be applied such as schoolbook multiplication, Karatsuba multiplication [10, 11], and Toom—Cook
multiplication [12, 13, 14|. As described at the beginning, OEF is widely—adopted because it
can be appropriately chosen among several multiplication algorithms according to the situations.
However, OEF Fj,m is available only when the following conditions are satisfied.

1) Every prime factor of m divides p — 1.
2) 4| p—1 when 4 |m.

As reported by Kato et al. [15], this restriction often causes a critical mismatch for pairs of
characteristic p and extension degree m. Thus, it can be hardly said that OEF is highly—flexible.

On the other hand, as the other efficient extension field, Nogami et al. have introduced
type-I All One Polynomial field (AOPF) [16]. It is constructed by a certain normal basis,
namely type-I Optimal Normal Basis (ONB) [17], which is the set of zeros of an #rreducible
All One Polynomial (AOP). Thus, different from OEF constructed by polynomial basis, AOPF
does not need any arithmetic operations for Frobenius mapping. As a multiplication algorithm
applicable for AOPF, Nogami et al. proposed Cyclic Vector Multiplication Algorithm (CVMA)
[16], which efficiently performs a multiplication because it is similar to Karatsuba multiplication.
Compared to Karatsuba multiplication technique, CVMA is more algorithmically—systematic.
Recently, Granger et al. [18] and later Baldwin et al. [19] have reported that CVMA technique
is also available for an integer multiplication with multi—precision followed by a reduction modulo
a special class of prime number, namely Minimal Redundancy Cyclotomic Prime (MRCP). A few
years after the publication of the original CVMA technique, for type-II ONB [17|, Nogami et al.
also expanded it without the performance degradation [20]. Since then, in order to avoid name
collisions, the extension fields constructed by type-I and type-II ONBs have been respectively
called type-I and type-II AOPFs, and the corresponding CVMAs have been respectively prefixed
with “type-I” and “type—II".

In the cases of utilizing type-I and type—II ONBs, certain restrictions are imposed such that
m + 1 and 2m + 1 respectively need to be prime numbers, for example. In order to overcome
this inconvenience and keep the performance of CVMA technique, Kato et al. have introduced
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type—I eXtend normal basis (type I-X NB) [21] and type-II eXtended NB (type II-X NB) [15]
which are respectively based on type-I and tyep—II ONBs. Accordingly, CVMA technique was
also expanded, namely type [-X and II-X CVMAs |21, 15]. Then, these CVMASs can support
every pair of p and m such that 4p t m(p — 1). Type I-X and II-X NBs are special classes of
Gauss period Normal Bases (GNBs) [22]. For type I-X and II-X NBs compared to GNBs, there
exist some inefficient cases as introduced below. GNB is generally characterized with not only
p and m but also a certain positive integer parameter h. Thus, this thesis especially calls it
type—(h, m) GNB in Fpm, where h needs to satisfy the following conditions.

1) »=hm+ 1 is a prime number not equal to p,

2) ged(hm/e,m) =1, where e is the multiplicative order of p modulo 7.

With the above notations, type I-X NB is, for example, classified to type—(h,m) GNB such that
e = hm. For type—(h,m) GNB and its special classes, it is well-known that there exist such
infinite positive integers h’s, and one can be appropriately chosen; however, from the viewpoint
of the computational cost of CVMAs, it is preferred to be small |21, 15]. Thus, the minimal
one hpin should be adopted among such positive integers h’s in order to prepare type—(hmin, m)
GNB in Fpm.

1.2 Contribution of Symmetric—key Cryptosystems

Since NIST published Advanced Encryption Standard (AES), namely a special class of Rijndael
[7], many hardware implementations of AES algorithm have been reported [26, 27, 28, 29, 30, 31,
32]. This thesis also proposes approaches for more efficient hardware implementations, where
the “efficient” is, in this thesis, meant with as primarily “high—speed”, and secondly “compact”.

In the encryption procedure of AES algorithm, the four steps such as SubBytes, ShiftRows,
MixColumns and AddRoundKey [23] are iterated in sequence. On the other hand, in the de-
cryption procedure of AES algorithm, 4 steps such as InvSubBytes, InvShiftRows, InvMixColumns,
AddRoundKey [23] are iterated in sequence. For software implementations, SubBytes and In-
vSubBytes are often implemented with the lookup—table [7]. On the other hand, for hardware
implementations, SubBytes and InvSubBytes are often implemented with some arithmetic opera-
tion circuits in octic binary extension field Fys. In SubBytes and InvSubBytes, an inversion in Fos
is carried out, and it plays an important role to prevent linear cryptanalysis [24]. Additionally, it
is the most complex among the arithmetic operations. On the other hand, in the case of hardware
implementations, not only SubBytes and InvSubBytes but also MixColumns and InvMixColumns
should be efficient. In MixColumns and InvMixColumns, some multiplications in Fys are carried
out. Thus, this thesis first considers to implement efficient arithmetic operation circuits in Fos
by using only some logic gates such as AND, XOR, and XNOR gates.

In the case of the original AES algorithm [7], an element in Fos is represented by the polyno-
mial basis, whose modular polynomial is the octic irreducible polynomial t8+ t44 ¢34+ ¢+ 1 over
Fy. Therefore, originally, SubBytes and InvSubBytes implementations require inversion circuits
in the Fys. However, by adopting inversion circuits in towering fields (composite fields |25])
isomorphic to the Fqs, some researchers have been provided faster and more compact SubBytes
and InvSubBytes circuits. At the beginning, Rudra et al. have shown such implementation with
a certain F(p4)2 as the isomorphic towering field [26]. On the other hand, Satoh and Morioka et
al. have shown that with a certain F(;2)2y2 [27, 28]. After those, some implementations with the
other F(g1y2 and [F((2)2)2 have been reported [29, 30, 31, 32]. Within the author’s knowledge,
the implementations with F(1y2 [26, 32] can provide faster inversion circuits than those with
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F(22)2)2 [27, 28, 29, 30, 31]. Thus, this thesis focuses on [F(94y2, and proposes Redundantly Repre-
sented Basis (RRB) which can provide faster inversion circuits in Fp4)2 than the bases adopted
by [26, 32]. Then, this thesis also considers multiplication circuits in the F(1)2 with RRB. By
adopting RRB, an inversion in IF(24)2 can be carried out in 4TANp + 7Tx0R, Where Tanp and
Txor respectively denote the critical path delays of AND and XOR gates.

In the case that arithmetic operations in towering field isomorphic to the Fos are adopted for
the encryption and decryption procedures of AES algorithm, not only arithmetic operations in
an isomorphic towering field but also basis conversion from the Fqs to the isomorphic towering
field should be efficient. When many kinds of basis conversion matrices can not be prepared, it is
quite difficult to select some efficient conversion matrices. In order to prepare more kinds of basis
conversion matrices, Nogami et al. have proposed Mized Bases (MB) technique [31]; however,
when using RRB, MB is not enough to provide efficient matrices. Thus, this thesis proposes
More Miscellaneously Mized Bases (MMMB), and then shows how to find efficient conversion
matrices.

1.3 Outline

This thesis is organized as follows:

Chap. 2 briefly reviews group and finite field theories.

Chap. 3 focuses on two remaining problems: 1) The minimal Ay, of type I-X and II-X
NBs sometimes become larger than that of type—(h, m) GNB, and then this inconvenience causes
some inefficient implementations, for example, as shown in [33]. 2) CVMA technique has not
been expanded for general GNBs yet. First, this chapter expands CVMA technique for type—
(h,m) GNBs. As the result, this expansion will improve some inefficient situations because it is
possible that hpin becomes smaller by this expansion. After that, in order to theoretically obtain
the tendency of the computational complexity of CVMA with respect to extension degrees, this
chapter proposes an important theorem such that the existence probability of type—(h, m) GNB
in Fpm and the expected value of hyin can be explicitly obtained. Then, this chapter demonstrates
the efficiency difference for hpi, between type I-X and II-X CVMAs and the CVMA expanded
for type—(h, m) GNBs.

Chap. 4 holds the following proposals: 1) to make arithmetic operations in F(1)2 more
efficient, and 2) to find more efficient basis conversion matrices. As described above, the former
proposal is achieved by RRB, and the latter proposal is achieved by MMMB. By utilizing RRB
and MMMB, this chapter theoretically shows that the encryption and decryption circuits of AES
can be provided by the critical path delay 47Tanp + 137%0OR.

Chap. 5 concludes this thesis.



Chapter 2

Fundamentals

This chapter briefly reviews group and field theories.

2.1 Group

Group is an algebraic system defined as follows.

Definition 1 (Group) A group (G, o) is a nonempty set with a binary operation o that satisfies
the following group azioms:

G1 : (Closure) For"a,”b € G, the result of aob is also in G.

G2 : (Associativity) (aob)oc=ao(boc), a,bceG.

G3 : (Unity) For"a € G, there exists an element e € G such that aoe = eoa = a,
where e is called unity (unit element).

G4 : (Inverse Element) For Ya € G, there exists an element x € G such that
aox =xo0a=e, where x is called inverse element of a.

Definition 2 (Commutative Group)

AGS5 : (Commutativity) A group G is said to be commutative (or abelian), if
aob=boa for a,bcG.

For example, the algebraic system (Z, +) is an infinite commutative group, where Z is the integer
set and + means the ordinary addition for integers. For a finite group, its order is defined as
follows.

Definition 3 (Order of Group) The order |G| is the number of elements in finite group G.

Let us consider a example of finite group. An algebraic system (Z,,={0,1,2,3,...,n —1},+)
is not a group because it does not satisfy the group axioms. Therefore, in order to construct a
group from S, it is necessary to modify the addition. We will define a new sum as

a+b=c (modn), a,bé€Z,, (2.1)

where the notation “c (mod n)” means that c is assigned to a remainder on division by n when
a+b=c¢Z, Therefore, ¢ certainly belongs to Z, and then (Z,,+) forms a group.

There is a convenient way of presenting a finite group. A table displaying the group operation
is referred to as a Cayley table. For example, the group Z4 is presented as follows.
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Example 1 The Cayley table for the group Z4 is:

+10 1 2 3
0(0 1 2 3
111 2 3 0
212 3 0 1
313 0 1 2

In what follows, we will use the notation of ordinary addition such that a + a = 2a and
a+ a+ a = 3a (in multiplicative notation, these are denoted by a?,a%).

Cyclic Group

A group G is said to be cyclic if there is an element g € G such that for any a € G there is some
integer j with a = ¢’/. Such an element g is called a generator of the cyclic group.

From the definition, we can see that any elements in cyclic group are generated with iterative
operations of generator g. Fig. 2.1 shows it schematically.

Figure 2.1: Cyclic group

In general, for an element a € G, the least positive integer m such that a” = e is called order of
a, where e is the unity in G.

Isomorphism

Let us consider a mapping 1 from a set A to a set B as
Yprac A—beB, b=1(a). (2.2)

When it satisfies each of the following, v is called a surjection, an injection or a bijection.

Surjection : For Yb € B, when there exists a € A such that b = 1(a).
Injection : For a; # as € A, when ¢(a1) # ¢ (a2) € B.
Bijection : 1 is surjection and injection. In other words, it is one—to—one mapping.
When a mapping ¢ : (A, a) — (B, ) satisfies the following relation, it is called homomor-

phism.

Ylaraaz) = P(ar) Bp(az) = b1 Bba, (ar,az € A, b1 =(a1), by = ¢¥(az) € B). (2.3)

If v is both bijection, it is called isomorphism, then (A, «) and (B, 3) are said to be isomorphic.
Additionally, a homomorphism from a group to itself is called an endomorphism, and if it is both
bijection then it is called automorphism.



Kernel
For a homomorphism % : (A, a) — (B, (3), the following Ker(1)) is called a kernel of 1.
Ker(¢)) ={a € A | ¢¥(a) =en}, (e :the unity in(B,S)) (2.4)

Cartesian Product Set

For two sets A and B, the following set A x B is called Cartesian product set.
A xB={(a,b) |a€ A, be B}. (2.5)
Note that (a,b) = (a’,b') only when a =a/, b=V

2.2 Field

Field is an algebraic system defined as follows.
Definition 4 (Field) A field (F,+,-) has two binary operations denoted by + and -, such that:

F1 : (Additive Group) F is a commutative group with respect to +.

F2 : (Multiplicative Group) F*is a group with respect to -, where F*is the set
that consists of every element distinct from the unity (zero element) with respect
to +.

F3 : (Distributive law) For all a,b,c € F we have a - (b+c¢) =a-b+a-c and
(b+c)-a=b-a+c-a.

In general, the elements 0 and 1 represent the unity regarding to the operation + and regarding
to the operation -, respectively.

Definition 5 (Order of Field) The order is the number of elements in F. If the order of F
1s finite, F is called finite field.

Definition 6 (Characteristic of Field) The least positive number n such that n-a =0 for
every a € F is called characteristic.

This paper treats only finite fields. Finite fields have the following property, which is used often
in cryptographic area.

Theorem 1 For every finite field F, the multiplicative group F*is cyclic.

For example, ElGamal encryption [34] can be defined over multiplicative group of F. Its security
depends on the difficulty of a certain problem in F related to computing discrete logarithms.

2.2.1 Prime Field

A subset K of a field F that is itself a field under the operations of F will be called a subfield of
F. In this case, F is called an extension (field) of K. If K # F, we say that K is a proper subfield
of F. Then, prime field is defined as follows.

Definition 7 (Prime Field) A field containing no proper subfield is called prime field.
Moreover, the following theorem is given about finite field.
Theorem 2 FEwvery finite field has a prime field as a subfield.

Therefore, finite fields are classified into two types, which are prime field and its extension
field. Prime field IF,, has a prime number p as the order and characteristic.
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Arithmetic Operations in Prime Field

In the same way as Eq. (2.1), we can define fundamental operations of I, = {0,1,2--- ,p — 1}
by using the remainder of an integer as follows.

a+b=c (mod p), a—b=a+(-b)=c (mod p), (2.6a)

a-b=c (modp), a/b=a-b' =c¢ (mod p), a,b e, (2.6b)
We can obtain b~! easily by using Fermat’s Little Theorem as follows.
Theorem 3 (Fermat’s Little Theorem) For a non—zero element a € F),, we have

a? =1 (mod p). (2.7)

On the other hand, using Lehmer’s technique and the technique based on binary greatest common
divisor (BGCD) , the inversion can be also carried out efficiently.
2.2.2 [Extension Field

The order of extension field Fym is p™. Arithmetic operations in F,m are realized by using
polynomials. Every element in F,= is expressed as a polynomial that have m elements in [,
as coefficients. Then, arithmetic operations in F,= are carried out with ordinary addition,
subtraction and multiplication for polynomial, and modular polynomial reduction by using a
certain irreducible polynomial.

Definition 8 (Irreducibility) A polynomial f(x) is said to be irreducible over F, if there does
not exit, except f(x) itself, polynomials of degree more than or equal to 1 those divide f(x).

Fp'm

Iy

Figure 2.2: Sketch of an m-th extension field Fym

Addition, Subtraction and Multiplication in Extension Field

As described above, every element in F,» is expressed as a polynomial. We denote elements A
and B in Fym by
A=aqay+aw+ aw?® + -+ amow™ L,

B = by +bjw + bow? + - + by _qw™ L (2.8)
where w is a root of a monic irreducible polynomial of degree m
m
fl@)=> " fia' = fo+ fiz+ f22® + -+ fnaz™ " + 2™ over B, (2.9)

=0



in short, f(w) = 0. In this case, w is a proper element! in F,m and then F), is extended as a
m~dimensional vector space over I, by a following basis

1w,w? - W™ (2.10)

Therefore, any elements in = is expressed as a linear combination of {1,w,w?, -, wm 1L,
Then, (F,m,+) forms a commutative group under addition (and subtraction) as shown in Fig.
2.3 (and Fig. 2.4) because the basis {1,w,w?, -+ ,w™ '} is linearly independent when f(x) is
irreducible.
A= ag + ajw + asw? + - + ™1
+) B = bo + biw + bow? + -+ + b_qw™ !
A+ B = (a0+bo) + (a1+b1)w + (CLQ -+ bz)w2 —+ - 4 (am,1 —+ bmfl)wm_l

Figure 2.3: Addition in extension field

A= ag + aw + a2w2 + .- 4 am_lwm71
-) B= bo + biw + bow? 4 -+ + by 1™
A—B= (ao—bo) + (a1—bl)w + (CLQ — bg)w2 + -+ (am—l — bm_l)wm_l

Figure 2.4: Subtraction in extension field

On the other hand, ]Fp*m is not closed under ordinary multiplication for polynomials as shown
in Fig. 2.5.

A=ag+ arw + aw? + - + @™t
) B = by + biw + bow? + -+ 4 by g™
A . B = (aobo) + (aobl + albo)w e + (am—lbm—l)w2m_2

Figure 2.5: Multiplication in extension field with school book method

In order to make Fjm closed under multiplication, we need modular polynomial reduction
with a root w of f(z). w holds the following relation,

W = —fo— frw— f2w2 — fm_lwmil. (2.11)

By applying Eq. (2.11) to power of w repeatedly, we can reduce the degree from 2m — 2 to
m — 1. In other words, we can express a product of A and B with linear combination of the basis
{Lw,w?, -+, w™ 1} as follows,

A-B= c¢y+cw+cow?+ - +cpo1w™ !t mod  f(w). (2.12)

Then, a multiplication in F,m is carried out with an ordinary multiplication for polynomial and
modular polynomial reduction as described above.

Theorem 4 Let f(x) be an irreducible polynomial of degree m over Fy. Then there ezists an
extension field Fym over Ty, with a root of f(x) as a basis generator.

'In this paper, we call an element that belongs to Fpm but not to its proper subfield a proper element in Fym.



Basis in Extension Field

There are many bases to express an element in F,m, and each basis has a different effect on
operations in F,m. For example, the basis {1,w,w?, - ,w™ !} as previously described is called
polynomial basis and efficient for multiplication. On the other hand, when the following conju-
gates of a generator w are linearly independent,

{w,wp,wPQ, e ,wp7n71}. (2.13)

their set is called normal basis, and efficient for Frobenius mapping :

A— AP, A cFpm. (2.14)
In general, using a basis {wo, - ,wm—1}, an arbitrary element A in F,m is represented as
A=apwo+aiwi + -+ Qp_1Wm—_1. (2.15)

Every basis consists of m linearly independent elements in [Fjm.

Inversion in Extension Field

In the same way as prime field F,,, an element in extension field F,~ has the following property.

Theorem 5 For a non—zero element A in Fpm, we have equality as
2 1 mt p—1
AP (A AP AP APl = <H A’”) =1. (2.16)
=0

1_[?;61 AP' is the product of conjugates of A with respect to IF,,. This production is called norm.
For this norm, we can easily obtain the following theorem by Eq. (2.16).

Theorem 6 The norm of A with respect to F), becomes a non-zero element in IF),.

As an inversion algorithm in extension field [Fpm efficiently by using this property, Itoh—Tsujii
inversion algorithm (ITA) [35] shown in Alg. 1 have been proposed.

Algorithm 1: ITA in Fym

Input: X € Fjm, s=m—1.

Output: Z = X"' = (X7 XP"") / (XXP...XP"),
1Y «— XP, =1

2 for |logy(s)| >i>1do Z « Z-2ZV, j« 2j.

3if sfi|l=1then Z — Z-YP j— j+1.

arv— 2 -X.

5 7« Z-x7 L.

x (= H?if)l XP") in Step 4 of Alg. 1 becomes a non-zero element that belongs to F, because
it is the norm of X with respect to F,. Therefore, in order to obtain = in Step 4 of Fig. 1, we
just have to calculate one of the vector coefficients with respect to IF,, of Z - X € F,m when F, is
constructed by a polynomial basis or type—(k, m) Gauss period normal basis (GNB) described
below. Additionally, the calculation amount of 27! is I; because x € Fp.
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Chapter 3

Multiplications Flexible for Scalable
Asymmetric—key Cryptosystems

3.1 Fundamentals of Gauss Period Normal Basis (GINB)

In this paper, the set which contains a normal basis, the extension field constructed by the
normal basis, and a certain efficient multiplication algorithm in the extension field is considered
as a series, and this section briefly reviews several kinds of series. The contents of the series
introduced in this section are described in Table 3.1.

Table 3.1: The notations of normal bases, extension fields, and efficient multiplication algorithms

Series Basis Extension field Multlpl.l cation
algorithm
type—1 type-I ONB [17] type-I AOPF [16] type-I CVMA [16]
series (type—(1,m) GNB) (type—(1,m) AOPF) (type—(1,m) CVMA)
type-II type—II ONB [17] type-1I AOPF [20] type-I1 CVMA [20]
series (type—(2,m) GNB) (type—(2,m) AOPF) (type—(2,m) CVMA)
tysiiigx type -'X NB [21] | type I-X AOPF [21] | type I-X CVMA [21]
type IT-X
series type II-X NB [15] type II-X AOPF [15] | type II-X CVMA [15]
type—(h, m) B type—(h, m) AOPF type—(h,m) CVMA
series type-(h,m) GNB [22] (called in this thesis) | (proposed in this thesis)

3.1.1

Mullin et al. have proposed type-I Optimal Normal Basis (ONB) [17] as a normal basis efficient
for extension field multiplication. Type-1 ONB exists when the following condition is satisfied.

Type-1 Series

Condition 1 (the existence of type-I ONB)
1) r=m+1 is a prime number not equal to p.

2) The order of p in F, is m.

Then, the following multiplicative group is obtained.

{p):0=i<m}, )=,

11



where ((t)) denotes “¢ (mod r)” for an integer ¢t and the prime number » = m + 1. Here, let 3
be a primitive r—th root of unity in F,m. In other words, 3 is a zero of the following all one
polynomial (AOP) over I,

_1 r—1
f(t) = —Ztl (32)

where ®¢ denotes the s—th cyclotomic polynomial for a positive integer s. Type-I ONB is defined
with the above ( as follows.

m—1
(A =t Y =B E R (3.3)

Actually, as shown in Eq. (3.3), type-I ONB forms not only normal basis but also pseudo
polynomial basis. Since this ONB is prepared by a zero [ of the AOP given by Eq. (3.2),
Nogami et al. have especially called the extension field constructed by this ONB type-1 All One
Polynomial Field (AOPF) [16].

For this AOPF, Karatsuba multiplication [10, 11] can be applied since type-I ONB is also
pseudo polynomial basis as described above. On the other hand, Nogami et al. have proposed
type-1 Cyclic Vector Multiplication Algorithm (CVMA) [16] as the other efficient multiplication
algorithm in type-I AOPF. This algorithm is described in Alg. 2.

Algorithm 2: Type I CVMA [16]
Input: X = Ez =0 ZL’l’}/ , Y = Zz 0 yi’ypl: TiYi € FP'
Output: Z=X-Y =" LoAb', 2z € F,.

Preparation steps:

1 €[0] — m.

fori=0tom—1do e[<<p’>] —
fort=0tom—2do

L forj:i—l-ltom—ldon[i,j]%e[(pi%-pj%.

Evaluation steps:

B W N

5 for!=0tom—1do v «— xyy.

6 Uy «— 0.

7 fori=0tom—2do

8 L for j =i+ 1tom—1do vy )« vy + (70 — 7)Y — yj)-
9 forl=0tom—1do z «— v, — v;.

3.1.2 Type-II Series

Mullin et al. have also proposed type-II ONB [17] as another normal basis efficient for extension
field multiplication. Type-II ONB exists when Cond. 2.1 and either 2.2a or 2.2b are satisfied.

Condition 2 (the existence of type II ONB)
1) r=2m+1 is a prime number not equal to p.
2a) The order of p in F, is 2m.
2b) The order of p in Fy is m, and m is odd.

12



Then, the following multiplicative group is obtained.
({{£p"): 0<i<m}, - )=F;, (3.4)

where ((t)) denotes “t (mod r)” for an integer ¢ and the prime number r = 2m + 1. Here, let 3
be a primitive r—th root of unity in Fje, where e is the order of p in F7. In other words, 3 is a
certain zero of the AOP in Eq. (3.2). Type-II ONB is defined with the above [ as follows.
m—1 —
{7a7p7"'77p }a 725"’_6 IEFPM' (35)
Type—II ONB is not polynomial basis differently from type-I ONB.
In the same manner as type-I series, Nogami et al. have especially called the extension field

constructed by this ONB type-II AOPF, and have also proposed type-II CVMA [20]. This
algorithm is described in Alg. 3.

Algorithm 3: Type —IT CVMA [20]
Input: X = 37 e, Y = ZZ o y?', iy €F
Output: Z=X Y =3", Lo,z SR

Preparation steps:

1 for z =0tom—1do 6[<<p’>>] — 1, 6[<<—pi>>} — 1.
2 fori=0tom—2do

s | forj=i+1tom—1don[i,j,0] —e[(v'+p/)], nlij,1] — e[(p' —p7)].

Evaluation steps:

4 forl=0tom—1do v« xy.

5 for:=0tom—2do

6 forj=i+1tom—1do

7 L | (@ = 2) (Wi = ¥5), Ugligo) < Vgligiol F U Vglia) < Uyliga) + -

8 forl=0tom—1do z «— —v.

3.1.3 Type-I eXtended (Type I-X) Series

Type-I and type-II ONBs are very efficient normal bases for extension field multiplication;
however, these ONBs do not exist for an arbitrary pair of characteristic p and extension degree
m. In order to overcome this inconvenience, Kato et al. have proposed type I-X normal basis
(NB) [21]. It is prepared with a positive integer h which satisfies the following condition.

Condition 3 (the h of type I-X NB)

1) r=hm+1 is a prime number not equal to p.

2) The order of p in F, is hm.

Then, the following multiplicative group is obtained.

<{<<p”’“’">>: 0§z‘<m,ogk<h},.>:1€;ﬁ, (3.6)

where ((t)) denotes “t (mod r)” for an integer ¢ and the prime number r = hm + 1. Here, let
be a primitive m-th root of unity in Fynm. In other words, 3 is a zero of the AOP in Eq. (3.2).

13



Type I-X NB is defined with the above h and 3 as follows.

h—1
m—1 km
{777p7 e 77p }7 Y= E ﬂp € Fpm' (37)
k=0

hm—1

Actually, the set {3,6?7,...,0P } on which type I-X NB is based is type-I ONB in Fm.
Thus, as the name suggests, type—I eXtended NB is obtained by extending type-1 ONB. Because
this NB exists whenever 8p { m(p — 1) [21], it is available in F,m for every pair of characteristic
p and extension degree m when p > m.

In the same manner as type-I and type-II series, Kato et al. have especially called the
extension field constructed by this NB type [-X AOPF, and have also proposed type [-X CVMA
[21]. This algorithm is described in Alg. 4.

Algorithm 4: Type I-X CVMA [21]
Input: X = Y7 e, Y = ZZ o v, iy €T,
Output: Z=X-Y =", Lo,z GIFp.

Preparation steps:

1 Prepare a positive integer h which satisfies Cond. 3.

2 €[0] «— m.

3 fori=0tom—1do

4 L for k=0 to h— 1 do e[{(p"TFm)] — i.

5 for:=0tom—2do

6 forj=i+1tom—1do

7 L L for k=0 to h—ldon[i,j,k]<—e[<<pi+p7+km>>].

Evaluation steps:

8 forl=0tom—1do v «— xyy;.

9 v, «— 0.

10 for:=0tom—2do

11 for j=i+1tom—1do

12 L w— (zi —25)(yi — yj)-

13 for k=0 to h— 1 do vy jr < Vyijk T U

14 if h is odd then
15 w < hvy,.
16 forl=0tom—1do z; — w —v,.

17 else for [ =0tom —1do z « —v;.

3.1.4 Type-II eXtended (Type II-X) Series

In the same way as type [-X NB, Kato et al. have also proposed type II-X NB [15] which is
obtained by extending type-1I ONB. It is prepared with an even positive integer h which satisfies
Cond. 4.1 and either 4.2a or 4.2b, where h’ denotes h/2.

Condition 4 (the h (= 21') of type II-X NB)

1) r=hm+1 is a prime number not equal to p.

14



2a) The order of p in F, is hm.
2b) The order of p in . is h'm, and m is odd.

Then, the following multiplicative group is obtained.
(N 0<i<m 0<k<i}, ) =T, (3.8)

where ((t)) denotes “¢ (mod r)” for an integer ¢ and a prime number r = hm + 1 = 2h/m + 1.
Here, let 3 be a primitive r—th root of unity in Fje, where e is the order of p in F7. In other
words, ( is a certain zero of the AOP in Eq. (3.2). Type II-X NB is defined with the above
(= h/2) and (8 as follows.

h'—1
m—1

(3" =B+ BT € By (3.9)

k=0

Actually, the set {8+ 875 (B+ 87 HP,.... (B + 5*1)ph/m_l} on which type II-X NB is based is
type-Il ONB in F ... Because this NB exists whenever 8p { m(p — 1) or whenever 4p { m(p—1)
and 2 1 m [15], it is also available in F,m for every pair of characteristic p and extension degree
m when p > m.

In the same manner as the other series, Kato et al. have especially called the extension field
constructed by this NB type II-X AOPF, and have also proposed type II-X CVMA [15]. This
algorithm is described in Alg. 5.

Algorithm 5: Type II-X CVMA [15]
Input: X =Y a?, ¥V = Z oy, @iy € Fy.
Output: Z=X-Y =3", Lain®, zi € Fp.

Preparation steps:
1 Prepare a positive integer h (= 2h’) which satisfies Cond. 4.
2 fori=0tom—1do
3 L for k=0to h' —1do e[<<pi+km>>] — 1, e[<<—pi+km>>] 3.
fori=0tom—2do
forj=i+1tom—1do
L for k=0to i/ —1do

IS~ N NN

| nli, g k] — e[{p° + p Y], nliag kR — e[ (o — pIHmY].

Evaluation steps:

8 for!=0tom—1do v «— x7y.
9 fori=0tom—2do

10 forj=i+1tom—1do
11 L U «— (I‘Z — :L‘J)(yl - yj)-

12 for k =0 to h — 1 do vy jx — vyl jk + U

13 for/=0tom—1do z; «— —uj.
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3.1.5 Type—(h,m) Series

This subsection first introduces Gauss period Normal Basis (GNB) [22]. It is prepared with a
positive integer h which satisfies the following condition.

Condition 5 (the h of GNB)

1) r=hm+1 is a prime number not equal to p.
2) ged (hm/e,m) = 1, where e is the order of p in F,.

Let d be a primitive h—th root of unity in F7, then the following multiplicative group is obtained.
{{(pa ) 0<i<mo<k<n}-)=F;, (3.10)

where ((t)) denotes “t (mod r)” for an integer ¢t and a prime number r = hm + 1. Here, let 3
be a primitive 7—th root of unity in Fje. In other words, 3 is a certain zero of the AOP in Eq.
(3.2). GNB is defined with the above h, d and [ as follows.

h—1
m—1 k
{1,977 ) =) BT €Fpm. (3.11)
k=0

This paper especially calls it type—(h,m) GNB. Since type—(h,m) GNB exists whenever 4p {
m(p — 1) [22], it is also available in Fpm for every pair of characteristic p and extension degree
m when p > m. In the same manner as the other series, this thesis especially calls the extension
field constructed by this GNB type—(h, m) AOPF.

From the viewpoint of type-(h,m) GNB, type-I and type-II ONBs are respectively char-
acterized as type—(h = 1,m) and type—(h = 2, m) GNBs. They are very efficient normal bases;
however, due to the restriction such that A = 1 or 2, they do not exist for an arbitrary pair
of characteristic p and extension degree m. On the other hand, type I-X and II-X are also
special classes of GNBs, in detail, type—(h,m) GNB with d = ((p™)) and type—(h, m) GNB with
d = ((—p™)), respectively. Actually, the areas supported for the parameters p, m and h by the
introduced bases are illustrated in Fig. 3.1. According to Fig. 3.1, there exists type—(h, m)
GNB also in the area where type I-X and type II-X NBs can not support. Unfortunately, the
previously introduced CVMASs are not available in this area.

Figure 3.1: The simplified image of the relations among the normal bases in Table 3.1
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3.2 Cyclic Vector Multiplication Algorithm for GNB

As shown in Table 3.1, efficient extension field multiplication algorithms, namely type-I, type—
I1, type I-X, and type II-X CVMAs, have respectively been proposed for type-I and type-II
ONBs, and type I-X and type II-X NBs. As introduced in Sec. 3.1.5, these bases are special
classes of type-(h, m) GNBs, that is, they has lower applicability for the key parameters p, m
and h than type—(h, m) GNB. Thus, in order to take this applicability higher, the purpose of
this section is to fully expand CVMA for type—(h,m) GNB as focused in Table 3.1 with bold
face letters. Below, ((t)) denotes “t (mod r)” for an integer ¢ and a prime number r = hm + 1.

3.2.1 Deriving CVMA for type—(h,m) GNB

Let X and Y denote elements in Fpm, then they are represented with type—(h, m) GNB shown
in Eq. (3.11) as follows.

m—1 m—1
X = in’ypla Y = Zyﬂpl; Liy, Yi S ]Fp' (312)
=0 =0

Then, a multiplication Z = X - Y is given by Eq. (3.13).

m—1 m—1m—1 m—1
l ! 0 % j
Z=3 " =30 wy = }jxm( P ) =D i) )y (3.13)
=0 =0 j5=0 =0 0<i<j<m

According to Eq. (3.10), since the [ is a zero of the AOP shown in Eq. (3.2), Z?:ol AP in Eq.
(3.13) is obtained as follows.

m—1 , m—1h—1 ) r—1
AP = gt =3 = 1, (3.14)
i=0 i=0 k=0 i=1
On the other hand, 'ypi“’j in Eq. (3.13) is obtained as follows.
h—1h—1 h—1h—1 h—1h—1
AP itp _ Z Z ﬁpld“rp’d’“ Z Z ﬁ(piﬂﬂ'dk‘l)dl — Z Z 5(pi+pjdk)dl_ (3.15)
k=0 [=0 k=0 [=0 k=0 [=0

?;01 B+ dN)d i derived as follows. Note that Case 2 does not occur when  is even because
<<pi +pjdk>> = 0 only when i = j (see Proof 1).

Case 1: When <<pi + p7dk>> # 0 in F,., the following equation is obtained.

Jak ) sy R (Tt | {pi+pdk
Zﬂ”’“’“ Zﬂp v )] ol (ot :Z(ﬁd)p[« >>J:,yp[<< )

=0
(3.16)
where € and 6 denote the following functions.
[P )] =i, o[(p'a)] =k (0<i<m, 0<k<h). (3.17)
Case 2: When <<pi + p’dk>> = 0in F,, according to Eq. (3.14), the following equation is obtained.
h—1 o h—1 m—1 .
Zﬁd @P'+r7d") N1 —h= _h Z AP (3.18)
=0 =0 =0
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Proof 1 (The pair of i and j such that <<pi +pjdk>> =0)
When (p' +p?d*) =0, let 1 = j —i (i < j), then the following relation holds.

1= <<—pldk>> . (3.19)

Case 1: When h is odd and thus m is even, the 2h—th power of Eq. (3.19) becomes

1= <<p2hl>>. (3.20)

Since the order of p in F} is e, there exists a primitive element g in Fy such that

(o) = <<§’”ﬁ/ >> (3.21)

Then, the following equation is obtained.

1= <<p2hl>> - <<g2h&l>> (@ = hm/e). (3.22)

Thus, 1 needs to satisfy hm | 2hal since the order of Fy is hm. According to the equations
a = hm/e and gcd(hm/e,m) = 1, the following equation is obtained.

ged(2hal, hm) = hxged(2al, m) = hxged (21, m). (3.23)
Since 0 <1 < m, the following relation holds only when | =0 and m/2.
ged(2hal, hm) = hm. (3.24)

When I = 0, according to Eq. (3.19), {(—1)) needs to be represented as a certain power of d;
however, it does not because the order h of d in F} is odd. Thus, Eq. (3.20) holds only when
l=i—j=m/2.

Case 2: When h is even and thus m 1is possible to be odd, the h—th power of Eq. (3.19) becomes

1= <<phl>> . (3.25)

Then, in this case, the following equation is obtained.

1= <<phl>> - <<g’"”>> (@ = hm/e). (3.26)

Thus, I needs to satisfy that hm | hal. According to the equations a = hm/e and gcd(hm/e, m) =
1, in this case, the following equation is obtained.

ged(hal, hm) = hxged(al,m) = hxged(l, m). (3.27)

Since 0 <1 < m, the following relation holds only when I = 0.
ged(hal, hm) = hm. (3.28)
Thus, Eq. (3.25) holds when | =1i—j = 0. O
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From Egs. (3.14), (3.15), (3.16), (3.18), Z in Eq. (3.13) is given by Eq. (3.29), where d5 denotes
the unit impulse function as Eq. (3.30), and d5 denotes 1 — ds.

B m—1 g _mfl g - - h—1 - . . pe[<<pi+pjdk>>:|
Z= "z ==Y my’ = D> (wi—x;)(yi—y)) o[<<p +pld >>]7
=0 =0 0<i<g<m k=0

m

WY O (i) (yi—y)) hz_:l% [<<pi+ pjd"”>>} S 4% (when h is odd),
k=0

+ 0<i<j<m 1=0

0 (when h is even).
(3.29)

95(t) =

{ 1 (when s =1), (3.30)

0 (otherwise),

Let € in Eq. (3.17) be redefined as a function which also satisfies as Eq. (3.31), and n denotes
the following function.

el =m, nli,j,kl = 6[<<pi+ pjd’“>>]- (3.31)
Then, z; in Eq. (3.29) is calculated as follows.

_ h—1
Y {hvm —v—xyy (when his odd), v = ZZ(%—%)(%—%‘) Zdl [n[z‘jj, k]]. (3.32)
k=0

—vu —x1y; (when h is even), 0<iciem

Consequently, the CVMA expanded for type—(h, m) GNB in Fpm, namely type—(h,m) CVMA,
is constructed as shown in Alg. 6.

Note that the preparation steps (Step. 1 to 7) in Alg. 6 is performed only once when p and m
are fixed. Thus, the computational cost of type—(h, m) CVMA is explicitly given as follows.

—1)(h+2
m(m 2)( + ) _1+m> A1—|—H1 (Whenhis Odd),

m(m —1)(h+ 2)> A

My (h) = ™D (3.33)

5 (when h is even),

where H,, denotes the calculation cost of a scalar—h multiplication in F,=. This computational
cost is equal to those of type I-X and type II-X CVMAs, and they need more additions in F),
as h becomes larger. Thus, in order to more efficiently perform these CVMAs, h should be as
small as possible, furthermore it is the most desirable that h = 1 or h = 2. Actually, type-I and
type—(h=1,m) CVMASs are not algorithmically equivalent but they have the same computational
cost. In the same, type-II and type-(h=2,m) CVMASs have the same computational cost.

3.2.2 Experimental Result

The author experimented on a few software implementations of type—(h,m) CVMA. As the
characteristic p, this experimentation adopted a 256—bit prime number, which is the same scale
of the implementation of Ate-type pairing [8]. In this case, since multiple precision arithmetic
operations were necessary, the GNU MP (GMP) arithmetic library [37] was utilized. Note that
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Algorithm 6: Type—(h,m) CVMA
Input: X = Zm_l P, Y = Z oo Yy iy € Fp.
Output: Z=X-Y =5>", Lo, zi € IFp.

Preparation steps:
1 Prepare a positive integer h which satisfies Cond. 5,
and a primitive h—th root d of unity in F,.

€[0] «— m.
fori=0tom—1do
L for k=0to h—1do e[<<pidk>>} — 1
fori=0tom—2do

forj=i+1tom—1do
L L for k =0to h—1 do n[i,j, k] — e[<<pi+pjdk>>].

N o w»m

Evaluation steps:

8 for!l=0tom—1do v« x7y;.

9 v, <— 0.

10 fori=0tom—2do

11 forj=i+1tom—1do

12 L w— (zi — x5)(yi — y5)-

13 for k =0 to h— 1 do vy jx < Vylijk T

14 if h is odd then

15 w +— hvy,.
16 for{=0tom—1do z; «— w — .

17 else for [=0tom —1do z «— —v;.

not the so—called Integer Functions whose name prefixes are mpz_ but Low-level Functions whose
name prefixes are mpn_ in the library are adopted in order to achieve high—speed performance.
This experimentation employed both the 32-bit and 64-bit computation environments described
in Table 3.2. Then, the computation time of each arithmetic operation in F, was obtained as
shown in Table 3.3. Note that Montgomery reduction technique [38] was applied to perform
a reduction modulo p for every multiplication in [F,. According to Table 3.3, it is found that
the ratio v = M;/A; in the 32-bit environment is larger than that in the 64-bit environment.
This suggests that, in the 64-bit environment compared to the 32-bit environment, type—(h, m)
CVMA is greater influenced by h since it needs more additions in I, as h becomes larger.

On the other hand, the computation time of a multiplication in Fym with type—(h, m) CVMA
were obtained as shown in Tables 3.4, 3.5, where 2 kinds of times are described for every pair
of m and h. One means the actual measured time in the environment shown in Table 3.3,
and another means the theoretical time obtained by assigning M;, A; and H; in Table 3.3 to
M., (h) in Eq. (3.33). From the experimental results, it is found that a little difference occurs
between the each actual measured time and the corresponding theoretical time; however, the
every difference is less than about 5%, that is, negligibly small.
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Table 3.2: The computational environment

H 32-bit environment ‘ 64-bit environment
CPU Core i3-620 3.06GHz (It has a dual core; however, only 1 core was worked.)
Cache 2-nd: 512 KB x 2, 3-rd: 4.0 MB
Memory 2.0 GB x 4 (in dual-channel configuration)
0OS Ubuntu 10.10 32-bit version ‘ Ubuntu 10.10 64-bit version
Language C
Compiler GCC 4.4.5 32-bit version GCC 4.4.5 64-bit version
Optimization “~03 —m32” compiler option “-03 —m64” compiler option
Library GNU MP 5.0.1 [37]

Table 3.3: The computation time of each arithmetic operation in F,

H 32-bit environment ‘ 64-bit environment H mainly utilized functions

addition mpn_add_n,
(subtraction) Ay = 25 nsec. A1 = 13 nsec. mpn_sub_n

ltiplicati M7 = 199 nsec. My = 71 nsec. mpn_mul_basecaseT7
multiplication (v=DM;/A1 =8.0) | (v=M/A =5.5) mpn_redc_1T

scalar—h Hy = 45 nsec. H, = 27 nsec. mpn_mul_1,
multiplication || (£ = H1/A1 =~ 1.8) | (£ = H1/A; = 2.1) mpn_sub_n

f Actually, these functions are declared in the archive file “libgmp.a”; however, there do not exist the prototype
declarations of the functions in the header file “gmp.h”. Thus, in order to utilize these functions, the author
appropriately edited “gmp.h”.
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Table 3.4: The computation time of a multiplication in Fym (the 32-bit environment) [pusec]

N " 2 3 4 5 6 7 8 9 10 11 12
. 077 | — | 265 | — | 557 | — — — 148 | — | 210
070 | (&) | @52) ] () | 64| ) | & | & |aen | —) | (207
) 0.76 | 156 | — | 414 | 594 | — | 103 | 12.8 | — 192 | —
(0.70) | (1.49) | (—) | (3.99) | (5.68) | (—) | (9.96) | (12.6) | (—) | (18:6) | ()
5 0.81 — | 293 | — |63 | — — — 170 | — | 24.2
(0.79) | (—) | (2.86) | (—) | (6.22) | (—) (—) (—) | (16.8) | (—) | (24.1)
A — 172 | 299 | — — | 890 | — 145 | 181 — —
(—) | (1.64) | (2.89) | (—) (—) | ®&72) | (—) | (144) | 17.7) | (—) (—)
; 087 | — — — | 724 | — 125 | — — — | 276
(0.84) | (—) (—) (—) | 697) | (—) | (123) | (—) (—) (—) | (27.4)
6 085 | 185 | — | 507 | 7.65 | 103 | — — | 206 | 248 | 293
(0.80) | (1.79) | (—) | (4.99) | (7.18) | 0.77) | (—) | (—) | (19.9) | (24.1) | (28.7)
. — — | 349 | — | 822 | — — — | 221 — —
(—) (—) | (3846) | (—) | (7.72) | (—) (—) (—) | 213 | (—) (—)
. 088 | — — | 553 | — — — 190 | — | 282 | 335
(0.85) | (—) (—) | (549) | (—) (—) (—) | (18.0) | (—) | (26.9) | (32.0)
0 095 | — | 379 | — — — 153 | — — — | 350
(0.94) | (—) | (3.76) | (—) (—) (—) | (15.1) | (—) (—) (—) | (34.0)
L0 — | 215 | 38 | — | 907 | 125 | — — | 252 | — —
(—) | (2.09) | 379) | (—) | (8.68) | (11.9) | (—) (—) | (244) | (—) (—)
" 1.01 — — | 944 | — 174 | — — — —
(0.99) | (—) (—) (—) | (922) | (—) | (16.5) | (—) (—) (—) (—)
. — | 226 | — | 661 | 960 | — | 175 | 232 | — — —
(—) | (224) | (—) | (6.49) | (943) | (—) | (17.0) | (21.6) | (—) (—) (—)
s — — | 436 | — | 100 | — — — | 201 — | 423
(—) (—) | (436) | (—) | (9.97) | (—) (—) (—) | (28.1) | (—) | (40.6)
» 102 | 243 | — | 699 | — — 186 | 25.0 | — — —
(1.00) | (2.39) | (—) | (6.99) | (—) (—) | (18.4) | (234) | (—) (—) (—)
5 110 | — | 460 | — — — — — | 316 | — | 463
1.09 | (—) | (4.60) | (—) (—) (—) (—) (—) | (30.3) | (—) | (43.9)
6 — — — — | 109 | 152 | — — — — | 474
(—) (—) (—) (—) | (10.9) | (15.0) | (—) (—) (—) (—) | (45.2)
- — — — — |15 | — | 208 | — — — —
(—) (—) (—) (—) | A15) | (—) | (20.7) | (—) (—) (—) (—)
s 113 | — | 499 | — | 117 | 161 — | 271 | 334 | 419 | —
110 | (—) | (499) | (—) | a7 | 16.1) | (—) | (27.0) | (33.4) | (40.6) | (—)
L — — — — — — — — | 359 | — | 492
(—) (—) (—) (—) (—) (—) (—) (—) | (34.8) | (—) | (50.5)
20 117 | 284 | — | 849 | — — — | 289 | — — | 505
(1.15) | (284) | () | 849 | () | () | () | @88 | () | () | 518

T The time outside each paranthesis () is the actual measured time, and the time inside each paranthesis () is
the theoretical time.
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Table 3.5: The computation time of a multiplication in Fpm (the 64-bit environment) [usec]

N " 2 3 4 5 6 7 8 9 10 11 12
. 029 | — 102 | — | 226 | — — — | 603 | — | 857
(0.27) | (—) | (0.98) | (—) | (2.14) | (—) (—) (—) | (5.78) | (—) | (8.26)

) 029 | 059 | — 170 | 245 | — | 426 | 535 | — | 792 | —
0.27) | (058) | (—) | (1.59) | 2.27) | (—) | 401) | 5.07) | (—) | (7.55) | (—)

5 032 | — 123 | — | 271 — — — | 739 | — 10.4
(0.32) | (—) | (X17) | (—) | (2.56) | (—) (—) (—) | (6.97) | (—) | (10.0)

A — | 069 | 124 | — — | 38 | — | 653 | 777 | — —
(—) | (0.66) | (1.18) | (—) (—) | (363) | (—) | (6.00) | (7.42) | (—) (—)

. 034 | — — — | 300 | — | 568 | — — — 12.1
(0.34) | (—) (—) (—) | (295) | (—) | (5:22) | (—) (—) (—) | (11.7)

6 033 | 077 | — | 221 | 320 | 437 | — — | 893 | 108 | 128
0.32) | (074) | (—) | (211) | 3.05) | @17) | (—) | () | (8:59) | (10.4) | (12.9)

. — — 154 | — | 250 | — — — | 959 | — —
(—) (—) | (1.48) | (—) | (334) | (—) (—) (—) | (931) | (—) (—)

. 035 | — — | 247 | — — — | 813 | — 122 | 14.5
(0.34) | (—) (—) | 237) | (—) (—) (—) | (7.88) | (—) | (11.8) | (14.1)

0 040 | — 169 | — — — | 687 | — — — 15.5
(0.40) | (—) | (1.63) | (—) (—) (—) | (6.68) | (—) (—) (—) | (15.1)

L0 — | 094 | 171 — | 398 | 545 | — — | 112 | — —
(—) | (0.89) | (1.65) | (—) | (3.83) | (5.26) | (—) (—) | (10.9) | (—) (—)

" 042 | — — — | 426 | — | 760 | — — — —
(0.42) | (—) (—) (—) | 412) | (—) | (741) | (—) (—) (—) (—)

. — 1.01 — | 299 | 436 | — | 788 | 997 | — — —
(—) | 097) | (—) | (2.89) | (4.22) | (—) | (7.65) | (9.75) | (—) (—) (—)

'3 — — | 200 | — | 464 | — — — | 130 | — 19.1
(—) (—) | (1.95) | (—) | (451) | (—) (—) (—) | (12.8) | (—) | (18.6)

» 042 | 109 | — | 325 | — — | 860 | 109 | — — —
(0.42 | (1.05) | (—) | (3.15) | (—) (—) | (838) | (10.7) | (—) (—) (—)

s 048 | — | 215 | — — — — | 142 | — | 210
(0.47) | (—) | (2.10) | (—) (—) (—) (—) (—) | (14.0) | (—) | (20.3)

6 — — — — | 536 | 706 | — — — — | 223
(—) (—) (—) (—) | (5.00) | (6.90) | (—) (—) (—) (—) | (21.0)

- — — — — | 543 | — | 974 | — — — —
(—) (—) (—) (—) | 629) | (—) | (959) | (—) (—) (—) (—)

s 049 | — | 232 | — | 550 | 7.61 — 13.0 | 158 | 19.9 | —
047) | (—) | @20) | () | (5.39) | (7.45) | (—) | (12.6) | (15.6) | (19.0) | (—)

i’ — — — — — — — — 166 | — | 254
(—) (—) (—) (—) (—) (—) (—) (—) | (16.3) | (—) | (23.7)

20 051 | 133 | — | 4.01 — — — 137 | — — | 261
(0.50) | (1.28) | (—) | (3.93) | (—) (—) (—) | (135) | (—) (—) | (244)

T The time outside each paranthesis () is the actual measured time, and the time inside each paranthesis () is
the theoretical time.
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3.3 Existence Probability of GNB

This section mainly provides an important theorem to theoretically evaluate the efficiency of
4 77

type—(h, m) CMVA proposed in the previous section. Below, “~” and “~” respectively denote
the theoretical approximation and truncation operators.

3.3.1 Theorem to Derive Existence Probability
The existence probability of type—(h, m) GNB in Fym is given by Theo. 7 [36].

Theorem 7 The Euler’s totient function for a positive integer t is denoted by o(t). It indicates
the number of positive integers less than t which are coprime to t. Let P(h,m) be the possibility
that the parameter h such that Cond. 5.1 is satisfied also satisfies Cond. 5.2, namely the
ezxistence probability of type—(h,m) GNB in Fym. Then, P(h,m) is given by

P(h,m) ~ ¢(m)/m. (3.34)
O

For example, consider when m = 6. In this case, the possible positive integers h’s which
satisfy Cond. 5.1 are obtained as follows.

h=1,2,3,5,6,7,10,11,12,13, ... (3.35)

Among such positive integers h’s, consider the probability that the minimal positive integer
hmin additionally satisfies Cond. 5.2 but the others smaller than hpi, do not. The existence
probability of type—(hmin,m) GNB in Fym is denoted by P(fmin, m), where p is a variable prime
number. For example, in the case that hmin = 3, P(3,6) can be approximately calculated with
Theo. 7 as follows.

P(3,6) = {1 - P(1,6)} x {1 — P(2,6)} x P(3,6) ~ ( - 9"26))2(90?)) ~0.148.  (3.36)

When m =6, the expected value of Ay, can be approximately obtained with Theo. 7 as follows.

1-P(1,6) +2-P(2,6) + 3-P(3,6) + - - -

~ 1(‘P<66)) +2(1—“05),6>) (‘P(GQ) +3(1—‘p<66))2(“)(6®) 4o~ 353, (3.37)

As described above, by utilizing Theo. 7, P(hmin, m) for every pair (hmin,m) and the expected
value of hpiy for every m can be approximately calculated.
Actually, the following two theorems are important for a proof of Theo. 7.

Theorem 8 (Prime Number Theorem (PNT) [39])
For a positive integer t, let w(t) be the number of prime numbers less than t. Then, w(t) is
obtained as follows, where Li(t) denotes the offset logarithmic integral function.

1

(1) ~ Li(t) = /2 O (3.38)

O

24



Theorem 9 (PNT for arithmetic progressions [39])

For a positive integer t, let m, .(t) be the number of prime numbers less than t in the arithmetic
progression with first term ¢ and the common difference n such that ged(c,n) = 1. Then, my, +(t)
s given by

Tn,e(t) ~ Li(t)/¢(n). (3.39)
O

Below, Theo. 7 is theoretically proven with Theos. §, 9.

Proof 2 Suppose that Cond. 5.1 is satisfied, in other words, r(= hm + 1) is a prime number
not equal to p. Let p and d, namely the characteristic and a primitive h—th root of unity in F}.,
be respectively represented as the following powers of primitive elements g1 and go in Fr.

(p) = (™) (O<ar <r=1=hm), (d) = (") (0<ax<r—1=hm), (3.40)

where ((t)) denotes “t (mod r)” for a positive integer t. Consider the following set of the products.

{<<pidk>> 0<i<m, 0<k< h} . (3.41)

Actually, the set in Eq. (3.41) becomes the same of Eq. (3.10) when a1 and az in Eq. (3.40)
satisfy the following relation.
ged (ged(ag, ag), hm) = 1. (3.42)

Thus, this thesis gives Cond. 5.2 as one of the existence conditions of type—(h,m) GNB in Fym
because the smallest a1 and ay which satisfy Eq. (3.40) are respectively given as hm/e and m,
where e denotes the order of p in Fi.

Here, let ag in Eq. (3.40) be fived at the minimal, namely m. Then, in order to guarantee
that type—(h, m) GNB ezists in Fpm, a1 in Eq. (3.40) needs to satisfy the following relation.

ged(ged(ar, m), hm) = ged(aq, ged(m, hm)) = ged(ar, m) = 1. (3.43)
Let a1 be represented by
ai=bm+da} (0<b<h, 0<a) <m), (3.44)
then Eq. (3.43) is reduced with the Euclidean algorithm as follows.
ged(ay,m) = ged(ay,m) = 1, (3.45)

The number of a\’s which satisfy Eq. (3.45) is given by ¢(m). Thus, the number of a1’s which
satisfies Eq. (3.43) is obtained as follows.

ho(m). (3.46)

On the other hand, reconsider a variable prime number p less than a positive integer t, then {(p))
in Eq. (3.40) is again given by

()= (@) =i O<ar<r—1=hm, 1<i<r—1=hm). (3.47)

According to Eq. (3.48), a1 and i correspond one—to—one with each other because the following
relation holds.

{{¢1*): 0<ar<r—1l=hm}={i:1<i<r—1=hm}="F;. (3.48)
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Thus, from Eq. (3.48) and Theos. 8, 9, the ratio of the number of p’s with one of ai’s is
obtained as follows.

i () /m(t) ~ (Li(t)/(r)) /Li(t) ~ 1/(r) = 1/hm. (3.49)

Thus, based on Eqs. (3.46), (3.49), the probability that Eq. (3.45) is satisfied, in other words,
the ezistence probability of type—(h,m) GNB in Fym is given by

P(h,m) ~ (hp(m))/(hm) = ¢(m)/m. (3.50)

g

In the same way, let Pi_x (h, m) and Pi1_x (h, m) respectively denote the existence probabilities
of type I-X and II-X NBs. Then, they are obtained as follows, where h' is h/2.

Pix(hom) ~  o(hm)/(hm), (3.51a)

o(hm)/(hm) + ¢(h'm)/(h'm) (when m is odd),

_ (3.51b)
©(hm)/(hm) (when m is even),

Prr-x(h,m) ~ {

It is obvious that ¢(m)/m is larger than ¢(hm)/(hm) and @(hm)/(hm) + @(h'm)/(h'm). Tt
means that type—(h, m) GNB will help to keep the minimal Ap;, small, compared to type I-X
NB and type II-X NB.

3.3.2 Evaluation with Existence Probabilities

The existence probability of each normal basis can be calculated with Theo. 7. The calculation
result is illustrated in Fig. 3.2, where the size of each h of type [-X, type II-X NBs and type—
(h,m) GNB is not restricted. As shown in Fig. 3.2, only type-I NB and type-I NB can not
support a lot of pairs of characteristic p and m. Thus, if the efficiencies of their CVMAs are not
strictly evaluated, it will be maintained that type I-X, type II-X NBs and type—(h, m) GNB are
quite useful since they are available for most of pairs of p and m. Then, as indicated in Fig. 3.2,
there is no large difference among the existence probabilities of type I-X, type II-X NBs and
type—(h, m) GNB.

However, actually type I-X, type II-X NBs and type—(h,m) GNB have different efficiencies
corresponding to h. Hence, suppose that v and £ respectively denote M;/A; and Hi /A1, then
let us first confirm the relation among the efficiency of type—(h, m) CVMA and the parameters
v, £ and h in each case, namely when h is odd and when h is even.

Case 1: Consider the case that h is odd. Type—(h=1,m) CVMA, one of the most efficient
type—(h, m) CVMAs, has the following computatinal cost.

M, (1) = m(77;+1)M1 N ((771—1)23771—1—2))141 _ (m(w;—kl)y+ (m—l)é3m+2)>A1. (3.52)

The increased amount of the computational cost of type-(h,m) CVMA compared to type-
(h=1,m) CVMA is given by

m(m—1)(h—1)
2

My (h) = My (1) = ( +§)A1. (3.53)
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Thus, the ratio Roqq(h, m) of the increase is obtained as follows

Ajmh_]\4m1 h_1+m111171
Roaa(h,m) = (]\)4 (1) oE mly+3(+z)' (3.54)
m m—1 m

Case 2: Consider the case that h is even. Type-(h=2,m) CVMA, one of the most efficient
type—(h,m) CVMAs, has the following computational cost.

M (2) = MMl + (

5 5 . (3.55)

! 4m(m—1)>A1 _ <m(m+1) . 4m(m—1)>A1‘

When h is even, the increased amount of the computational cost of type—(h, m) CVMA compared
to type—(h=2,m) CVMA is given by

—1 2 -1
My (h) — M (2) = (m(m ), 2mlm )> Ay (3.56)
Thus, the ratio Ryqq(h, m) of the increase is obtained as follows.

Reven(ha m) =

M, (h) — My, (2) h—2
2)

= . 3.57

As described above, through the increased amount for m of the computational cost of type—(h, m)
CVMA compared to type-(h=1,m) or type-(h=2,m) CVMA, it is found that type-(h,m)
CVMA fatally becomes inefficient when h is large. Thus, this thesis recommends the h’s such
that both Roqq(h,m) and Reyen(h, m) are somewhat small as practical parameters. According
to Sec. 3.2.2 (Table 3.3), an experimental result was obtained such that v ~ 8.0 and £ ~ 1.8 in
the 32-bit environment, and another result was obtained such that v ~ 5.5 and £ =~ 2.1 in the
64-bit environment. Then, the existence probability of each normal basis such that Ryqq(h, m)
and Reven(h, m) are less than a certain threshold, namely from 0.1 to 0.5, becomes as Figs. 3.4,
3.5. These tables guarantee that the number of useful type—(h, m) GNBs is larger than that of
type I-X and type II-X NBs. In other words, on the practical side, type—(h,m) CVMA works
faster than type I-X and II-X CVMA. Here, let the existence probabilities in the 32-bit and
64-bit environments be compared, then according to Figs. 3.4, 3.5, it is found that the latters
form a more sharp zigzag shape than the formers. As the cause for this result, it is considered
that type—(h, m) CVMA is greater influenced by h in the 64-bit environment compared to the
32-bit environment as describe in Sec. 3.2.2.

On the other hand, the expected value of Ay, for every m of each normal basis can be also
calculated with Theo. 7. The calculation result is illustrated in Fig. 3.3. According to Fig.
3.3, the expected value of hyi, for each m of type—(h, m) GNB is smaller than those of type I-X
and type I[I-X NBs. Thus, it is said that type—(h,m) CVMA will be averagely faster than type
I-X and type II-X CVMAs. However, the gained speed—up is averagely a few percents.
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Chapter 4

Arithmetic Operations to Provide Fast
Symmetric—key Cryptosystems

4.1 AES Algorithm Applied Basis Conversion

In encryption and decryption procedures of AES algorithm, a plaintext is split into 128-bit
blocks. Every block is described as the following 4 x 4 matrix, whose each element is dealt with
as an element in the Fos.

Ho,o Hoo Ho2 Hogs
Hio Hiy Hio Hi3
Hyo Hoy Hzo Hijg
H3zo H31 Hzo H3j3

(HjJ S ]FQS). (4.1)

The original AES algorithm [7] represents an element in Fys with the polynomial basis {1, o, o

...,a5a"}, where a is a zero of the irreducible polynomial fo(t) = t8+ t*4 124t + 1 over Fs.
Let H denote an element in the Fqs, then this chapter arbitrarily represents H as Table 4.1.

This section introduces the encryption and decryption procedures of AES algorithm applied
basis conversion from the Fys to its isomorphic towering field. Although the thesis fundamentally
follows the approach in [26], some parts of the procedures are improved. In what follows, the
improved parts are clarified.

Table 4.1: Representation styles of an element in the Fqs

Style | Representation (h; € {0,1})
basis in Fys ho 4+ hio + hoa® + - -+ + hga® + hya”
vector [ho h1 hQ s h6 h7]
integer ‘W’ (h = ho + h12 + ho2% + -+ + hg20 + h727)

4.1.1 Encryption Procedure Applied Basis Conversion

0—th round: Only AddRoundKey is carried out. Then, each element of the 4 x 4 matrix is
processed as

Coji = (Hj,l + Ko,j,Z>B (0 <7, 1<), (42)
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where Ky ;; is the j—th row and I-th column element of the 0-th round key (4 x 4 matrix), and
B denotes a basis conversion matrix from the Fys to its isomorphic towering field. Cp;; in Eq.
(4.2) becomes an element in the isomorphic towering field. From there to the last round, each
element of the 4 x 4 matrix is dealt with as an element in the isomorphic towering field.

From 1-st to 2—nd last round: First, SubBytes is carried out. Then, each element of the
4 x 4 matrix is processed as

—1 _
Grji = (CHJO BAB (0<j,1<4), (4.3)

where 7 is the ordinal number of the round, B denotes the inverse matrix of B, and A denotes
the Affine transformation matrix [23]. BAB in Eq. (4.3) can be preliminarily calculated. Addi-
tionally, (C,—1,;,)"" in Eq. (4.3) is the inverse element in the isomorphic towering field, and it
should be efficiently calculated.

Next, ShiftRows, MixColumns, and AddRoundKey are carried out. In order to perform these
steps faster, this thesis applies a new approach different from that in [26]. Actually, each element
of the 4 x 4 matrix can be processed as Eq. (4.4a) or (4.4Db).

Crji = ((Gn<j+1>,<1+j> + Gr,<j+2>,<z+j>) + (Gr,<j+3>,<l+j> + (K + L>B))

+ <(‘2’B) (Gr,j,<l+j> + Gr,<j+1>,<l+j))> (0<4,1<4), (4.4a)

Crji = <(Gm‘,<l+j> + Gr,<j+2>,<l+j>> + (Gr,<j+3>,<l+j> + (Krja + L)B)>

+ ((‘3’3) <Gr,j,<l+j> + Gr,<j+1>,(l+j)>) (0<j,1<4), (4.4b)

where (j) means “j mod 4", K, ;; is the j—th row and [-th column element of the r—th round

key (4 x 4 matrix), and L denotes the Affine transformation vector [23|. In Eq. (4.4), ‘02’B and
‘03'B can be preliminarily calculated, and (X, ;; + L)B can be calculated when the round key
is generated.

Last round: First, SubBytes is carried out. Then, each element of the 4 x 4 matrix is processed
as Eq. (4.3).

Next, ShiftRows and AddRoundKey are carried out. Then, each element of the 4 x 4 matrix
is processed as

Cj1=GyjusyB+ (Krju+L) (0<4,1<4). (4.5)
K, 1+ L in Eq. (4.5) can be calculated when the round key is generated. (jj,l in Eq. (4.5) is
dealt with in the same way as H;;, namely as an element in the Fos. The 4 X 4 matrix which

consists of C;; in Eq. (4.5) forms a 128-bit block of the cipher text. This 128-bit block is the
same of that not applied basis conversion, namely that in the original AES algorithm.

4.1.2 Decryption Procedure Applied Basis Conversion

0—th round: Only AddRoundKey is carried out. Then, each element of the 4 x 4 matrix is
processed as

Crorgi = (Coa+ (Krjy +D))B (05, 1< 4). (4.6)
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K, i1+ L in Eq. (4.6) can be calculated when the round key is generated. C,_1 ;; in Eq. (4.6)
is an element in the isomorphic towering field. From there to the last round, each element of the
4 x 4 matrix is dealt with as an element in the isomorphic towering field.

From 1-st to 2—nd last round: First, InvShiftRows and InvSubBytes are carried out. Then,
each element of the 4 X 4 matrix is processed as

_ —1
Grji = (Cr,j,<l—j>BAB) (0<4,1<4), (4.7)

where A denotes the inverse Affine transformation matrix [23]. BAB in Eq. (4.7) is preliminarily
calculated. Additionally, (C,;;BAB)™! in Eq. (4.7) is the inverse element in the isomorphic
towering field, and it should be efficiently calculated.

Next, AddRoundKey and InvMixColumns are carried out. In order to perform these steps
faster, this thesis applies a new approach different from that in [26]. For example, each element
of the 4 x 4 matrix can be processed as

Cro1j1 = ((‘14’B)Gr,j,l + (‘11’B)Gr,<j+1>,l>

+ <(¢13’)BGT,<J-+2>J + ((zng)Gr,UJrg)J + Jr,j,l)>, (4.8a)

Trgp = (WK + VK Gy + I8 K o)1 + 0K (430 + L)B, (4.8b)

where ‘14'B, ‘11’B, ‘13’B, and ‘9’B can be preliminarily calculated, and .J,. ;; can be calculated
when the round key is generated.

Last round: First, InvShiftRows and InvSubBytes are carried out. Then, each element of the
4 x 4 matrix is processed as Eq. (4.7).
Next, AddRoundKey is carried out. Then, each element of the 4 x 4 matrix is processed as

HjJ = Gl,j,lB + KO,j,l (0 <j,l< 4). (4.9)

4.2 Arithmetic Operations in Towering Field F ;)

In the AES algorithm applied basis conversion from the Fos to [F(94)2, inversions and multiplica-
tions in F(91)2 are required as described in Eqgs. (4.3), (4.4), (4.7) and (4.8). Thus, this section
introduces how to prepare F(y4)2 and its subfield Fy, and efficient arithmetic operations in these
extension fields.

In the case of F(gay2, first construct Fos, then 2-nd tower over the Fya. Most of researchers
[26, 27, 28, 29, 30, 31, 32] use normal bases and polynomial bases to prepare extension fields and
towering fields. This thesis also adopts normal bases to achieve 2-nd towering over Fosa. On the
other hand, this thesis adopts an innovative basis to construct Fo4. This section introduces the
detail of the adopted bases and the arithmetic operations.

4.2.1 Quartic Extension Field [y«

Irreducible polynomial and an innovative basis: There exist 3 kinds of quartic irreducible
polynomials over o as follows.

) =t t+1,  fo(t) = 4341, f3(t) = 413412+t +1. (4.10)
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Normal bases and polynomial bases in Fys can be distinguished from a zero of these poly-
nomials. For a zero B of fi(t), the set {3, 3% 32 ﬁ23} does not form normal bases; however,
{1,3,3?,3%} forms a polynomial basis. Rudra et al. [26] and Joen et al. [32] have shown that
the polynomial basis efficiently carries out arithmetic operations, especially inversion, in Foya.

On the other hand, for a zero 3 of f3(t), the sets {83, 5% ﬂ22, ﬁ23} and {1, 3, 3%, 3%} respectively
form a normal basis and a polynomial basis. The normal basis is especially called type—I optimal
normal basis (ONB) [17], and it carries out arithmetic operations in Fos as efficiently as in Rudra
et al.’s and Jeon et al.’s implementations. However, this thesis adopts an innovative basis instead
of type-I ONB and the polynomial basis. The basis is the union {3, 32 622, ﬁzg, 1} of type-1 ONB
{3,3% %82’} and {1}, and it can provide faster arithmetic operations than the type-I ONB
and the polynomial basis. This thesis especially calls it Redundantly Represented Basis (RRB).
In what follows, the properties of RRB is described.

B which is a zero of f3(t) has the following relations.

f3(80) =B+ B+ B+ +1=0, f3(8)=F+0+ 5+ +1=0, (4.11a)
BB F1=5 =1 (4.11b)

According to Eq. (4.11b), type-1 ONB {3, 32 B2 ﬂ23} is described as follows.

(8.6% 8% 8%} = {8, 32 3% ). (4.12)

Because 3, 32 ﬁ22, 523 are conjugate zeros of f3(t), 4 kinds of polynomial bases are considered
according to Eq. (4.11b) as follows.

{(1,8,82 8%y = {1,8,8%8° 1}, (4.13a)
(LA (B2 (4% = {1.8.8% B, (4.13b)
(1,5 (B2 (7)) = {1, 8% 0° %Y, (4.13¢)
(L5 (B2 (%) = {18, 88" (4.13d)

According to Eqgs. (4.12), (4.13), a basis is obtained by removing some one element from the set

{1,8,5% 3% 3*}. On the other hand, RRB {8, 8% 8%, 8%, 1} ={1, 3, 5% 8, B*} uses all. Thus, the

conversion from RRB to the bases in Eqgs. (4.12), (4.13) can be easily achieved from Eq. (4.11a).
Let D denote an element in Fy4, then D is represented with RRB as Eq. (4.14a).

D = doB + di B>+ dof% + d3> '+ dy (dj €F). (4.14a)
= (do + da)B + (dy + d2) B2+ (da + da) 3%+ (ds + dy) 3% (4.14b)
= (d4 + d2) + (do + do)B + (d1 + d2)3*+ (d3 + do)3>. (4.14c)

As described above, according to Eq. (4.11a), D represented with RRB can be easily converted

to that represented with type-I ONB and the polynomial bases in Eqgs. (4.12), (4.13a) as Egs.
(4.14b), (4.14c¢).

In principle, RRB in Fy1 can not uniquely represent an element in Fqa. For example, D =
B+ (2% is also described as D = 2+ 32+ 1 according to Eq. (4.11a). However, D is uniquely
represented when the Hamming weight of D is restricted to be equal to or less than 2. On
the other hand, the Hamming weight of D can be easily reduced to be equal to or less than 2
according to Eq. (4.11a) when it is more than 2.
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Arithmetic Operations: Let F denote an element in Fqs, then E is represented with RRB
as follows.
2 3
E:€05+61ﬁ2+ 62,32 —|—63ﬁ2 + ey (ej G]FZ). (4.15)

A multiplication M =D X F is given as follows. Note that it is derived from type-I Cyclic Vector
Multiplication Algorithm (CVMA) [16] and Eq. (4.14).

M = moB + my B2+ mafB+ msB®+ my (m; €Fy)
= (d4eo—|—d2€1 +d1€2+d363+d064)ﬂ + (d060+d4€1 +d3€2+d2€3+d1€4)ﬁ2
+ (dzeg+dieq +dsea+does+daes) B+ (dreg+doer +d2€2+d463+d3€4)ﬂ23

+ (d2€0+d361 +dpea+diez+daey) (4.16a)

= (a1,2b1,2+ag.4bo )5 + (a2736273+a1,4bl74)52 + (a0736073+a274bg74)522
+ (ao,lbo,l +a3,4b3,4)523 + (a0,2b072+a173b1,3), (4.16b)
ajip=dj+d, bjy=ej+e (0<j<I<4). (4.16¢)

The critical path delay of the multiplication circuit given by Eq. (4.16b) is 1TAnxD + 27x0r- On
the other hand, that given by Eq. (4.16a) is 1Tanp +3Txor- Thus, in principle, a multiplication
in Foa should be calculated as Eq. (4.16b) (Fig. 4.2).

From here on, suppose that F is a non—zero constant element in Fo4, then this subsection
considers a multiplication by the constant element . When the Hamming weight of E is
restricted to be equal to or less than 2, namely 1 or 2, E can be classified as Table 4.2. According
to Eq. (4.16a), a multiplication N = D x E can be carried out with theoretically no delay when
E belongs to the class (I) of Table 4.2, that is, the Hamming weight of E is 1. On the other
hand, it can be calculated with 17xor when E belongs to the class (II) of Table 4.2, that
is, the Hamming weight of F is 2. For example, multiplications No = D x (1,0,0,0,0) and
N; =D x (1,1,0,0,0) are respectively given from Eq. (4.16a) as follows.

No = dyf8 + do*+ d3 %'+ d1 5%+ do, (4.17a)
Ny = (dg + da)B + (do + di) B2+ (ds + dv) B+ (do + d1) B¥+ (d + ds). (4.17D)

A squaring S = D? can be carried out with theoretically no delay as follows.
S = dsfB + doB2+ d1 5%+ do S+ da. (4.18)

From here on, suppose that D is a non-—zero element in Fos, then an inversion I = D~ ig
given as follows (Fig. 4.3). See Sec. 4.4 about how to derive it.

I =iof+ i+ irf%+i30% +is (ij €F2)
2
= (ag,4+0a04a1,4013)3 + (a34-+0a1 4a2,400,2)3% + (ap 4+az 4a3 401 3) 5>
23 _— —
+ (a1,4+a3,4a0,400,2)3° + (00,402 401 3+ 01,403 400 2), (4.19a)

ajr=(dj +dp) (0<j<l<4), (4.19D)

where d (d € Fg) means “NOT d”.

The critical path delay of each arithmetic operation circuit with RRB is given as Table 4.3.
As shown in Table 4.3, compared to Rudra et al.’s [26] and Jeon et al.’s [32] implementations,
RRB can reduce each critical path delay of a multiplication circuit and a squaring circuit in Foa
by 1TX0R-
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Table 4.2: Classification of non-zero elements in Fos

Class M | (I1)
(1,0,0,0,0) | (1,1,0,0,0), (1,0,1,0,0)
(0,1,0,0,0) | (0,1,1,0,0), (0,1,0,1,0)
Element in 44 T || (0,0,1,0,0) | (0,0,1,1,0), (0,0,1,0,1)
(0,0,0,1,0) | (0,0,0,1,1), (1,0,0,1,0)
(0,0,0,0,1) | (1,0,0,0,1), (0,1,0,0,1)
Hamming weight 1 2

T

(eo, e1,e9,€3,e4) denotes an element E in Eq. (4.15).

Table 4.3: The critical path delay of each arithmetic operation circuit in Faa

Multiplication | Multiplication
Implementation || Multiplication | Squaring | Inversion || by the class (I)|by the class (II)
element element
Rudra al.’s |26] (1,3)t (0,11 B B
Jeon al.’s [32] (2,2)f
With RRB (1,2)f (0,0)7 (0,0)1 (0,1)f

f (j,1) means jTaND + (TXOR-
! The delay when Tanp >Txor is shown. That when Tanp <Txor is given as (1, 3).

4.2.2 2-nd Towering Field F ;1)

Irreducible Polynomial and Normal Basis: In the same way as Sec. 4.2.1, this subsection
first considers the setting of irreducible polynomial. Let a quadr- atic polynomial over Fga be
described as follows.

gty =t +put+v (v € (Fqu — {0})). (4.20)
In order that g(¢) is irreducible over Fau, g(t) needs to satisfy that u?/v & Fy2. Suppose that 7 is
a zero of g(t), then the sets {, 7'} and {1, ~} respectively form a normal basis and a polynomial
basis in F(51)2. Among these bases, this subsection focuses on the normal basis only.

Arithmetic Operations: Let C' denote an element in F(31)2, B denote a basis conversion
matrix from the Fys to its isomorphic towering field Fpa)2, and ‘j’ (0 < j < 256) denote an
element in [Fys described by the integer style of Table 4.1. Then, C and ‘;j'B is represented with
the normal basis {,7'%} as follows.

C =Dy+ Ey'" (D,E € Fy), JB = Qv+ Riv' (Q, Rj € Fau), (4.21)

where D, E, Q;, and R; are represented with RRB in Fos. Then, a multiplication W = C' x ‘j’B
is given as follows. See Sec. 4.4 about how to derive it.

W =Yy + Zy'% (Y, Z € Fyu) = {D5; + Eej}y + {De; + En; 1y, (4.22a)
14 14 14 14 14

0 =Qi(p+—-)+Rj-—, ¢=(Q;+Rj)-—, 1nj =0Q;-—+ R;(n+—), 4.22b

j = Qi M) ]MJ(JJ)MJJM i( M) (4.22b)
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where d;, €;, and 7; can be preliminarily calculated. According to Tables 4.2, 4.3, the critical
path delay of the multiplication circuit given by Eq. (4.22a) is at most 2TxoR even if §;, €;, and
7, are assigned with arbitrary elements.

From here on, suppose that C'is a non-zero element in F(54)2, then with Itoh—Tsujii inversion
Algorithm (ITA) [35], an inversion X =C~t=(C - C16)~1016 is given as follows (Fig. 4.6(a)).
Note that it is derived by generalizing the approach in [30], in detail, by appending a pu?-
multiplication in Fo.

X =Yy + 2y (Y, Z € Fou) = {Ey+ Dy'9}/{DEu* + (D+E)*}, (4.23)

where each multiplication by x? and v can be carried out with theoretically no delay according
to Table 4.3 when the following condition is satisfied.

Condition 6 Both 1% and v belong to the class (I) of Table 4.1.

Thus, this thesis considers that both u? and v are assigned with the class (I) elements. Then,
there exist 20 irreducible polynomials over Fos which satisfies Cond. 6, and the critical path
delay of the inversion circuit in F(24)2 is given as 4TAnp + 7Ixor from Table 4.3 and Fig.
4.6(a). As shown in Table 4.4, the circuit of this work can carry out an inversion in the towering
field isomorphic to the Fys faster than those of the others. On the other hand, the circuit size
is given as Table 4.5 (before downsizing). As shown in Table 4.5, the inversion circuit in Foay2
of this work (before downsizing) uses more XOR gates than that of Jeon et al. Thus, the next
subsection considers how to downsize the inversion circuit in F(gay2.

4.2.3 Theoretical Downsizing the Inversion Circuit in F ;)

Focus on Fig. 4.6(a), then it is seeable that the wire (i) directly connects to the multiplication
circuit (I) and (II), the wire (ii) connects through the g2 multiplication circuit to the multiplica-
tion circuit (I) and directly connects to the multiplication circuit (III), and the wire (iii) directly
connects to the multiplication circuit (IT) and (III). Thus, for the inversion circuit in F1)2, a
part, namely 1-st part shown in Fig. 4.2(a), of each multiplication circuit in Fys4 can be shared
with each other as Fig. 4.6(b). Then, the circuit size can be reduced by 30XOR gates according
to Table 4.5. As a result, the inversion circuit in F(,4)2 of this work (after downsizing) uses less
logic gates than that of Jeon et al.

Table 4.4: The critical path delay of an inversion circuit in towering field

Towering field Implementation H Critical path delay
Satoh and Morioka et al.’s [27, 28| ATaxp + 17TxoR

Mentens’s et al. [29]

F(22)2)2 -
Canright’s [30] 4Tanp + 15Tx0R
Nogami et al.’s |31] 4TAND + 14Tx0R
Rudra et al.’s [26] ATanp + 10T%0R
F(24)2 Jeon et al.’s [32]

This work 4TAnD + TTx0R
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Table 4.5: The number of logic gates for an inversion circuit in Fp1)2

Implementation H Before downsizing ‘ After downsizing
Rudra et al.’s [26] 60AND + 72XOR
Jeon et al.’s [32] 58AND + 67XOR + 20R

This work 42AND + 98XOR + 2XNOR ‘ 42AND + 68XOR + 2XNOR

4.3 Basis Conversion between Fys and F(y1)

This section evaluates the calculation efficiencies given by basis conversion matrices for Eq. (4.3)
(namely, SubBytes), Eq. (4.4) (namely, ShiftRows, MixColumns, and AddRoundKey), Eq. (4.7)
(namely, InvShiftRows and InvSubBytes), and Eq. (4.8) (namely, InvMixColumns and AddRoundKey).

4.3.1 Calculation Efficiency of Eqgs. (4.3) and (4.7)

This subsection considers each multiplication by BAB and BAB in Eqs. (4.3) and (4.7), where
B, B, A, and A respectively denote a basis conversion matrix from the Fos to its isomorphic
towering field F(p4)2, its inverse matrix, Affine transformation matrix, and the inverse Affine
transformation matrix. In the case of adopting RRB described in Sec. 4.2.1, both conversion
matrices BAB and BAB from F(94y2 over the Fys constructed by RRB to the same F(;4)2 are
required. Actually, these conversion matrices are given by a basis conversion matrix B from the
Fas to F(a4)2 over the Fou constructed by type-I ONB of Eq. (4.12) or the polynomial bases of
Eq. (4.13) according to Eq. (4.14).

In order to show an example, suppose an extension field Fy4 constructed by type-I ONB
{8,5% 522, 523}, a field [F(p4)2 which 2-nd towers over the Fya with the normal basis {, 716}, and
a basis conversion matrix B from the Fys to the F(g1)2. Then, B_AB in Eq. (4.3) is represented
as the left-hand equation in Eq. (4.24), and an example of the BAB is given as the right-hand
equation in Eq. (4.24).

[wo,0 w01 o2 - .. UoG UOT | Ty1,1,1,1,1,1,1
0,1,0,1,1,1,1,1
0,0,0,1,0,1,1,0

BAB— | /30 Y81 U2 ot Uso UusT| g 10,0,0,0,0,1,0,0 (4.24)

V0,0 V0,1 V0.2 --- V0,6 V0,7 0,0,1,0/170 11
0:0:0:0:0:0:0:1
0'00'0'0'0'0'0

L V3,0 V3,1 V3,2 *** V36 V37 | _010101010101010_

Let C,_1j; in Eq. (4.3) be corresponding to a non-zero element C'= Dy + Ev'® (D, E € Fy)
which is the input of the inversion circuit of Fig. 4.6(b), and let (C,—1 ;)" " in Eq. (4.3) be
corresponding to X =C ' =Y+ Z~v6 (Y, Z € Fy1) which is the output of the inversion circuit of
Fig. 4.6(b). In the case that the elements Y and Z in Fy1 are represented with RRB as shown in
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Fig. 4.6(b), converting the representations from RRB to type-I ONB is easy from Eq. (4.11a) as

2 3
Y = yoB + 182+ 28 + y3B% + ya

= (Yo + ya)B + (y1 +y2) B>+ (y2 + ya) 87+ (y3 + va) 8%, (4.25a)
7 = 208+ 2184 2287+ 2305+ 2
= (20 + 24) B + (21 + 24) B>+ (22 + 24)5224- (z3 + 24)523. (4.25b)

Then, a multiplication by BAB is given as Eq. (4.26), and the circuits of Eq. (4.26) is drawn
as Fig. 4.1.

Yo + ya 17
Yo + Y1
(Yo +ya) + (20 + 24)

_ (Yo + y1) + (y2 + y4)
XBAB= (Yo +y1) + (20 + 24) (4.26)
(Yo +y1) + (y2 + y3)
(o +uy1) + (y2 + y4)> + (20 + 24)
| (Yo +y1) + (20 + 21) i

E
25

Yo Y192 Y3 Yo Y192 Ya 20 24
(a) 6-th row (b) 7—th row

Figure 4.1: Example images of circuits for Eq. (4.26)

According to the above consideration, a conversion matrix BAB from the F(g4y2 over the [Fos
constructed by RRB to the same F(34)2 over the Fau constructed by RRB (actually, type-1 ONB)
is obtained.

A row of BAB can be represented with the following 2 vectors from Eq. (4.24).
Uj = [0 ujn w2 ujz]” Vi = [vj0 via vz vis]”. (4.27)

Let Hw(U) denote the number of “1” in the vector U, namely the Hamming weight of U. Accord-
ing to Eq. (4.26) and Fig. 4.1, the critical path delay of the circuit multiplying BAB is equal to
or less than 27xor when all vectors U; and V; (0 < j < 8) satisfy that Hw(U;) :Hw(V}) # 3:1,
1:3, and Hw(U;) + Hw(V}) < 4; otherwise, it is 3Txor. The probability when all column vectors
of BAB satisfy that Hw(U;):Hw(V;) # 3:1, 1:3, and Hw(U;) + Hw(V;) < 4 is given as

(8Co 4+ 8C1 + 8Co + 8C3 + 4C4 - 4Co + 4Cs - 4Co + 4Co - 4C4)8/25%% =~ 0.47%. (4.28)

Note that the above probability is not strictly accurate because a basis conversion matrix must
be a regular matrix.
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On the other hand , the above consideration of a multiplication by BAB in Eq. (4.3) is also
available for a multiplication by BAB in Eq. (4.7).

4.3.2 Calculation Efficiency of Eqgs. (4.4) and (4.8)

The calculation circuit of Eq. (4.4a) is shown in Fig. 4.4. Naturally, the calculation circuit of
Eq. (4.4b) can be drawn in the same way as Fig. 4.4. According to Fig. 4.4, the calculation
efficiency of Eq. (4.4) depends on the element ‘2’B or ‘3’'B in F(34y2. In more detail, when a
multiplication by either ‘2’B or ‘3’B can be carried out in 17%or, the critical path delay of the
calculation circuit of Eq. (4.4) is 3TxoRr; otherwise, it is 4TxoR since each multiplication by ‘2'B
and ‘3'B needs at most 27xoRr according to Sec. 4.2.2.

On the other hand, the calculation efficiency of Eq. (4.8) depends on the elements ‘14'B,
‘11'B, ‘13'B, and ‘9’B in F(4)2. This section proposes how to find the B such that the critical
path delay of the calculation circuit of Eq. (4.8) is 4Txor. In order to achieve the above proposal,
according to Eq. (4.22a), both an element among 014, 011, 613, Jd9, €14, €11, €13 and €9 of Eq.
(4.22b), and an element among €14, €11, €13, €9, N14, M1, M3 and 19 of Eq. (4.22b) must be a
zero element or the class (I) element of Table 4.2. For example, when ¢g is a zero element or the
class (I) element, the calculation of Eq. (4.8) can be carried out as Fig. 4.5, where D;; and Ej;
denote elements in Fya which satisfy that G, ;; = D;;y + Ejylfylﬁ, Y, and Z;; denote elements
in Fos which satisfy that C,_q ;; = Y v+ ij1716, and U;; and Vj; denote elements in Fy4 which
satisfy that J,.j; = Uj v + V;y'0.

4.3.3 More Miscellaneously Mixed Basis (MMMB)

This thesis tries for the following goals.

Goal 1: Each multiplication by BAB and BAB in Eqgs. (4.3) and (4.7) is carried out in

Goal 2: The calculation of either Eq. (4.4a) or Eq. (4.4b) is carried out in 37x0R.-

Goal 3: The calculation of Eq. (4.8) is carried out in 47X0oR.

In order to achieve the above goals, it is important that an efficient basis conversion matrix B
among a lot of prepared basis conversion matrices Bs is selectable. As an efficient technique
to prepare more Bs, Nogami et al. have proposed Mized Bases (MB) [31], which is applied
to an implementation with F((32)2y2 in [31]. This subsection first considers to apply MB to an
implementation with [Fp4)2.

For a multiplication in F4)2 in Eq. (4.8), consider the following multiplication instead of
Eq. (4.22a). See Sec. 4.4 about how to derive it.

W =Y 4 Zv (Y, Z € Fy1) = {D5; + Ee;}y+ {D¢ + En; 3y, (4.29a)
5 =(Q+Rj)v, ¢ =Quw+Ri(’+v), ¢=@Qu n=DRju (4.29b)

where 0}, €5, (j, and 7; can be preliminarily calculated. In Eq. (4.29a), the normal basis {7, 716}
is adopted for the input in the same way of Eq. (4.22a). On the other hand, the polynomial
basis {1,v} is adopted for the output instead of the normal basis {v,7'0}. The critical path
delay of this multiplication circuit in F(;4)2 is considered in the same way of that of Eq. (4.22&)
(See Sec. 4.3.2). This multiplication circuit in (42 can provide conversion matrices BABs
from [F(4)2 2-nd towering with not only the normal basis {, 76} but also the polynomial basis
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{1,v}. However, the number of BABs prepared by this technique is not enough to perfectly
achieve the above goals. Thus, this section improves MB.

As described in Sec. 4.3.1, in the case that Fqs is constructed by RRB, the basis conversion
matrices Bs when Fys are constructed by type-I ONB of Eq. (4.12) and the polynomial bases
of Eq. (4.13) are available. In more detail, a combination of two bases among the bases of Egs.
(4.12), (4.13) can be used to represent an element in Fy1)2. Let C' denote an element in F(g1y2.

For example, consider the combination of the normal basis {8, 52 ﬁ22, 623} and the polynomial
basis {1, 3, 3% 3%}, then C is represented with the combination as

C = (dof + d1 %+ do ¥+ d382" )y + (€0 + €18 + €252+ €36%)7'° (dj, e; €F2). (4.30)

By only adopting the combinations as above, 20 x 5 x 5 x 5 x 5 = 12,500 kinds of BABs and
BABs can be respectively prepared. In this thesis, the technique to adopt different bases for the
input and output of arithmetic operation in F(34)2 and to use a combination of different bases in
Fy4 is especially called More Miscellaneously Mixed Bases (MMMB).

Actually, by using MMMB, some BABs and BABs to achieve Goal 1, and some Bs to
achieve Goal 3 can be found; however, no ‘2’Bs and ‘3’Bs to achieve Goal 2 can be found.
Thus, in this case, the calculation delay of Eq. (4.4) becomes 4Txor, not 3Txor. This issue will
be kept as a future work.

By adopting RRB and MMMB as described in this chapter, the critical path delays of the
encryption and decryption procedures of AES algorithm are shown as Tables 4.6, 4.7. Then,
each round of the encryption procedure can be carried out in 47axp + 13Txor. On the other
hand, each round of the decryption procedure also can be carried out in 4TANp + 137X0OR-

Table 4.6: The critical path delay of the encryption procedure of AES

Implementaion SubBytes MixColumns | AddRoundKey
Inversion ‘ Others
; T
Rudra et al.’s [26] (4,10) 1o data
Satoh and Morioka et al.’s [27, 28] || (4,17)T 0,7)1 (0,1)f
Jeon et al.’s |32] (4,10)F | (0,11)1
This work (4,77 | (0,2) (0,4)

T (4,1) means jTanp + ITXOR-

Table 4.7: The critical path delay of the decryption procedure of AES

Implementaion SubBytes MixColumns | AddRoundKey
Inversion ‘ Others
Jeon et al’s [32] | (4,107 | (0,10)'| (0,71 |  (0,1)f
This work (4,7)" | (0,2)T (0,4)

f (7,1) means jTanD + {TXOR-

41



4.4 Derivation of Eqs. (4.19), (4.22), and (4.29)

Eq. (4.19) is derived with ITA [35] as

I=D"'=(D-DY)"'D*=(D-D¥)"'D¥
= {(doB + d1 B2+ oS+ ds %+ da) (dofB + ds B2+ doB* + dr B%+ i) }2
x (d28 + d3B2+ dof%+ d1 5%+ du) (" Eq (4.18), D-D* €Fy)
= {(dydy+dado+dods+dsds+dady ) (B+5%)
+ (dody +dyds+dsda+dady+dado) (824 6%) + (do+dy +da+ds+dy)}

x (dofB + d3fB+ dof* + d1 5%+ da) ("~ Eqs. (4.16a), (4.18))
= (a9,4400,401,401,3)8 + (43,44 a1 402,400,2) 5% + (ap a+as 4az 4a1 3) %
3
+ (a1,4+0a3,4a0.4a0,2) 8% + (a0,4a2,4@7 3 +a1,4a3 4G02) (" Egs. (4.16a)), (4.31a)
ajy=(dj+dp) (0<j<l<4), (4.31D)

On the other hand, because v and v'¢ in Eq. (4.22a) are zeros of g(t) in Eq. (4.20), the
following relations are obtained with the Vieta’s formulas.

v+ =p, 7yl =v=
Thus, Eq. (4.22) is derived as

(v +7'9). (4.32)

RSN

W =C x‘jB = (Dy+ Ev'°)(Qjv + Riv'°)

= (D+ E)(Qj + Rj)(v-7'%) + DQ;(v +7")y + ER; (v + )"

= (D + E)(Q; + Rj)'%-('y +7'%) + DQj-p-y + ER;j-p-y'® (- Eq. (4.32))

= {Dd; + Eej}y + {De; + Enj 'S, (4.33a)
0 = Qj(p+ %) + Rj-%, ¢ =(Qj+Rj)—, nj= Qj'% + R;j(p+ %)- (4.33b)

RSN

On the other hand, Eq. (4.29) is derived in the same way.
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() ——a12(b12)
do(eo)—+9 Fﬁiao 4&1;0,45
+ a2.3(023
) :
dl(el)—/—-C ._’@_1/_.61,1 4(b1,4)
® 1
da(e2) L g‘-_’@_ll_.ag()(bg’())
Y “F—+—a0,1(bo 1
dz(e3)—+ ‘._@—1/—%3 4&23,4;
(+—=+—a0,2(bo 2
. @—1/——&1 3(b1,3)
d4(€4)—/—
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Figure 4.4: The calculation circuit of Eq. (4.4a)
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D<j+1 A D<j+2 1 D a+%
(j+3),1
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Ej G+ B2 (j+3),
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Figure 4.5: An example of the calculation circuit of Eq. (4.8)
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Squaring Inversion 7] . Multiplication 1 . Multiplication

: . : . Y MY

" in Fou " in Foa “in Fos (1-st part) L2 " in Fys (2-nd part)
(b) After downsizing

Figure 4.6: The inversion circuit adopting the normal basis in [F(p1)2
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Chapter 5

Conclusion

This thesis described as follows:

Chap. 2 briefly reviewed group and finite field theories.

Chap. 3 exteneded CVMA technique for type—(h,m) GNB. As the result, this extension
improved some inefficient situations because it is possible that hmin becomes smaller by this
expansion. After that, in order to theoretically obtain the tendency of the computational com-
plexity of CVMA with respect to extension degrees, this chapter proposed an important theorem
such that the existence probability of type—(h,m) GNB in Fp= and the expected value of Amin
can be explicitly obtained. Then, this chapter demonstrated the efficiency difference for hpin
between type I-X and IT-X CVMAs and the CVMA expanded for type-(h, m) GNBs.

Chap. 4 proposed RRB as how to make arithmetic operations in F(1)2 more efficient, and
MMMB as how to find more efficient basis conversion matrices. By utilizing RRB and MMMB,
this chapter theoretically showed that the encryption and decryption circuits of AES can be
provided by the critical path delay 47TaAnp + 137T%X0OR-
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