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Abstract

This thesis proposes the Cyclic Vector Multiplication Algorithm (CVMA) for Gauss period Nor-
mal Basis (GNB). It is an e�cient multiplication algorithm in extension �eld which is �exible
for the restriction and scalability of the extension �eld parameters required by next generation
asymmetric�key cryptosystems. Additionally, this thesis also proposes Redundantly Represented

Basis (RRB) and More Miscellaneously Mixed Bases (MMMB) in order to accelerate the compu-
tations of several symmetric�key cryptosystems such as Advanced Encryption Standard (AES).

Recently, pairing�based cryptosystems and their applications have attracted much attentions
as next generation asymmetric�key cryptosystems. In order to accelerate the computations of
these cryptosystems, not only pairing computations but also arithmetic operations, especially
multiplications, in the extension �eld need to be improved. On the other hand, the cryptosys-
tems often restrict the parameters of the extension �eld Fpm , namely the characteristic p and
the extension degree m. Thus, the cryptosystems require an e�cient multiplication algorithm
which fast performs multiplications in the extension �eld and is �exible for the above parameters.
Several types of CVMAs have been proposed for these demands, and they adopt special classes
of GNBs. GNB and its special classes are characterized with a certain positive integer h in ad-
dition to p and m. The parameter h needs to satisfy some conditions, and there in�nitely exists
such h for each pair of p and m; however, such a practical h is limited because the conventional
CVMAs become more ine�cient as h is larger. In some cases, GNB has the smaller h for p and
m than its special classes. Thus, in order to utilize the practical h in more situations, this thesis
improves CVMA for GNB. Then, this CVMA acquires the higher �exibility for the parameters
of the extension �eld than the conventional ones. Additionally, in order to demonstrate the
�exibility of the improved CVMA, this thesis also proposes an important theorem to derive the
existence probability of GNB for any h. According to this theorem, it is theoretically shown that
the improved CVMA has the high �exibility.

In the �eld of symmetric�key cryptosystems, a lot of improvements and optimizations have
been reported for the hardware implementation of AES cipher and its similarities. In order to
accelerate SubBytes and InvSubBytes of AES which are the most complex procedures, many of
these implementations often utilize inversions in the isomorphic towering �eld (composite �eld)
F((22)2)2 or F(24)2 , instead of those in the AES original F28 . This thesis focuses on F(24)2 which
provides higher�speed inversions than F((22)2)2 , and proposes RRB technique which accelerates
the inversions. Within the author's knowledge, the best conventional implementations perform
an inversion in F(24)2 at 4TAND + 10TXOR. On the other hand, the implementation with RRB
technique achieves to perform an inversion in F(24)2 at 4TAND + 7TXOR. The adoption of F(24)2

also requires the acceleration of multiplications between the constant (8 × 8)�bit matrix and an
8�bit vector (an element in F(24)2). Because this matrix is derived from a basis conversion matrix
between the F28 and F22 , in order to perform the above multiplication faster, an e�cient basis
conversion matrix must be prepared. Thus, this thesis also proposes MMMB technique which
facilitates to select an e�cient basis conversion matrix by a computation trick of multiplications

xi



in F(24)2 inside MixColumns and InvMixColumns of AES. Within the author's knowledge, the
best conventional implementations perform an automorphism at 3TXOR. On the other hand,
the implementation with MMB technique achieves to perform an automorphism at 2TXOR. By
adopting RRB and MMMB, both of the encryption and decryption procedures of AES can be
performed at 4TAND + 13TXOR.
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概要

本論文では，次世代の非対称鍵暗号方式が課す拡大体のパラメータ制約と，同方式が求める拡大体

のパラメータに対する拡張性に，より柔軟に対応できる拡大体での乗算法として，ガウス周期正

規基底（Gauss period Normal Basis: GNB）を適用した循環ベクトル乗算アルゴリズム（Cyclic
Vector Multiplication Algorithm: CVMA）を提案し，その柔軟性を理論的に検証する．また，
Advanced Encryption Standard (AES) をはじめとする対称鍵暗号方式の処理を従来実装よりも
高速化するために，冗長表現基底（Redundantly Represented Basis: RRB）および複雑混合基底
（More Miscellaneously Mixed Bases: MMMB）を提案する．

近年，次世代非対称鍵暗号方式として，ペアリングに基づく暗号方式が注目を集めている．こ

の暗号方式の処理を高速化する手段として，拡大体での算術計算，とくに乗算の高速化は非常に

有効である．一方で，この暗号方式では，拡大体 Fpm のパラメータである標数 pおよび拡大次数
mに対して大きな制約を課す場合がある．ゆえに，ある程度の高速処理を可能とし，かつ pおよ
びmに対して柔軟に対応できる乗算法が必要とされる．この要求を満たす拡大体での乗算法とし
て，CVMA が提案されている． この CVMA を採用するためには，拡大体を適当な正規基底で
構成する必要があるが，その正規基底は GNB の一部である．これらの正規基底は，標数 pと拡
大次数m以外に，pとmから条件付けされる正整数 hを必要とするが，例外を除けば，この hは
それぞれの pとmの組に対して無限に存在する．しかし，CVMA では hが増大すると致命的な
速度低下を招くため，実質的に hの大きさには上限が存在する．ゆえに，pとmによって取りう
る最小の hによっては，速度面において CVMA が適用外になる場面も生じる．そこで本稿では，
従来の CVMAから，GNBを適用した CVMA へ改良を行う．この拡張によって，より小さな h
を利用できるようになる．さらに，CVMA の柔軟性を論証するために，hごとの GNB の存在確
率を導出するための定理を提案する．この定理から，速度面を考慮した際に，pとmに対して改
良した CVMA が柔軟性の高いものであることを理論的に示す．
一方で，対称鍵暗号の分野では，AES およびそれに類似する暗号方式のハードウェア実装報告

が盛んに行われている．これらの実装の多くは，AES 内の暗号化・復号処理で最も低速な処理で
ある SubBytes および InvSubBytes を高速化するために，本来の AES で採用されているような拡
大体 F28での逆元計算に替わり，その同型な逐次拡大体（合成体）である F((22)2)2 や F(24)2 での逆

元計算を採用している．本論文では，F((22)2)2 よりも逆元計算が高速な F(24)2 に着目し，F(24)2 で

の逆元計算を高速化できる RRB を提案する．その結果，F(24)2 での逆元計算を，著者が知る限り

の既存研究では 4TAND + 10TXORで提供されるところを，4TAND + 7TXORで実現する．ただし，

TANDおよび TXORは AND および XOR ゲートの遅延時間を意味している．また，上記のように
F(24)2 での逆元計算を採用する場合，逆元計算前後で必要とされる (8×8)�bitの定行列と 8�bitベ
クトルとの乗算を高速化することも重要である． この定行列は F28 から F(24)2 への基底変換行列

から導出されるため，より高速に上記の乗算を行うためには，効率の良い基底変換行列を準備す

る必要がある． そこで本論文では，AES 内の処理である MixColumns および InvMixColumns で

実行される拡大体での乗算を工夫することよって，効率の良い F28 から F(24)2 への基底変換行列

とその逆変換行列の組を選択可能にする MMMB を提案する．その結果，行列とベクトル間の乗
算を，著者が知る限りの既存研究では 3TXORで提供されるところを，2TXORで実現する． この

RRB と MMMB を適用することによって，AES の暗号化・復号処理をともに 4TAND + 13TXOR

で実行できるようになる．
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Notations

p a characteristic of prime �eld (namely, a prime number)

Fp a prime �eld with a characteristic p

m an extension degree (generally, a positive number larger than 1)

Fpm an m�th extension �eld over Fp

F∗
pm the multiplicative group in Fpm

E(Fpm) an elliptic curve additive group over Fpm

Mm, Sm, Am, Dm
the calculation costs of a multiplication, a squaring, an addition
(or a subtraction), and a doubling in Fpm , respectively

m | n and m - n
They mean that m does and does not divide n.

(m, n: positive integers)

gcd(m,n)
the great common divisor for positive integers m and n

(m, n: positive integers)

Hw(t) the Hamming weight of a positive integer t
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Chapter 1

Introduction

In the modern society which utilizes Information and Communication Technology (ICT), more
information security incidents have been reported as computer and network systems have become
more complex. Above all, there is no end to the numbers of identity thefts and data falsi�cations
although this thesis avoids to refer to the concrete incidents. The author concludes that one of the
causes is the incompatibility between the CIA triad (Con�dentiality, Integrity and Availability
[1]) and the usability for their systems. In order to overcome the incompatibility, recently, as next
generation asymmetric�key cryptosystems and their applications, ID�based encryption [2, 3] and
functional encryption [4] have been contrived to provide the con�dentiality, and group signature

[5] has been proposed to provide the integrity.
On the other hand, in recent years, the damages caused by the above incidents become

much larger since the amount of information becomes huge due to the increasing network tra�c
and external storage capacity. Thus, the high�performance cryptosytems are imperative to
continuously achieve the practical uses of them. Especially, it is very important to accelerate
symmetric�key cryptosytems such as Triple Data Encryption Standard (TDES) [6] and Advanced

Encryption Standard (AES) [7] because the contributions of them are much important for the
con�dentiality.

Severals of both asymmetric�key cryptosystems and symmetric�key cryptosystems are based
on arithmetic operations in �nite �eld (Galois �eld) such as prime �eld and extension �eld as
illustrated in Fig. 1.1. The purpose of this thesis is to propose high�performance arithmetic
operations in extension �eld. Note that the author considers that the properties required for the
arithmetic operations di�er between the above introduced asymmetric�key and symmetric�key
cryptosystems. This thesis contributes for each cryptosystems. In order to make a certain
next generation asymmetric�key cryptosystems more scalable, this thesis proposes the Cyclic

Vector Multiplication Algorithm (CVMA) for Gauss period Normal Basis (GNB). It is an e�cient
multiplication algorithm in extension �eld which is �exible for the restriction and scalability of
the extension �eld parameters required by next generation asymmetric�key cryptosystems. On
the other hand, in order to accelerate the computations of several symmetric�key cryptosystems
such as Advanced Encryption Standard (AES), this thesis also proposes Redundantly Represented
Basis (RRB) and More Miscellaneously Mixed Bases (MMMB).

1.1 Contribution of Asymmetric�key Cryptosystems

Recently, as next generation asymmetric�key cryptosystems, several pairing�based cryptosys-
tems have been proposed such as ID�based encryption [2, 3], group signature [5] and functional
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Figure 1.1: The research layers of cryptographies

encryption [4]. In order to accelerate these cryptosystems, not only pairing algorithms but also
arithmetic operations, especially multiplications and Frobenius mapping in extension �eld, need
to be improved [8].

As a widely�used extension �eld which has e�cient arithmetic operations, Bailey et al. have
proposed Optimal Extension Field (OEF) [9]. It is constructed by the polynomial basis whose
modular polynomial is an irreducible binomial. This polynomial basis is sometimes called Opti-
mal Polynomial Basis (OPB). In the case of OEF, some e�cient multiplication algorithms can
be applied such as schoolbook multiplication, Karatsuba multiplication [10, 11], and Toom�Cook
multiplication [12, 13, 14]. As described at the beginning, OEF is widely�adopted because it
can be appropriately chosen among several multiplication algorithms according to the situations.
However, OEF Fpm is available only when the following conditions are satis�ed.

1) Every prime factor of m divides p − 1.

2) 4 | p − 1 when 4 | m.

As reported by Kato et al. [15], this restriction often causes a critical mismatch for pairs of
characteristic p and extension degree m. Thus, it can be hardly said that OEF is highly��exible.

On the other hand, as the other e�cient extension �eld, Nogami et al. have introduced
type�I All One Polynomial �eld (AOPF) [16]. It is constructed by a certain normal basis,
namely type�I Optimal Normal Basis (ONB) [17], which is the set of zeros of an irreducible

All One Polynomial (AOP). Thus, di�erent from OEF constructed by polynomial basis, AOPF
does not need any arithmetic operations for Frobenius mapping. As a multiplication algorithm
applicable for AOPF, Nogami et al. proposed Cyclic Vector Multiplication Algorithm (CVMA)
[16], which e�ciently performs a multiplication because it is similar to Karatsuba multiplication.
Compared to Karatsuba multiplication technique, CVMA is more algorithmically�systematic.
Recently, Granger et al. [18] and later Baldwin et al. [19] have reported that CVMA technique
is also available for an integer multiplication with multi�precision followed by a reduction modulo
a special class of prime number, namely Minimal Redundancy Cyclotomic Prime (MRCP). A few
years after the publication of the original CVMA technique, for type�II ONB [17], Nogami et al.
also expanded it without the performance degradation [20]. Since then, in order to avoid name
collisions, the extension �elds constructed by type�I and type�II ONBs have been respectively
called type�I and type�II AOPFs, and the corresponding CVMAs have been respectively pre�xed
with �type�I� and �type�II�.

In the cases of utilizing type�I and type�II ONBs, certain restrictions are imposed such that
m + 1 and 2m + 1 respectively need to be prime numbers, for example. In order to overcome
this inconvenience and keep the performance of CVMA technique, Kato et al. have introduced
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type�I eXtend normal basis (type I�X NB) [21] and type�II eXtended NB (type II�X NB) [15]
which are respectively based on type�I and tyep�II ONBs. Accordingly, CVMA technique was
also expanded, namely type I�X and II�X CVMAs [21, 15]. Then, these CVMAs can support
every pair of p and m such that 4p - m(p − 1). Type I�X and II�X NBs are special classes of
Gauss period Normal Bases (GNBs) [22]. For type I�X and II�X NBs compared to GNBs, there
exist some ine�cient cases as introduced below. GNB is generally characterized with not only
p and m but also a certain positive integer parameter h. Thus, this thesis especially calls it
type�〈h,m〉 GNB in Fpm , where h needs to satisfy the following conditions.

1) r = hm + 1 is a prime number not equal to p,

2) gcd(hm/e,m) = 1, where e is the multiplicative order of p modulo r.

With the above notations, type I�X NB is, for example, classi�ed to type�〈h,m〉 GNB such that
e = hm. For type�〈h,m〉 GNB and its special classes, it is well�known that there exist such
in�nite positive integers h's, and one can be appropriately chosen; however, from the viewpoint
of the computational cost of CVMAs, it is preferred to be small [21, 15]. Thus, the minimal
one hmin should be adopted among such positive integers h's in order to prepare type�〈hmin,m〉
GNB in Fpm .

1.2 Contribution of Symmetric�key Cryptosystems

Since NIST published Advanced Encryption Standard (AES), namely a special class of Rijndael
[7], many hardware implementations of AES algorithm have been reported [26, 27, 28, 29, 30, 31,
32]. This thesis also proposes approaches for more e�cient hardware implementations, where
the �e�cient� is, in this thesis, meant with as primarily �high�speed �, and secondly �compact�.

In the encryption procedure of AES algorithm, the four steps such as SubBytes, ShiftRows,
MixColumns and AddRoundKey [23] are iterated in sequence. On the other hand, in the de-
cryption procedure of AES algorithm, 4 steps such as InvSubBytes, InvShiftRows, InvMixColumns,
AddRoundKey [23] are iterated in sequence. For software implementations, SubBytes and In-

vSubBytes are often implemented with the lookup�table [7]. On the other hand, for hardware
implementations, SubBytes and InvSubBytes are often implemented with some arithmetic opera-
tion circuits in octic binary extension �eld F28 . In SubBytes and InvSubBytes, an inversion in F28

is carried out, and it plays an important role to prevent linear cryptanalysis [24]. Additionally, it
is the most complex among the arithmetic operations. On the other hand, in the case of hardware
implementations, not only SubBytes and InvSubBytes but also MixColumns and InvMixColumns

should be e�cient. In MixColumns and InvMixColumns, some multiplications in F28 are carried
out. Thus, this thesis �rst considers to implement e�cient arithmetic operation circuits in F28

by using only some logic gates such as AND, XOR, and XNOR gates.

In the case of the original AES algorithm [7], an element in F28 is represented by the polyno-
mial basis, whose modular polynomial is the octic irreducible polynomial t8+ t4+ t3+ t + 1 over
F2. Therefore, originally, SubBytes and InvSubBytes implementations require inversion circuits
in the F28 . However, by adopting inversion circuits in towering �elds (composite �elds [25])
isomorphic to the F28 , some researchers have been provided faster and more compact SubBytes
and InvSubBytes circuits. At the beginning, Rudra et al. have shown such implementation with
a certain F(24)2 as the isomorphic towering �eld [26]. On the other hand, Satoh and Morioka et
al. have shown that with a certain F((22)2)2 [27, 28]. After those, some implementations with the
other F(24)2 and F((22)2)2 have been reported [29, 30, 31, 32]. Within the author's knowledge,
the implementations with F(24)2 [26, 32] can provide faster inversion circuits than those with
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F((22)2)2 [27, 28, 29, 30, 31]. Thus, this thesis focuses on F(24)2 , and proposes Redundantly Repre-
sented Basis (RRB) which can provide faster inversion circuits in F(24)2 than the bases adopted
by [26, 32]. Then, this thesis also considers multiplication circuits in the F(24)2 with RRB. By
adopting RRB, an inversion in F(24)2 can be carried out in 4TAND + 7TXOR, where TAND and
TXOR respectively denote the critical path delays of AND and XOR gates.

In the case that arithmetic operations in towering �eld isomorphic to the F28 are adopted for
the encryption and decryption procedures of AES algorithm, not only arithmetic operations in
an isomorphic towering �eld but also basis conversion from the F28 to the isomorphic towering
�eld should be e�cient. When many kinds of basis conversion matrices can not be prepared, it is
quite di�cult to select some e�cient conversion matrices. In order to prepare more kinds of basis
conversion matrices, Nogami et al. have proposed Mixed Bases (MB) technique [31]; however,
when using RRB, MB is not enough to provide e�cient matrices. Thus, this thesis proposes
More Miscellaneously Mixed Bases (MMMB), and then shows how to �nd e�cient conversion
matrices.

1.3 Outline

This thesis is organized as follows:
Chap. 2 brie�y reviews group and �nite �eld theories.
Chap. 3 focuses on two remaining problems: 1) The minimal hmin of type I�X and II�X

NBs sometimes become larger than that of type�〈h,m〉 GNB, and then this inconvenience causes
some ine�cient implementations, for example, as shown in [33]. 2) CVMA technique has not
been expanded for general GNBs yet. First, this chapter expands CVMA technique for type�
〈h, m〉 GNBs. As the result, this expansion will improve some ine�cient situations because it is
possible that hmin becomes smaller by this expansion. After that, in order to theoretically obtain
the tendency of the computational complexity of CVMA with respect to extension degrees, this
chapter proposes an important theorem such that the existence probability of type�〈h,m〉 GNB
in Fpm and the expected value of hmin can be explicitly obtained. Then, this chapter demonstrates
the e�ciency di�erence for hmin between type I�X and II�X CVMAs and the CVMA expanded
for type�〈h, m〉 GNBs.

Chap. 4 holds the following proposals: 1) to make arithmetic operations in F(24)2 more
e�cient, and 2) to �nd more e�cient basis conversion matrices. As described above, the former
proposal is achieved by RRB, and the latter proposal is achieved by MMMB. By utilizing RRB
and MMMB, this chapter theoretically shows that the encryption and decryption circuits of AES
can be provided by the critical path delay 4TAND + 13TXOR.

Chap. 5 concludes this thesis.
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Chapter 2

Fundamentals

This chapter brie�y reviews group and �eld theories.

2.1 Group

Group is an algebraic system de�ned as follows.

De�nition 1 (Group) A group 〈G, ◦〉 is a nonempty set with a binary operation ◦ that satis�es

the following group axioms:

G1 : (Closure) For ∀a,∀ b ∈ G, the result of a ◦ b is also in G.

G2 : (Associativity) (a ◦ b) ◦ c = a ◦ (b ◦ c), a, b, c ∈ G.

G3 : (Unity) For ∀a ∈ G, there exists an element e ∈ G such that a◦e = e◦a = a,
where e is called unity (unit element).

G4 : (Inverse Element) For ∀a ∈ G, there exists an element x ∈ G such that

a ◦ x = x ◦ a = e, where x is called inverse element of a.

De�nition 2 (Commutative Group)

AG5 : (Commutativity) A group G is said to be commutative (or abelian), if

a ◦ b = b ◦ a for ∀a, b ∈ G.

For example, the algebraic system 〈Z, +〉 is an in�nite commutative group, where Z is the integer
set and + means the ordinary addition for integers. For a �nite group, its order is de�ned as
follows.

De�nition 3 (Order of Group) The order |G| is the number of elements in �nite group G.

Let us consider a example of �nite group. An algebraic system 〈Zn ={0, 1, 2, 3, . . . , n − 1}, +〉
is not a group because it does not satisfy the group axioms. Therefore, in order to construct a
group from S, it is necessary to modify the addition. We will de�ne a new sum as

a + b ≡ c (mod n), a, b ∈ Zn, (2.1)

where the notation �c (mod n)� means that c is assigned to a remainder on division by n when
a + b = c /∈ Zn. Therefore, c certainly belongs to Zn and then 〈Zn, +〉 forms a group.

There is a convenient way of presenting a �nite group. A table displaying the group operation
is referred to as a Cayley table. For example, the group Z4 is presented as follows.

5



Example 1 The Cayley table for the group Z4 is:

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

In what follows, we will use the notation of ordinary addition such that a + a = 2a and
a + a + a = 3a (in multiplicative notation, these are denoted by a2,a3).

Cyclic Group

A group G is said to be cyclic if there is an element g ∈ G such that for any a ∈ G there is some
integer j with a = gj . Such an element g is called a generator of the cyclic group.

From the de�nition, we can see that any elements in cyclic group are generated with iterative
operations of generator g. Fig. 2.1 shows it schematically.

gm = e
g

g2

g3gm−3

gm−2

gm−1

Figure 2.1: Cyclic group

In general, for an element a ∈ G, the least positive integer m such that am = e is called order of
a, where e is the unity in G.

Isomorphism

Let us consider a mapping ψ from a set A to a set B as

ψ : a ∈ A 7−→ b ∈ B, b = ψ(a). (2.2)

When it satis�es each of the following, ψ is called a surjection, an injection or a bijection.

Surjection : For ∀b ∈ B, when there exists a ∈ A such that b = ψ(a).
Injection : For a1 6= a2 ∈ A, when ψ(a1) 6= ψ(a2) ∈ B.

Bijection : ψ is surjection and injection. In other words, it is one�to�one mapping.

When a mapping ψ : 〈A, α〉 7−→ 〈B, β〉 satis�es the following relation, it is called homomor-

phism.

ψ(a1 α a2) = ψ(a1) β ψ(a2) = b1 β b2, (a1, a2 ∈ A, b1 = ψ(a1), b2 = ψ(a2) ∈ B). (2.3)

If ψ is both bijection, it is called isomorphism, then 〈A, α〉 and 〈B, β〉 are said to be isomorphic.
Additionally, a homomorphism from a group to itself is called an endomorphism, and if it is both
bijection then it is called automorphism.
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Kernel

For a homomorphism ψ : 〈A, α〉 7−→ 〈B, β〉, the following Ker(ψ) is called a kernel of ψ.

Ker(ψ) = {a ∈ A | ψ(a) = eB}, (eB : the unity in 〈B, β〉) (2.4)

Cartesian Product Set

For two sets A and B, the following set A × B is called Cartesian product set.

A × B = {(a, b) | a ∈ A, b ∈ B}. (2.5)

Note that (a, b) = (a′, b′) only when a = a′，b = b′.

2.2 Field

Field is an algebraic system de�ned as follows.

De�nition 4 (Field) A �eld 〈F, +, ·〉 has two binary operations denoted by + and ·, such that:

F1 : (Additive Group) F is a commutative group with respect to +.

F2 : (Multiplicative Group) F ∗ is a group with respect to ·, where F ∗ is the set

that consists of every element distinct from the unity (zero element) with respect

to +.

F3 : (Distributive law) For all a, b, c ∈ F we have a · (b + c) = a · b + a · c and

(b + c) · a = b · a + c · a.
In general, the elements 0 and 1 represent the unity regarding to the operation + and regarding
to the operation ·, respectively.
De�nition 5 (Order of Field) The order is the number of elements in F. If the order of F
is �nite, F is called �nite �eld.

De�nition 6 (Characteristic of Field) The least positive number n such that n · a = 0 for

every a ∈ F is called characteristic.

This paper treats only �nite �elds. Finite �elds have the following property, which is used often
in cryptographic area.

Theorem 1 For every �nite �eld F, the multiplicative group F ∗is cyclic.

For example, ElGamal encryption [34] can be de�ned over multiplicative group of F. Its security
depends on the di�culty of a certain problem in F related to computing discrete logarithms.

2.2.1 Prime Field

A subset K of a �eld F that is itself a �eld under the operations of F will be called a sub�eld of
F. In this case, F is called an extension (�eld) of K. If K 6= F, we say that K is a proper sub�eld

of F. Then, prime �eld is de�ned as follows.

De�nition 7 (Prime Field) A �eld containing no proper sub�eld is called prime �eld.

Moreover, the following theorem is given about �nite �eld.

Theorem 2 Every �nite �eld has a prime �eld as a sub�eld.

Therefore, �nite �elds are classi�ed into two types, which are prime �eld and its extension
�eld. Prime �eld Fp has a prime number p as the order and characteristic.
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Arithmetic Operations in Prime Field

In the same way as Eq. (2.1), we can de�ne fundamental operations of Fp = {0, 1, 2 · · · , p − 1}
by using the remainder of an integer as follows.

a + b ≡ c (mod p), a − b = a + (−b) ≡ c (mod p), (2.6a)

a · b ≡ c (mod p), a / b = a · b−1 ≡ c (mod p), a, b ∈ Fp. (2.6b)

We can obtain b−1 easily by using Fermat's Little Theorem as follows.

Theorem 3 (Fermat's Little Theorem) For a non�zero element a ∈ Fp, we have

ap−1 ≡ 1 (mod p). (2.7)

On the other hand, using Lehmer's technique and the technique based on binary greatest common
divisor (BGCD) , the inversion can be also carried out e�ciently.

2.2.2 Extension Field

The order of extension �eld Fpm is pm. Arithmetic operations in Fpm are realized by using
polynomials. Every element in Fpm is expressed as a polynomial that have m elements in Fp

as coe�cients. Then, arithmetic operations in Fpm are carried out with ordinary addition,
subtraction and multiplication for polynomial, and modular polynomial reduction by using a
certain irreducible polynomial.

De�nition 8 (Irreducibility) A polynomial f(x) is said to be irreducible over Fp if there does

not exit, except f(x) itself, polynomials of degree more than or equal to 1 those divide f(x).

Fpm

Fp»»»»9

Figure 2.2: Sketch of an m�th extension �eld Fpm

Addition, Subtraction and Multiplication in Extension Field

As described above, every element in Fpm is expressed as a polynomial. We denote elements A
and B in Fpm by

A = a0 + a1ω + a2ω
2 + · · · + am−1ω

m−1,
B = b0 + b1ω + b2ω

2 + · · · + bm−1ω
m−1,

(2.8)

where ω is a root of a monic irreducible polynomial of degree m

f(x) =
m∑

i=0

fix
i = f0 + f1x + f2x

2 + · · · fm−1x
m−1 + xm over Fp, (2.9)
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in short, f(ω) = 0. In this case, ω is a proper element1 in Fpm and then Fp is extended as a
m�dimensional vector space over Fp by a following basis

{1, ω, ω2, · · · , ωm−1}. (2.10)

Therefore, any elements in Fpm is expressed as a linear combination of {1, ω, ω2, · · · , ωm−1}.
Then, 〈Fpm , +〉 forms a commutative group under addition (and subtraction) as shown in Fig.
2.3 (and Fig. 2.4) because the basis {1, ω, ω2, · · · , ωm−1} is linearly independent when f(x) is
irreducible.

A = a0 + a1ω + a2ω
2 + · · · + am−1ω

m−1

+) B = b0 + b1ω + b2ω
2 + · · · + bm−1ω

m−1

A + B = (a0+b0) + (a1+b1)ω + (a2 + b2)ω2 + · · · + (am−1 + bm−1)ωm−1

Figure 2.3: Addition in extension �eld

A = a0 + a1ω + a2ω
2 + · · · + am−1ω

m−1

−) B = b0 + b1ω + b2ω
2 + · · · + bm−1ω

m−1

A − B = (a0−b0) + (a1−b1)ω + (a2 − b2)ω2 + · · · + (am−1 − bm−1)ωm−1

Figure 2.4: Subtraction in extension �eld

On the other hand, F ∗
pm is not closed under ordinary multiplication for polynomials as shown

in Fig. 2.5.

A = a0 + a1ω + a2ω
2 + · · · + am−1ω

m−1

· ) B = b0 + b1ω + b2ω
2 + · · · + bm−1ω

m−1

A · B = (a0b0) + (a0b1 + a1b0)ω + · · · · · · · · · · · · · · · + (am−1bm−1)ω2m−2

Figure 2.5: Multiplication in extension �eld with school book method

In order to make F∗
pm closed under multiplication, we need modular polynomial reduction

with a root ω of f(x). ω holds the following relation,

ωm = −f0 − f1ω − f2ω
2 − fm−1ω

m−1. (2.11)

By applying Eq. (2.11) to power of ω repeatedly, we can reduce the degree from 2m − 2 to
m−1. In other words, we can express a product of A and B with linear combination of the basis
{1, ω, ω2, · · · , ωm−1} as follows,

A · B = c0 + c1ω + c2ω
2 + · · · + cm−1ω

m−1 mod f(ω) . (2.12)

Then, a multiplication in Fpm is carried out with an ordinary multiplication for polynomial and
modular polynomial reduction as described above.

Theorem 4 Let f(x) be an irreducible polynomial of degree m over Fp. Then there exists an

extension �eld Fpm over Fp with a root of f(x) as a basis generator.

1In this paper, we call an element that belongs to Fpm but not to its proper sub�eld a proper element in Fpm .
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Basis in Extension Field

There are many bases to express an element in Fpm , and each basis has a di�erent e�ect on
operations in Fpm . For example, the basis {1, ω, ω2, · · · , ωm−1} as previously described is called
polynomial basis and e�cient for multiplication. On the other hand, when the following conju-
gates of a generator ω are linearly independent,

{ω, ωp, ωp2
, · · · , ωpm−1}. (2.13)

their set is called normal basis, and e�cient for Frobenius mapping :

A → Ap, A ∈ Fpm . (2.14)

In general, using a basis {ω0, · · · , ωm−1}, an arbitrary element A in Fpm is represented as

A = a0ω0 + a1ω1 + · · · + am−1ωm−1. (2.15)

Every basis consists of m linearly independent elements in Fpm .

Inversion in Extension Field

In the same way as prime �eld Fp, an element in extension �eld Fpm has the following property.

Theorem 5 For a non�zero element A in Fpm , we have equality as

Apm−1 = (A · Ap · Ap2 · · · · · Apm−1
)p−1 =

(m−1∏
i=0

Api
)p−1

= 1. (2.16)

∏m−1
i=0 Api

is the product of conjugates of A with respect to Fp. This production is called norm.
For this norm, we can easily obtain the following theorem by Eq. (2.16).

Theorem 6 The norm of A with respect to Fp becomes a non�zero element in Fp.

As an inversion algorithm in extension �eld Fpm e�ciently by using this property, Itoh�Tsujii
inversion algorithm (ITA) [35] shown in Alg. 1 have been proposed.

Algorithm 1: ITA in F∗
pm

Input: X ∈ F∗
pm , s = m − 1.

Output: Z = X−1 =
(
Xp · · ·Xpm−1)

/
(
XXp · · ·Xpm−1)

.

Y ← Xp, j = 1.1

for blog2(s)c ≥ i ≥ 1 do Z ← Z · Zpj
, j ← 2j.2

if s[i] = 1 then Z ← Z · Y p, j ← j + 1.3

x ← Z · X.4

Z ← Z · x−1.5

x (=
∏m−1

i=0 Xpi
) in Step 4 of Alg. 1 becomes a non�zero element that belongs to Fp because

it is the norm of X with respect to Fp. Therefore, in order to obtain x in Step 4 of Fig. 1, we
just have to calculate one of the vector coe�cients with respect to Fp of Z ·X ∈ Fpm when Fp is
constructed by a polynomial basis or type�〈k,m〉 Gauss period normal basis (GNB) described
below. Additionally, the calculation amount of x−1 is I1 because x ∈ Fp.
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Chapter 3

Multiplications Flexible for Scalable

Asymmetric�key Cryptosystems

3.1 Fundamentals of Gauss Period Normal Basis (GNB)

In this paper, the set which contains a normal basis, the extension �eld constructed by the
normal basis, and a certain e�cient multiplication algorithm in the extension �eld is considered
as a series, and this section brie�y reviews several kinds of series. The contents of the series
introduced in this section are described in Table 3.1.

Table 3.1: The notations of normal bases, extension �elds, and e�cient multiplication algorithms

Series Basis Extension �eld
Multiplication

algorithm

type�I type�I ONB [17] type�I AOPF [16] type�I CVMA [16]

series (type�〈1,m〉 GNB) (type�〈1,m〉 AOPF) (type�〈1,m〉 CVMA)

type�II type�II ONB [17] type�II AOPF [20] type�II CVMA [20]

series (type�〈2,m〉 GNB) (type�〈2,m〉 AOPF) (type�〈2,m〉 CVMA)

type I�X
type I�X NB [21] type I�X AOPF [21] type I�X CVMA [21]

series

type II�X
type II�X NB [15] type II�X AOPF [15] type II�X CVMA [15]

series

type�〈h,m〉
type�〈h,m〉 GNB [22]

type�〈h,m〉 AOPF type�〈h,m〉 CVMA

series (called in this thesis) (proposed in this thesis)

3.1.1 Type�I Series

Mullin et al. have proposed type�I Optimal Normal Basis (ONB) [17] as a normal basis e�cient
for extension �eld multiplication. Type�I ONB exists when the following condition is satis�ed.

Condition 1 (the existence of type�I ONB)

1) r = m + 1 is a prime number not equal to p.

2) The order of p in Fr is m.

Then, the following multiplicative group is obtained.〈{〈〈
pi

〉〉
: 0 ≤ i < m

}
, ·

〉
= F∗

r, (3.1)
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where 〈〈t〉〉 denotes �t (mod r)� for an integer t and the prime number r = m + 1. Here, let β
be a primitive r�th root of unity in Fpm . In other words, β is a zero of the following all one

polynomial (AOP) over Fp.

f(t) =
tr − 1
t − 1

=
r−1∑
i=0

ti = Φr(t), (3.2)

where Φs denotes the s�th cyclotomic polynomial for a positive integer s. Type�I ONB is de�ned
with the above β as follows.

{γ, γp, · · · , γpm−1} = {γ, γ2, · · · , γm}, γ = β ∈ Fpm . (3.3)

Actually, as shown in Eq. (3.3), type�I ONB forms not only normal basis but also pseudo
polynomial basis. Since this ONB is prepared by a zero β of the AOP given by Eq. (3.2),
Nogami et al. have especially called the extension �eld constructed by this ONB type�I All One
Polynomial Field (AOPF) [16].

For this AOPF, Karatsuba multiplication [10, 11] can be applied since type�I ONB is also
pseudo polynomial basis as described above. On the other hand, Nogami et al. have proposed
type�I Cyclic Vector Multiplication Algorithm (CVMA) [16] as the other e�cient multiplication
algorithm in type�I AOPF. This algorithm is described in Alg. 2.

Algorithm 2: Type�I CVMA [16]

Input: X =
∑m−1

i=0 xiγ
pi
, Y =

∑m−1
i=0 yiγ

pi
, xi, yi ∈ Fp.

Output: Z = X · Y =
∑m−1

i=0 ziγ
pi
, zi ∈ Fp.

Preparation steps:
ε[0] ← m.1

for i = 0 to m − 1 do ε
[〈〈

pi
〉〉]

← i.2

for i = 0 to m − 2 do3

for j = i + 1 to m − 1 do η[i, j] ← ε
[〈〈

pi + pj
〉〉]
.4

Evaluation steps:
for l = 0 to m − 1 do vl ← xlyl.5

vm ← 0.6

for i = 0 to m − 2 do7

for j = i + 1 to m − 1 do vη[i,j] ← vη[i,j] + (xi − xj)(yi − yj).8

for l = 0 to m − 1 do zl ← vm − vl.9

3.1.2 Type�II Series

Mullin et al. have also proposed type�II ONB [17] as another normal basis e�cient for extension
�eld multiplication. Type�II ONB exists when Cond. 2.1 and either 2.2a or 2.2b are satis�ed.

Condition 2 (the existence of type II ONB)

1) r = 2m + 1 is a prime number not equal to p.

2a) The order of p in Fr is 2m.

2b) The order of p in Fr is m, and m is odd.

12



Then, the following multiplicative group is obtained.〈{〈〈
±pi

〉〉
: 0 ≤ i < m

}
, ·

〉
= F∗

r, (3.4)

where 〈〈t〉〉 denotes �t (mod r)� for an integer t and the prime number r = 2m + 1. Here, let β
be a primitive r�th root of unity in F∗

pe , where e is the order of p in F∗
r. In other words, β is a

certain zero of the AOP in Eq. (3.2). Type�II ONB is de�ned with the above β as follows.

{γ, γp, · · · , γpm−1}, γ = β + β−1 ∈ Fpm . (3.5)

Type�II ONB is not polynomial basis di�erently from type�I ONB.
In the same manner as type�I series, Nogami et al. have especially called the extension �eld

constructed by this ONB type�II AOPF, and have also proposed type�II CVMA [20]. This
algorithm is described in Alg. 3.

Algorithm 3: Type�II CVMA [20]

Input: X =
∑m−1

i=0 xiγ
pi
, Y =

∑m−1
i=0 yiγ

pi
, xi, yi ∈ Fp.

Output: Z = X · Y =
∑m−1

i=0 ziγ
pi
, zi ∈ Fp.

Preparation steps:
for i = 0 to m − 1 do ε

[〈〈
pi

〉〉]
← i, ε

[〈〈
−pi

〉〉]
← i.1

for i = 0 to m − 2 do2

for j = i + 1 to m − 1 do η[i, j, 0] ← ε
[〈〈

pi + pj
〉〉]
, η[i, j, 1] ← ε

[〈〈
pi − pj

〉〉]
.3

Evaluation steps:
for l = 0 to m − 1 do vl ← xlyl.4

for i = 0 to m − 2 do5

for j = i + 1 to m − 1 do6

u ← (xi − xj)(yi − yj), vη[i,j,0] ← vη[i,j,0] + u, vη[i,j,1] ← vη[i,j,1] + u.7

for l = 0 to m − 1 do zl ← −vl.8

3.1.3 Type�I eXtended (Type I�X) Series

Type�I and type�II ONBs are very e�cient normal bases for extension �eld multiplication;
however, these ONBs do not exist for an arbitrary pair of characteristic p and extension degree
m. In order to overcome this inconvenience, Kato et al. have proposed type I�X normal basis
(NB) [21]. It is prepared with a positive integer h which satis�es the following condition.

Condition 3 (the h of type I�X NB)

1) r = hm + 1 is a prime number not equal to p.

2) The order of p in Fr is hm.

Then, the following multiplicative group is obtained.〈{〈〈
pi+km

〉〉
: 0 ≤ i < m, 0 ≤ k < h

}
, ·

〉
= F∗

r, (3.6)

where 〈〈t〉〉 denotes �t (mod r)� for an integer t and the prime number r = hm + 1. Here, let β
be a primitive m�th root of unity in F∗

phm . In other words, β is a zero of the AOP in Eq. (3.2).
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Type I�X NB is de�ned with the above h and β as follows.

{γ, γp, · · · , γpm−1}, γ =
h−1∑
k=0

βpkm ∈ Fpm . (3.7)

Actually, the set {β, βp, . . . , βphm−1} on which type I�X NB is based is type�I ONB in Fphm .
Thus, as the name suggests, type�I eXtended NB is obtained by extending type�I ONB. Because
this NB exists whenever 8p - m(p − 1) [21], it is available in Fpm for every pair of characteristic
p and extension degree m when p > m.

In the same manner as type�I and type�II series, Kato et al. have especially called the
extension �eld constructed by this NB type I�X AOPF, and have also proposed type I�X CVMA
[21]. This algorithm is described in Alg. 4.

Algorithm 4: Type I�X CVMA [21]

Input: X =
∑m−1

i=0 xiγ
pi
, Y =

∑m−1
i=0 yiγ

pi
, xi, yi ∈ Fp.

Output: Z = X · Y =
∑m−1

i=0 ziγ
pi
, zi ∈ Fp.

Preparation steps:
Prepare a positive integer h which satis�es Cond. 3.1

ε[0] ← m.2

for i = 0 to m − 1 do3

for k = 0 to h − 1 do ε
[〈〈

pi+km
〉〉]

← i.4

for i = 0 to m − 2 do5

for j = i + 1 to m − 1 do6

for k = 0 to h − 1 do η[i, j, k] ← ε
[〈〈

pi + pj+km
〉〉]
.7

Evaluation steps:
for l = 0 to m − 1 do vl ← xlyl.8

vm ← 0.9

for i = 0 to m − 2 do10

for j = i + 1 to m − 1 do11

u ← (xi − xj)(yi − yj).12

for k = 0 to h − 1 do vη[i,j,k] ← vη[i,j,k] + u.13

if h is odd then14

w ← hvm.15

for l = 0 to m − 1 do zl ← w − vl.16

else for l = 0 to m − 1 do zl ← −vl.17

3.1.4 Type�II eXtended (Type II�X) Series

In the same way as type I�X NB, Kato et al. have also proposed type II�X NB [15] which is
obtained by extending type�II ONB. It is prepared with an even positive integer h which satis�es
Cond. 4.1 and either 4.2a or 4.2b, where h′ denotes h/2.

Condition 4 (the h (= 2h′) of type II�X NB)

1) r = hm + 1 is a prime number not equal to p.
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2a) The order of p in Fr is hm.

2b) The order of p in Fr is h′m, and m is odd.

Then, the following multiplicative group is obtained.〈{〈〈
±pi+km

〉〉
: 0 ≤ i < m, 0 ≤ k < h′}, ·

〉
= F∗

r, (3.8)

where 〈〈t〉〉 denotes �t (mod r)� for an integer t and a prime number r = hm + 1 = 2h′m + 1.
Here, let β be a primitive r�th root of unity in F∗

pe , where e is the order of p in F∗
r. In other

words, β is a certain zero of the AOP in Eq. (3.2). Type II�X NB is de�ned with the above
h′(= h/2) and β as follows.

{γ, γp, · · · , γpm−1}, γ =
h′−1∑
k=0

(β + β−1)pkm ∈ Fpm . (3.9)

Actually, the set {β + β−1, (β + β−1)p, . . . , (β + β−1)ph′m−1} on which type II�X NB is based is
type�II ONB in Fph′m . Because this NB exists whenever 8p - m(p− 1) or whenever 4p - m(p− 1)
and 2 - m [15], it is also available in Fpm for every pair of characteristic p and extension degree
m when p > m.

In the same manner as the other series, Kato et al. have especially called the extension �eld
constructed by this NB type II�X AOPF, and have also proposed type II�X CVMA [15]. This
algorithm is described in Alg. 5.

Algorithm 5: Type II�X CVMA [15]

Input: X =
∑m−1

i=0 xiγ
pi
, Y =

∑m−1
i=0 yiγ

pi
, xi, yi ∈ Fp.

Output: Z = X · Y =
∑m−1

i=0 ziγ
pi
, zi ∈ Fp.

Preparation steps:
Prepare a positive integer h (= 2h′) which satis�es Cond. 4.1

for i = 0 to m − 1 do2

for k = 0 to h′ − 1 do ε
[〈〈

pi+km
〉〉]

← i, ε
[〈〈

−pi+km
〉〉]

← i.3

for i = 0 to m − 2 do4

for j = i + 1 to m − 1 do5

for k = 0 to h′ − 1 do6

η[i, j, k] ← ε
[〈〈

pi + pj+km
〉〉]
, η[i, j, k+h′] ← ε

[〈〈
pi − pj+km

〉〉]
.7

Evaluation steps:
for l = 0 to m − 1 do vl ← xlyl.8

for i = 0 to m − 2 do9

for j = i + 1 to m − 1 do10

u ← (xi − xj)(yi − yj).11

for k = 0 to h − 1 do vη[i,j,k] ← vη[i,j,k] + u.12

for l = 0 to m − 1 do zl ← −vl.13
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3.1.5 Type�〈h,m〉 Series

This subsection �rst introduces Gauss period Normal Basis (GNB) [22]. It is prepared with a
positive integer h which satis�es the following condition.

Condition 5 (the h of GNB)

1) r = hm + 1 is a prime number not equal to p.

2) gcd (hm/e,m) = 1, where e is the order of p in Fr.

Let d be a primitive h�th root of unity in F∗
r, then the following multiplicative group is obtained.〈{〈〈

pidk
〉〉

: 0 ≤ i < m, 0 ≤ k < h
}
, ·

〉
= F∗

r, (3.10)

where 〈〈t〉〉 denotes �t (mod r)� for an integer t and a prime number r = hm + 1. Here, let β
be a primitive r�th root of unity in F∗

pe . In other words, β is a certain zero of the AOP in Eq.
(3.2). GNB is de�ned with the above h, d and β as follows.

{γ, γp, · · · , γpm−1}, γ =
h−1∑
k=0

βdk ∈ Fpm . (3.11)

This paper especially calls it type�〈h,m〉 GNB. Since type�〈h,m〉 GNB exists whenever 4p -
m(p − 1) [22], it is also available in Fpm for every pair of characteristic p and extension degree
m when p > m. In the same manner as the other series, this thesis especially calls the extension
�eld constructed by this GNB type�〈h,m〉 AOPF.

From the viewpoint of type�〈h,m〉 GNB, type�I and type�II ONBs are respectively char-
acterized as type�〈h = 1,m〉 and type�〈h = 2, m〉 GNBs. They are very e�cient normal bases;
however, due to the restriction such that h = 1 or 2, they do not exist for an arbitrary pair
of characteristic p and extension degree m. On the other hand, type I�X and II�X are also
special classes of GNBs, in detail, type�〈h,m〉 GNB with d = 〈〈pm〉〉 and type�〈h,m〉 GNB with
d = 〈〈−pm〉〉, respectively. Actually, the areas supported for the parameters p, m and h by the
introduced bases are illustrated in Fig. 3.1. According to Fig. 3.1, there exists type�〈h,m〉
GNB also in the area where type I�X and type II�X NBs can not support. Unfortunately, the
previously introduced CVMAs are not available in this area.

type�I ONBs type�II ONBs

type�〈h,m〉 GNBs

type I�X NBs type II�X NBs

Figure 3.1: The simpli�ed image of the relations among the normal bases in Table 3.1
.
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3.2 Cyclic Vector Multiplication Algorithm for GNB

As shown in Table 3.1, e�cient extension �eld multiplication algorithms, namely type�I, type�
II, type I�X, and type II�X CVMAs, have respectively been proposed for type�I and type�II
ONBs, and type I�X and type II�X NBs. As introduced in Sec. 3.1.5, these bases are special
classes of type�〈h,m〉 GNBs, that is, they has lower applicability for the key parameters p, m
and h than type�〈h,m〉 GNB. Thus, in order to take this applicability higher, the purpose of
this section is to fully expand CVMA for type�〈h,m〉 GNB as focused in Table 3.1 with bold
face letters. Below, 〈〈t〉〉 denotes �t (mod r)� for an integer t and a prime number r = hm + 1.

3.2.1 Deriving CVMA for type�〈h,m〉 GNB

Let X and Y denote elements in Fpm , then they are represented with type�〈h,m〉 GNB shown
in Eq. (3.11) as follows.

X =
m−1∑
i=0

xiγ
pi

, Y =
m−1∑
i=0

yiγ
pi

, xi, yi ∈ Fp. (3.12)

Then, a multiplication Z = X · Y is given by Eq. (3.13).

Z =
m−1∑
l=0

zlγ
pl

=
m−1∑
i=0

m−1∑
j=0

xiyjγ
pi+pj

=
m−1∑
l=0

xlyl

(
γpl

m−1∑
i=0

γpi
)
−

∑∑
0≤i<j<m

(xi−xj)(yi−yj)γpi+pj
. (3.13)

According to Eq. (3.10), since the β is a zero of the AOP shown in Eq. (3.2),
∑m−1

i=0 γpi
in Eq.

(3.13) is obtained as follows.

m−1∑
i=0

γpi
=

m−1∑
i=0

h−1∑
k=0

βpidk
=

r−1∑
i=1

βi = −1. (3.14)

On the other hand, γpi+pj
in Eq. (3.13) is obtained as follows.

γpi+pj
=

h−1∑
k=0

h−1∑
l=0

βpidl+pjdk
=

h−1∑
k=0

h−1∑
l=0

β(pi+pjdk−l)dl
=

h−1∑
k=0

h−1∑
l=0

β(pi+pjdk)dl
. (3.15)

∑h−1
l=0 β(pi+pjdk)dl

is derived as follows. Note that Case 2 does not occur when h is even because〈〈
pi + pjdk

〉〉
= 0 only when i = j (see Proof 1).

Case 1: When
〈〈
pi + pjdk

〉〉
6= 0 in Fr, the following equation is obtained.

h−1∑
l=0

β(pi+pjdk)dl
=

h−1∑
l=0

βp
ε

[
〈〈pi+pjdk〉〉

]
d

θ

[
〈〈pi+pjdk〉〉

]
+l

=
h−1∑
l=0

(
βdl)p

ε

[
〈〈pi+pjdk〉〉

]
= γp

ε

[
〈〈pi+pjdk〉〉

]
,

(3.16)
where ε and θ denote the following functions.

ε
[〈〈

pidk
〉〉]

= i, θ
[〈〈

pidk
〉〉]

= k (0≤ i<m, 0≤k<h). (3.17)

Case 2: When
〈〈
pi + pjdk

〉〉
= 0 in Fr, according to Eq. (3.14), the following equation is obtained.

h−1∑
l=0

βdl(pi+pjdk) =
h−1∑
l=0

1 = h = −h

m−1∑
l=0

γpl
. (3.18)
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Proof 1 (The pair of i and j such that
〈〈
pi + pjdk

〉〉
= 0)

When
〈〈
pi + pjdk

〉〉
= 0, let l = j − i (i ≤ j), then the following relation holds.

1 =
〈〈
−pldk

〉〉
. (3.19)

Case 1: When h is odd and thus m is even, the 2h�th power of Eq. (3.19) becomes

1 =
〈〈

p2hl
〉〉

. (3.20)

Since the order of p in F∗
r is e, there exists a primitive element ĝ in F∗

r such that

〈〈p〉〉 =
〈〈

ĝ
ˆhm/e

〉〉
. (3.21)

Then, the following equation is obtained.

1 =
〈〈

p2hl
〉〉

=
〈〈

ĝ2hâl
〉〉

(â = hm/e). (3.22)

Thus, l needs to satisfy hm | 2hâl since the order of F∗
r is hm. According to the equations

â = hm/e and gcd(hm/e,m) = 1, the following equation is obtained.

gcd(2hâl, hm) = h×gcd(2âl,m) = h×gcd(2l,m). (3.23)

Since 0 ≤ l < m, the following relation holds only when l = 0 and m/2.

gcd(2hâl, hm) = hm. (3.24)

When l = 0, according to Eq. (3.19), 〈〈−1〉〉 needs to be represented as a certain power of d;
however, it does not because the order h of d in F∗

r is odd. Thus, Eq. (3.20) holds only when

l = i − j = m/2.

Case 2: When h is even and thus m is possible to be odd, the h�th power of Eq. (3.19) becomes

1 =
〈〈

phl
〉〉

. (3.25)

Then, in this case, the following equation is obtained.

1 =
〈〈

phl
〉〉

=
〈〈

ĝhâl
〉〉

(â = hm/e). (3.26)

Thus, l needs to satisfy that hm | hâl. According to the equations â = hm/e and gcd(hm/e, m) =
1, in this case, the following equation is obtained.

gcd(hâl, hm) = h×gcd(âl,m) = h×gcd(l,m). (3.27)

Since 0 ≤ l < m, the following relation holds only when l = 0.

gcd(hâl, hm) = hm. (3.28)

Thus, Eq. (3.25) holds when l = i − j = 0. ¤
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From Eqs. (3.14), (3.15), (3.16), (3.18), Z in Eq. (3.13) is given by Eq. (3.29), where δs denotes
the unit impulse function as Eq. (3.30), and δ̄s denotes 1 − δs.

Z =
m−1∑
l=0

zlγ
pl

= −
m−1∑
l=0

xlylγ
pl −

∑∑
0≤i<j<m

(xi−xj)(yi−yj)
h−1∑
k=0

δ̄0

[〈〈
pi+ pjdk

〉〉]
γp

ε

[
〈〈pi+pjdk〉〉

]

+


h

∑∑
0≤i<j<m

(xi−xj)(yi−yj)
h−1∑
k=0

δ0

[〈〈
pi+ pjdk

〉〉] m−1∑
l=0

γpl
(when h is odd),

0 (when h is even).

(3.29)

δs(t) =

{
1 (when s = t),

0 (otherwise),
(3.30)

Let ε in Eq. (3.17) be rede�ned as a function which also satis�es as Eq. (3.31), and η denotes
the following function.

ε
[
0] = m, η[i, j, k] = ε

[〈〈
pi+ pjdk

〉〉]
. (3.31)

Then, zl in Eq. (3.29) is calculated as follows.

zl =

{
hvm − vl − xlyl (when h is odd),

− vl − xlyl (when h is even),
vl =

∑∑
0≤i<j<m

(xi−xj)(yi−yj)
h−1∑
k=0

δl

[
η[i, j, k]

]
. (3.32)

Consequently, the CVMA expanded for type�〈h,m〉 GNB in Fpm , namely type�〈h,m〉 CVMA,
is constructed as shown in Alg. 6.

Note that the preparation steps (Step. 1 to 7) in Alg. 6 is performed only once when p and m
are �xed. Thus, the computational cost of type�〈h,m〉 CVMA is explicitly given as follows.

Mm(h) =
m(m + 1)

2
M1+


(

m(m − 1)(h + 2)
2

− 1 + m

)
A1 + H1 (when h is odd),(

m(m − 1)(h + 2)
2

)
A1 (when h is even),

(3.33)

where Hm denotes the calculation cost of a scalar�h multiplication in Fpm . This computational
cost is equal to those of type I�X and type II�X CVMAs, and they need more additions in Fp

as h becomes larger. Thus, in order to more e�ciently perform these CVMAs, h should be as
small as possible, furthermore it is the most desirable that h = 1 or h = 2. Actually, type�I and
type�〈h=1,m〉 CVMAs are not algorithmically equivalent but they have the same computational
cost. In the same, type�II and type�〈h=2,m〉 CVMAs have the same computational cost.

3.2.2 Experimental Result

The author experimented on a few software implementations of type�〈h,m〉 CVMA. As the
characteristic p, this experimentation adopted a 256�bit prime number, which is the same scale
of the implementation of Ate�type pairing [8]. In this case, since multiple precision arithmetic
operations were necessary, the GNU MP (GMP) arithmetic library [37] was utilized. Note that
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Algorithm 6: Type�〈h, m〉 CVMA

Input: X =
∑m−1

i=0 xiγ
pi
, Y =

∑m−1
i=0 yiγ

pi
, xi, yi ∈ Fp.

Output: Z = X · Y =
∑m−1

i=0 ziγ
pi
, zi ∈ Fp.

Preparation steps:
Prepare a positive integer h which satis�es Cond. 5,1

and a primitive h�th root d of unity in Fr.
ε[0] ← m.2

for i = 0 to m − 1 do3

for k = 0 to h − 1 do ε
[〈〈

pidk
〉〉]

← i.4

for i = 0 to m − 2 do5

for j = i + 1 to m − 1 do6

for k = 0 to h − 1 do η[i, j, k] ← ε
[〈〈

pi + pjdk
〉〉]
.7

Evaluation steps:
for l = 0 to m − 1 do vl ← xlyl.8

vm ← 0.9

for i = 0 to m − 2 do10

for j = i + 1 to m − 1 do11

u ← (xi − xj)(yi − yj).12

for k = 0 to h − 1 do vη[i,j,k] ← vη[i,j,k] + u.13

if h is odd then14

w ← hvm.15

for l = 0 to m − 1 do zl ← w − vl.16

else for l = 0 to m − 1 do zl ← −vl.17

not the so�called Integer Functions whose name pre�xes are mpz_ but Low�level Functions whose
name pre�xes are mpn_ in the library are adopted in order to achieve high�speed performance.
This experimentation employed both the 32�bit and 64�bit computation environments described
in Table 3.2. Then, the computation time of each arithmetic operation in Fp was obtained as
shown in Table 3.3. Note that Montgomery reduction technique [38] was applied to perform
a reduction modulo p for every multiplication in Fp. According to Table 3.3, it is found that
the ratio ν = M1/A1 in the 32�bit environment is larger than that in the 64�bit environment.
This suggests that, in the 64�bit environment compared to the 32�bit environment, type�〈h,m〉
CVMA is greater in�uenced by h since it needs more additions in Fp as h becomes larger.

On the other hand, the computation time of a multiplication in Fpm with type�〈h,m〉 CVMA
were obtained as shown in Tables 3.4, 3.5, where 2 kinds of times are described for every pair
of m and h. One means the actual measured time in the environment shown in Table 3.3,
and another means the theoretical time obtained by assigning M1, A1 and H1 in Table 3.3 to
Mm(h) in Eq. (3.33). From the experimental results, it is found that a little di�erence occurs
between the each actual measured time and the corresponding theoretical time; however, the
every di�erence is less than about 5%, that is, negligibly small.
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Table 3.2: The computational environment

32�bit environment 64�bit environment

CPU Core i3�620 3.06GHz (It has a dual core; however, only 1 core was worked.)

Cache 2�nd: 512 KB × 2, 3�rd: 4.0 MB

Memory 2.0 GB × 4 (in dual�channel con�guration)

OS Ubuntu 10.10 32�bit version Ubuntu 10.10 64�bit version

Language C

Compiler GCC 4.4.5 32�bit version GCC 4.4.5 64�bit version

Optimization ��O3 �m32� compiler option ��O3 �m64� compiler option

Library GNU MP 5.0.1 [37]

Table 3.3: The computation time of each arithmetic operation in Fp

32�bit environment 64�bit environment mainly utilized functions

addition
A1 = 25 nsec. A1 = 13 nsec.

mpn_add_n,
(subtraction) mpn_sub_n

multiplication
M1 = 199 nsec. M1 = 71 nsec. mpn_mul_basecase†,

(ν = M1/A1 ≈ 8.0) (ν = M1/A1 ≈ 5.5) mpn_redc_1†

scalar�h H1 = 45 nsec. H1 = 27 nsec. mpn_mul_1,
multiplication (ξ = H1/A1 ≈ 1.8) (ξ = H1/A1 ≈ 2.1) mpn_sub_n

† Actually, these functions are declared in the archive �le �libgmp.a�; however, there do not exist the prototype
declarations of the functions in the header �le �gmp.h�. Thus, in order to utilize these functions, the author
appropriately edited �gmp.h�.
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Table 3.4: The computation time of a multiplication in Fpm (the 32�bit environment) [µsec]

HHHHHh
m

2 3 4 5 6 7 8 9 10 11 12

1
0.77 � 2.65 � 5.57 � � � 14.8 � 21.0

0.70 (�) (2.52) (�) (5.43) (�) (�) (�) (14.5) (�) (20.7)

2
0.76 1.56 � 4.14 5.94 � 10.3 12.8 � 19.2 �

(0.70) (1.49) (�) (3.99) (5.68) (�) (9.96) (12.6) (�) (18.6) (�)

3
0.81 � 2.93 � 6.35 � � � 17.0 � 24.2

(0.79) (�) (2.86) (�) (6.22) (�) (�) (�) (16.8) (�) (24.1)

4
� 1.72 2.99 � � 8.90 � 14.5 18.1 � �

(�) (1.64) (2.89) (�) (�) (8.72) (�) (14.4) (17.7) (�) (�)

5
0.87 � � � 7.24 � 12.5 � � � 27.6

(0.84) (�) (�) (�) (6.97) (�) (12.3) (�) (�) (�) (27.4)

6
0.85 1.85 � 5.07 7.65 10.3 � � 20.6 24.8 29.3

(0.80) (1.79) (�) (4.99) (7.18) (9.77) (�) (�) (19.9) (24.1) (28.7)

7
� � 3.49 � 8.22 � � � 22.1 � �

(�) (�) (3.46) (�) (7.72) (�) (�) (�) 21.3 (�) (�)

8
0.88 � � 5.53 � � � 19.0 � 28.2 33.5

(0.85) (�) (�) (5.49) (�) (�) (�) (18.0) (�) (26.9) (32.0)

9
0.95 � 3.79 � � � 15.3 � � � 35.0

(0.94) (�) (3.76) (�) (�) (�) (15.1) (�) (�) (�) (34.0)

10
� 2.15 3.83 � 9.07 12.5 � � 25.2 � �

(�) (2.09) (3.79) (�) (8.68) (11.9) (�) (�) (24.4) (�) (�)

11
1.01 � � � 9.44 � 17.4 � � � �

(0.99) (�) (�) (�) (9.22) (�) (16.5) (�) (�) (�) (�)

12
� 2.26 � 6.61 9.60 � 17.5 23.2 � � �

(�) (2.24) (�) (6.49) (9.43) (�) (17.0) (21.6) (�) (�) (�)

13
� � 4.36 � 10.0 � � � 29.1 � 42.3

(�) (�) (4.36) (�) (9.97) (�) (�) (�) (28.1) (�) (40.6)

14
1.02 2.43 � 6.99 � � 18.6 25.0 � � �

(1.00) (2.39) (�) (6.99) (�) (�) (18.4) (23.4) (�) (�) (�)

15
1.10 � 4.60 � � � � � 31.6 � 46.3

1.09 (�) (4.60) (�) (�) (�) (�) (�) (30.3) (�) (43.9)

16
� � � � 10.9 15.2 � � � � 47.4

(�) (�) (�) (�) (10.9) (15.0) (�) (�) (�) (�) (45.2)

17
� � � � 11.5 � 20.8 � � � �

(�) (�) (�) (�) (11.5) (�) (20.7) (�) (�) (�) (�)

18
1.13 � 4.99 � 11.7 16.1 � 27.1 33.4 41.9 �

1.10 (�) (4.99) (�) (11.7) (16.1) (�) (27.0) (33.4) (40.6) (�)

19
� � � � � � � � 35.9 � 49.2

(�) (�) (�) (�) (�) (�) (�) (�) (34.8) (�) (50.5)

20
1.17 2.84 � 8.49 � � � 28.9 � � 50.5

(1.15) (2.84) (�) (8.49) (�) (�) (�) (28.8) (�) (�) 51.8

† The time outside each paranthesis () is the actual measured time, and the time inside each paranthesis () is
the theoretical time.
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Table 3.5: The computation time of a multiplication in Fpm (the 64�bit environment) [µsec]

HHHHHh
m

2 3 4 5 6 7 8 9 10 11 12

1
0.29 � 1.02 � 2.26 � � � 6.03 � 8.57

(0.27) (�) (0.98) (�) (2.14) (�) (�) (�) (5.78) (�) (8.26)

2
0.29 0.59 � 1.70 2.45 � 4.26 5.35 � 7.92 �

(0.27) (0.58) (�) (1.59) (2.27) (�) (4.01) (5.07) (�) (7.55) (�)

3
0.32 � 1.23 � 2.71 � � � 7.39 � 10.4

(0.32) (�) (1.17) (�) (2.56) (�) (�) (�) (6.97) (�) (10.0)

4
� 0.69 1.24 � � 3.84 � 6.53 7.77 � �

(�) (0.66) (1.18) (�) (�) (3.63) (�) (6.00) (7.42) (�) (�)

5
0.34 � � � 3.09 � 5.68 � � � 12.1

(0.34) (�) (�) (�) (2.95) (�) (5.22) (�) (�) (�) (11.7)

6
0.33 0.77 � 2.21 3.20 4.37 � � 8.93 10.8 12.8

(0.32) (0.74) (�) (2.11) (3.05) (4.17) (�) (�) (8.59) (10.4) (12.4)

7
� � 1.54 � 2.50 � � � 9.59 � �

(�) (�) (1.48) (�) (3.34) (�) (�) (�) (9.31) (�) (�)

8
0.35 � � 2.47 � � � 8.13 � 12.2 14.5

(0.34) (�) (�) (2.37) (�) (�) (�) (7.88) (�) (11.8) (14.1)

9
0.40 � 1.69 � � � 6.87 � � � 15.5

(0.40) (�) (1.63) (�) (�) (�) (6.68) (�) (�) (�) (15.1)

10
� 0.94 1.71 � 3.98 5.45 � � 11.2 � �

(�) (0.89) (1.65) (�) (3.83) (5.26) (�) (�) (10.9) (�) (�)

11
0.42 � � � 4.26 � 7.60 � � � �

(0.42) (�) (�) (�) (4.12) (�) (7.41) (�) (�) (�) (�)

12
� 1.01 � 2.99 4.36 � 7.88 9.97 � � �

(�) (0.97) (�) (2.89) (4.22) (�) (7.65) (9.75) (�) (�) (�)

13
� � 2.00 � 4.64 � � � 13.0 � 19.1

(�) (�) (1.95) (�) (4.51) (�) (�) (�) (12.8) (�) (18.6)

14
0.42 1.09 � 3.25 � � 8.60 10.9 � � �

(0.42 (1.05) (�) (3.15) (�) (�) (8.38) (10.7) (�) (�) (�)

15
0.48 � 2.15 � � � � � 14.2 � 21.0

(0.47) (�) (2.10) (�) (�) (�) (�) (�) (14.0) (�) (20.3)

16
� � � � 5.36 7.06 � � � � 22.3

(�) (�) (�) (�) (5.00) (6.90) (�) (�) (�) (�) (21.0)

17
� � � � 5.43 � 9.74 � � � �

(�) (�) (�) (�) (5.29) (�) (9.59) (�) (�) (�) (�)

18
0.49 � 2.32 � 5.50 7.61 � 13.0 15.8 19.9 �

(0.47) (�) (2.27) (�) (5.39) (7.45) (�) (12.6) (15.6) (19.0) (�)

19
� � � � � � � � 16.6 � 25.4

(�) (�) (�) (�) (�) (�) (�) (�) (16.3) (�) (23.7)

20
0.51 1.33 � 4.01 � � � 13.7 � � 26.1

(0.50) (1.28) (�) (3.93) (�) (�) (�) (13.5) (�) (�) (24.4)

† The time outside each paranthesis () is the actual measured time, and the time inside each paranthesis () is
the theoretical time.
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3.3 Existence Probability of GNB

This section mainly provides an important theorem to theoretically evaluate the e�ciency of
type�〈h,m〉 CMVA proposed in the previous section. Below, �∼� and �≈� respectively denote
the theoretical approximation and truncation operators.

3.3.1 Theorem to Derive Existence Probability

The existence probability of type�〈h,m〉 GNB in Fpm is given by Theo. 7 [36].

Theorem 7 The Euler's totient function for a positive integer t is denoted by ϕ(t). It indicates
the number of positive integers less than t which are coprime to t. Let P(h,m) be the possibility

that the parameter h such that Cond. 5.1 is satis�ed also satis�es Cond. 5.2, namely the

existence probability of type�〈h,m〉 GNB in Fpm. Then, P(h,m) is given by

P(h,m) ∼ ϕ(m)/m. (3.34)

¤

For example, consider when m = 6. In this case, the possible positive integers h's which
satisfy Cond. 5.1 are obtained as follows.

h = 1, 2, 3, 5, 6, 7, 10, 11, 12, 13, . . . (3.35)

Among such positive integers h's, consider the probability that the minimal positive integer
hmin additionally satis�es Cond. 5.2 but the others smaller than hmin do not. The existence
probability of type�〈hmin,m〉 GNB in Fpm is denoted by P̃(hmin, m), where p is a variable prime
number. For example, in the case that hmin = 3, P̃(3, 6) can be approximately calculated with
Theo. 7 as follows.

P̃(3, 6) = {1 − P(1, 6)} × {1 −P(2, 6)} × P(3, 6) ∼
(
1 − ϕ(6)

6

)2(ϕ(6)
6

)
≈ 0.148. (3.36)

When m=6, the expected value of hmin can be approximately obtained with Theo. 7 as follows.

1·P̃(1, 6) + 2·P̃(2, 6) + 3·P̃(3, 6) + · · ·

∼ 1
(ϕ(6)

6

)
+ 2

(
1−ϕ(6)

6

)(ϕ(6)
6

)
+ 3

(
1−ϕ(6)

6

)2(ϕ(6)
6

)
+ · · · ≈ 3.53. (3.37)

As described above, by utilizing Theo. 7, P̃(hmin, m) for every pair (hmin,m) and the expected
value of hmin for every m can be approximately calculated.

Actually, the following two theorems are important for a proof of Theo. 7.

Theorem 8 (Prime Number Theorem (PNT) [39])
For a positive integer t, let π(t) be the number of prime numbers less than t. Then, π(t) is

obtained as follows, where Li(t) denotes the o�set logarithmic integral function.

π(t) ∼ Li(t) =
∫ t

2

1
ln(s)

ds, (3.38)

¤
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Theorem 9 (PNT for arithmetic progressions [39])
For a positive integer t, let πn,c(t) be the number of prime numbers less than t in the arithmetic

progression with �rst term c and the common di�erence n such that gcd(c, n) = 1. Then, πn,c(t)
is given by

πn,c(t) ∼ Li(t)/ϕ(n). (3.39)

¤

Below, Theo. 7 is theoretically proven with Theos. 8, 9.

Proof 2 Suppose that Cond. 5.1 is satis�ed, in other words, r(= hm + 1) is a prime number

not equal to p. Let p and d, namely the characteristic and a primitive h�th root of unity in F∗
r,

be respectively represented as the following powers of primitive elements g1 and g2 in F∗
r.

〈〈p〉〉 = 〈〈g1
a1〉〉 (0 ≤ a1 < r−1 = hm), 〈〈d〉〉 = 〈〈g2

a2〉〉 (0 ≤ a2 < r−1 = hm), (3.40)

where 〈〈t〉〉 denotes �t (mod r)� for a positive integer t. Consider the following set of the products.{〈〈
pidk

〉〉
: 0 ≤ i < m, 0 ≤ k < h

}
. (3.41)

Actually, the set in Eq. (3.41) becomes the same of Eq. (3.10) when a1 and a2 in Eq. (3.40)

satisfy the following relation.

gcd (gcd(a1, a2), hm) = 1. (3.42)

Thus, this thesis gives Cond. 5.2 as one of the existence conditions of type�〈h,m〉 GNB in Fpm

because the smallest a1 and a2 which satisfy Eq. (3.40) are respectively given as hm/e and m,

where e denotes the order of p in F∗
r.

Here, let a2 in Eq. (3.40) be �xed at the minimal, namely m. Then, in order to guarantee

that type�〈h,m〉 GNB exists in Fpm , a1 in Eq. (3.40) needs to satisfy the following relation.

gcd(gcd(a1,m), hm) = gcd(a1, gcd(m,hm)) = gcd(a1,m) = 1. (3.43)

Let a1 be represented by

a1 = bm + a′1 (0 ≤ b < h, 0 ≤ a′1 < m), (3.44)

then Eq. (3.43) is reduced with the Euclidean algorithm as follows.

gcd(a1,m) = gcd(a′1,m) = 1, (3.45)

The number of a′1's which satisfy Eq. (3.45) is given by ϕ(m). Thus, the number of a1's which

satis�es Eq. (3.43) is obtained as follows.

hϕ(m). (3.46)

On the other hand, reconsider a variable prime number p less than a positive integer t, then 〈〈p〉〉
in Eq. (3.40) is again given by

〈〈p〉〉 = 〈〈g1
a1〉〉 = i (0 ≤ a1 < r−1 = hm, 1 ≤ i ≤ r−1 = hm). (3.47)

According to Eq. (3.48), a1 and i correspond one�to�one with each other because the following

relation holds.

{〈〈ga1
1 〉〉 : 0 ≤ a1 < r−1 = hm} = {i : 1 ≤ i ≤ r−1 = hm} = F∗

r. (3.48)
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Thus, from Eq. (3.48) and Theos. 8, 9, the ratio of the number of p's with one of a1's is

obtained as follows.

πr,i(t)/π(t) ∼ (Li(t)/ϕ(r))/Li(t) ∼ 1/ϕ(r) = 1/hm. (3.49)

Thus, based on Eqs. (3.46), (3.49), the probability that Eq. (3.45) is satis�ed, in other words,

the existence probability of type�〈h,m〉 GNB in Fpm is given by

P(h,m) ∼ (hϕ(m))/(hm) = ϕ(m)/m. (3.50)

¤

In the same way, let PI�X(h,m) and PII�X(h,m) respectively denote the existence probabilities
of type I�X and II�X NBs. Then, they are obtained as follows, where h′ is h/2.

PI�X(h,m) ∼ ϕ(hm)/(hm), (3.51a)

PII�X(h,m) ∼

{
ϕ(hm)/(hm) + ϕ(h′m)/(h′m) (when m is odd),
ϕ(hm)/(hm) (when m is even),

(3.51b)

It is obvious that ϕ(m)/m is larger than ϕ(hm)/(hm) and ϕ(hm)/(hm) + ϕ(h′m)/(h′m). It
means that type�〈h,m〉 GNB will help to keep the minimal hmin small, compared to type I�X
NB and type II�X NB.

3.3.2 Evaluation with Existence Probabilities

The existence probability of each normal basis can be calculated with Theo. 7. The calculation
result is illustrated in Fig. 3.2, where the size of each h of type I�X, type II�X NBs and type�
〈h, m〉 GNB is not restricted. As shown in Fig. 3.2, only type�I NB and type�I NB can not
support a lot of pairs of characteristic p and m. Thus, if the e�ciencies of their CVMAs are not
strictly evaluated, it will be maintained that type I�X, type II�X NBs and type�〈h,m〉 GNB are
quite useful since they are available for most of pairs of p and m. Then, as indicated in Fig. 3.2,
there is no large di�erence among the existence probabilities of type I�X, type II�X NBs and
type�〈h,m〉 GNB.

However, actually type I�X, type II�X NBs and type�〈h,m〉 GNB have di�erent e�ciencies
corresponding to h. Hence, suppose that ν and ξ respectively denote M1/A1 and H1/A1, then
let us �rst con�rm the relation among the e�ciency of type�〈h,m〉 CVMA and the parameters
ν, ξ and h in each case, namely when h is odd and when h is even.

Case 1: Consider the case that h is odd. Type�〈h=1,m〉 CVMA, one of the most e�cient
type�〈h,m〉 CVMAs, has the following computatinal cost.

Mm(1) =
m(m+1)

2
M1 +

(
(m−1)(3m+2)

2

)
A1 =

(
m(m+1)

2
ν +

(m−1)(3m+2)
2

)
A1. (3.52)

The increased amount of the computational cost of type�〈h,m〉 CVMA compared to type�
〈h=1,m〉 CVMA is given by

Mm(h) − Mm(1) =
(

m(m−1)(h−1)
2

+ ξ

)
A1. (3.53)
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Thus, the ratio Rodd(h, m) of the increase is obtained as follows

Rodd(h,m) =
Mm(h) − Mm(1)

Mm(1)
=

h − 1 + 1
m(m−1)

m+1
m−1ν + 3 + 2

m

. (3.54)

Case 2: Consider the case that h is even. Type�〈h=2,m〉 CVMA, one of the most e�cient
type�〈h,m〉 CVMAs, has the following computational cost.

Mm(2) =
m(m+1)

2
M1 +

(
4m(m−1)

2

)
A1 =

(
m(m+1)

2
ν +

4m(m−1)
2

)
A1. (3.55)

When h is even, the increased amount of the computational cost of type�〈h,m〉 CVMA compared
to type�〈h=2,m〉 CVMA is given by

Mm(h) − Mm(2) =
(

m(m − 1)
2

h − 2m(m − 1)
2

)
A1. (3.56)

Thus, the ratio Rodd(h, m) of the increase is obtained as follows.

Reven(h,m) =
Mm(h) − Mm(2)

Mm(2)
=

h − 2
m+1
m−1ν + 4

. (3.57)

As described above, through the increased amount for m of the computational cost of type�〈h,m〉
CVMA compared to type�〈h=1, m〉 or type�〈h=2,m〉 CVMA, it is found that type�〈h,m〉
CVMA fatally becomes ine�cient when h is large. Thus, this thesis recommends the h's such
that both Rodd(h,m) and Reven(h,m) are somewhat small as practical parameters. According
to Sec. 3.2.2 (Table 3.3), an experimental result was obtained such that ν ≈ 8.0 and ξ ≈ 1.8 in
the 32�bit environment, and another result was obtained such that ν ≈ 5.5 and ξ ≈ 2.1 in the
64�bit environment. Then, the existence probability of each normal basis such that Rodd(h,m)
and Reven(h,m) are less than a certain threshold, namely from 0.1 to 0.5, becomes as Figs. 3.4,
3.5. These tables guarantee that the number of useful type�〈h,m〉 GNBs is larger than that of
type I�X and type II�X NBs. In other words, on the practical side, type�〈h,m〉 CVMA works
faster than type I�X and II�X CVMA. Here, let the existence probabilities in the 32�bit and
64�bit environments be compared, then according to Figs. 3.4, 3.5, it is found that the latters
form a more sharp zigzag shape than the formers. As the cause for this result, it is considered
that type�〈h,m〉 CVMA is greater in�uenced by h in the 64�bit environment compared to the
32�bit environment as describe in Sec. 3.2.2.

On the other hand, the expected value of hmin for every m of each normal basis can be also
calculated with Theo. 7. The calculation result is illustrated in Fig. 3.3. According to Fig.
3.3, the expected value of hmin for each m of type�〈h,m〉 GNB is smaller than those of type I�X
and type II�X NBs. Thus, it is said that type�〈h,m〉 CVMA will be averagely faster than type
I�X and type II�X CVMAs. However, the gained speed�up is averagely a few percents.
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Chapter 4

Arithmetic Operations to Provide Fast

Symmetric�key Cryptosystems

4.1 AES Algorithm Applied Basis Conversion

In encryption and decryption procedures of AES algorithm, a plaintext is split into 128�bit
blocks. Every block is described as the following 4× 4 matrix, whose each element is dealt with
as an element in the F28 . 

H0,0 H0,0 H0,2 H0,3

H1,0 H1,1 H1,2 H1,3

H2,0 H2,1 H2,2 H2,3

H3,0 H3,1 H3,2 H3,3

 (Hj,l ∈ F28). (4.1)

The original AES algorithm [7] represents an element in F28 with the polynomial basis {1, α, α2,
. . . , α6, α7}, where α is a zero of the irreducible polynomial f0(t) = t8+ t4+ t2+ t + 1 over F2.
Let H denote an element in the F28 , then this chapter arbitrarily represents H as Table 4.1.

This section introduces the encryption and decryption procedures of AES algorithm applied
basis conversion from the F28 to its isomorphic towering �eld. Although the thesis fundamentally
follows the approach in [26], some parts of the procedures are improved. In what follows, the
improved parts are clari�ed.

Table 4.1: Representation styles of an element in the F28

Style Representation (hj ∈ {0, 1})
basis in F28 h0 + h1α + h2α

2 + · · · + h6α
6 + h7α

7

vector [ h0 h1 h2 · · · h6 h7 ]
integer `h' (h = h0 + h12 + h222 + · · · + h626 + h727)

4.1.1 Encryption Procedure Applied Basis Conversion

0�th round: Only AddRoundKey is carried out. Then, each element of the 4 × 4 matrix is
processed as

C0,j,l =
(
Hj,l + K0,j,l

)
B (0 ≤ j, l < 4), (4.2)
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where K0,j,l is the j�th row and l�th column element of the 0�th round key (4 × 4 matrix), and
B denotes a basis conversion matrix from the F28 to its isomorphic towering �eld. C0,j,l in Eq.
(4.2) becomes an element in the isomorphic towering �eld. From there to the last round, each
element of the 4 × 4 matrix is dealt with as an element in the isomorphic towering �eld.

From 1�st to 2�nd last round: First, SubBytes is carried out. Then, each element of the
4 × 4 matrix is processed as

Gr,j,l =
(
Cr−1,j,l

)−1
B̄AB (0 ≤ j, l < 4), (4.3)

where r is the ordinal number of the round, B̄ denotes the inverse matrix of B, and A denotes
the A�ne transformation matrix [23]. B̄AB in Eq. (4.3) can be preliminarily calculated. Addi-
tionally, (Cr−1,j,l)−1 in Eq. (4.3) is the inverse element in the isomorphic towering �eld, and it
should be e�ciently calculated.

Next, ShiftRows, MixColumns, and AddRoundKey are carried out. In order to perform these
steps faster, this thesis applies a new approach di�erent from that in [26]. Actually, each element
of the 4 × 4 matrix can be processed as Eq. (4.4a) or (4.4b).

Cr,j,l =

((
Gr,〈j+1〉,〈l+j〉 + Gr,〈j+2〉,〈l+j〉

)
+

(
Gr,〈j+3〉,〈l+j〉 + (Kr,j,l + L)B

))
+

(
(`2'B)

(
Gr,j,〈l+j〉 + Gr,〈j+1〉,〈l+j〉

))
(0 ≤ j, l < 4), (4.4a)

Cr,j,l =

((
Gr,j,〈l+j〉 + Gr,〈j+2〉,〈l+j〉

)
+

(
Gr,〈j+3〉,〈l+j〉 + (Kr,j,l + L)B

))
+

(
(`3'B)

(
Gr,j,〈l+j〉 + Gr,〈j+1〉,〈l+j〉

))
(0 ≤ j, l < 4), (4.4b)

where 〈j〉 means �j mod 4�, Kr,j,l is the j�th row and l�th column element of the r�th round
key (4× 4 matrix), and L denotes the A�ne transformation vector [23]. In Eq. (4.4), `02'B and
`03'B can be preliminarily calculated, and (Kr,j,l + L)B can be calculated when the round key
is generated.

Last round: First, SubBytes is carried out. Then, each element of the 4×4 matrix is processed
as Eq. (4.3).

Next, ShiftRows and AddRoundKey are carried out. Then, each element of the 4 × 4 matrix
is processed as

C̃j,l = Gr,j,〈l+j〉B̄ + (Kr,j,l + L) (0 ≤ j, l < 4). (4.5)

Kr,j,l + L in Eq. (4.5) can be calculated when the round key is generated. C̃j,l in Eq. (4.5) is
dealt with in the same way as Hj,l, namely as an element in the F28 . The 4 × 4 matrix which
consists of C̃j,l in Eq. (4.5) forms a 128�bit block of the cipher text. This 128�bit block is the
same of that not applied basis conversion, namely that in the original AES algorithm.

4.1.2 Decryption Procedure Applied Basis Conversion

0�th round: Only AddRoundKey is carried out. Then, each element of the 4 × 4 matrix is
processed as

Cr−1,j,l =
(
C̃j,l + (Kr,j,l + L)

)
B (0 ≤ j, l < 4). (4.6)
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Kr,j,l + L in Eq. (4.6) can be calculated when the round key is generated. Cr−1,j,l in Eq. (4.6)
is an element in the isomorphic towering �eld. From there to the last round, each element of the
4 × 4 matrix is dealt with as an element in the isomorphic towering �eld.

From 1�st to 2�nd last round: First, InvShiftRows and InvSubBytes are carried out. Then,
each element of the 4 × 4 matrix is processed as

Gr,j,l =
(
Cr,j,〈l−j〉B̄ĀB

)−1
(0 ≤ j, l < 4), (4.7)

where Ā denotes the inverse A�ne transformation matrix [23]. B̄ĀB in Eq. (4.7) is preliminarily
calculated. Additionally, (Cr,j,lB̄ĀB)−1 in Eq. (4.7) is the inverse element in the isomorphic
towering �eld, and it should be e�ciently calculated.

Next, AddRoundKey and InvMixColumns are carried out. In order to perform these steps
faster, this thesis applies a new approach di�erent from that in [26]. For example, each element
of the 4 × 4 matrix can be processed as

Cr−1,j,l =

(
(`14'B)Gr,j,l + (`11'B)Gr,〈j+1〉,l

)
+

(
(`13')BGr,〈j+2〉,l +

(
(`9'B)Gr,〈j+3〉,l + Jr,j,l

))
, (4.8a)

Jr,j,l = (`14'Kr,j,l + `11'Kr,〈j+1〉,l + `13'Kr,〈j+2〉,l + `9'Kr,〈j+3〉,l + L)B, (4.8b)

where `14'B, `11'B, `13'B, and `9'B can be preliminarily calculated, and Jr,j,l can be calculated
when the round key is generated.

Last round: First, InvShiftRows and InvSubBytes are carried out. Then, each element of the
4 × 4 matrix is processed as Eq. (4.7).

Next, AddRoundKey is carried out. Then, each element of the 4 × 4 matrix is processed as

Hj,l = G1,j,lB̄ + K0,j,l (0 ≤ j, l < 4). (4.9)

4.2 Arithmetic Operations in Towering Field F(24)2

In the AES algorithm applied basis conversion from the F28 to F(24)2 , inversions and multiplica-
tions in F(24)2 are required as described in Eqs. (4.3), (4.4), (4.7) and (4.8). Thus, this section
introduces how to prepare F(24)2 and its sub�eld F24 , and e�cient arithmetic operations in these
extension �elds.

In the case of F(24)2 , �rst construct F24 , then 2�nd tower over the F24 . Most of researchers
[26, 27, 28, 29, 30, 31, 32] use normal bases and polynomial bases to prepare extension �elds and
towering �elds. This thesis also adopts normal bases to achieve 2�nd towering over F24 . On the
other hand, this thesis adopts an innovative basis to construct F24 . This section introduces the
detail of the adopted bases and the arithmetic operations.

4.2.1 Quartic Extension Field F24

Irreducible polynomial and an innovative basis: There exist 3 kinds of quartic irreducible
polynomials over F2 as follows.

f1(t) = t4+t+1, f2(t) = t4+t3+1, f3(t) = t4+t3+t2+t+1. (4.10)
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Normal bases and polynomial bases in F24 can be distinguished from a zero of these poly-
nomials. For a zero β of f1(t), the set {β, β2, β22

, β23} does not form normal bases; however,
{1, β, β2, β3} forms a polynomial basis. Rudra et al. [26] and Joen et al. [32] have shown that
the polynomial basis e�ciently carries out arithmetic operations, especially inversion, in F24 .

On the other hand, for a zero β of f3(t), the sets {β, β2, β22
, β23} and {1, β, β2, β3} respectively

form a normal basis and a polynomial basis. The normal basis is especially called type�I optimal
normal basis (ONB) [17], and it carries out arithmetic operations in F24 as e�ciently as in Rudra
et al.'s and Jeon et al.'s implementations. However, this thesis adopts an innovative basis instead
of type�I ONB and the polynomial basis. The basis is the union {β, β2, β22

, β23
, 1} of type�I ONB

{β, β2, β22
, β23} and {1}, and it can provide faster arithmetic operations than the type�I ONB

and the polynomial basis. This thesis especially calls it Redundantly Represented Basis (RRB).
In what follows, the properties of RRB is described.

β which is a zero of f3(t) has the following relations.

f3(β) = β4+ β3+ β2+ β + 1 = 0,⇔ f3(β) = β + β2+ β22
+ β23

+ 1 = 0, (4.11a)

∵ (β + 1)f3(β) + 1 = β5 = 1. (4.11b)

According to Eq. (4.11b), type�I ONB {β, β2, β22
, β23} is described as follows.

{β, β2, β22
, β23} = {β, β2, β3, β4}. (4.12)

Because β, β2, β22
, β23

are conjugate zeros of f3(t), 4 kinds of polynomial bases are considered
according to Eq. (4.11b) as follows.

{1, β, β2, β3} = {1, β, β2, β3 }, (4.13a)

{1, β2, (β2)2, (β2)3} = {1, β, β2, β4}, (4.13b)

{1, β22
, (β22

)2, (β22
)3} = {1, β2, β3, β4}, (4.13c)

{1, β23
, (β23

)2, (β23
)3} = {1, β, β3, β4}. (4.13d)

According to Eqs. (4.12), (4.13), a basis is obtained by removing some one element from the set
{1, β, β2, β3, β4}. On the other hand, RRB {β, β2, β22

, β23
, 1}={1, β, β2, β3, β4} uses all. Thus, the

conversion from RRB to the bases in Eqs. (4.12), (4.13) can be easily achieved from Eq. (4.11a).

Let D denote an element in F24 , then D is represented with RRB as Eq. (4.14a).

D = d0β + d1β
2+ d2β

22
+ d3β

23
+ d4 (dj ∈F2). (4.14a)

= (d0 + d4)β + (d1 + d4)β2+ (d2 + d4)β22
+ (d3 + d4)β23

(4.14b)

= (d4 + d2) + (d0 + d2)β + (d1 + d2)β2+ (d3 + d2)β3. (4.14c)

As described above, according to Eq. (4.11a), D represented with RRB can be easily converted
to that represented with type�I ONB and the polynomial bases in Eqs. (4.12), (4.13a) as Eqs.
(4.14b), (4.14c).

In principle, RRB in F24 can not uniquely represent an element in F24 . For example, D =
β + β2 is also described as D = β22

+ β23
+ 1 according to Eq. (4.11a). However, D is uniquely

represented when the Hamming weight of D is restricted to be equal to or less than 2. On
the other hand, the Hamming weight of D can be easily reduced to be equal to or less than 2
according to Eq. (4.11a) when it is more than 2.
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Arithmetic Operations: Let E denote an element in F24 , then E is represented with RRB
as follows.

E = e0β + e1β
2+ e2β

22
+ e3β

23
+ e4 (ej ∈F2). (4.15)

A multiplication M =D×E is given as follows. Note that it is derived from type�I Cyclic Vector
Multiplication Algorithm (CVMA) [16] and Eq. (4.14).

M = m0β + m1β
2+ m2β

22
+ m3β

23
+ m4 (mj ∈F2)

= (d4e0+d2e1+d1e2+d3e3+d0e4)β + (d0e0+d4e1+d3e2+d2e3+d1e4)β2

+ (d3e0+d1e1+d4e2+d0e3+d2e4)β22
+ (d1e0+d0e1+d2e2+d4e3+d3e4)β23

+ (d2e0+d3e1+d0e2+d1e3+d4e4) (4.16a)

= (a1,2b1,2+a0,4b0,4)β + (a2,3b2,3+a1,4b1,4)β2 + (a0,3b0,3+a2,4b2,4)β22

+ (a0,1b0,1+a3,4b3,4)β23
+ (a0,2b0,2+a1,3b1,3), (4.16b)

aj,l = dj + dl, bj,l = ej + el (0 ≤ j < l ≤ 4). (4.16c)

The critical path delay of the multiplication circuit given by Eq. (4.16b) is 1TAND + 2TXOR. On
the other hand, that given by Eq. (4.16a) is 1TAND +3TXOR. Thus, in principle, a multiplication
in F24 should be calculated as Eq. (4.16b) (Fig. 4.2).

From here on, suppose that E is a non�zero constant element in F24 , then this subsection
considers a multiplication by the constant element E. When the Hamming weight of E is
restricted to be equal to or less than 2, namely 1 or 2, E can be classi�ed as Table 4.2. According
to Eq. (4.16a), a multiplication N = D×E can be carried out with theoretically no delay when
E belongs to the class (I) of Table 4.2, that is, the Hamming weight of E is 1. On the other
hand, it can be calculated with 1TXOR when E belongs to the class (II) of Table 4.2, that
is, the Hamming weight of E is 2. For example, multiplications N0 = D × (1, 0, 0, 0, 0) and
N1 = D × (1, 1, 0, 0, 0) are respectively given from Eq. (4.16a) as follows.

N0 = d4β + d0β
2+ d3β

22
+ d1β

23
+ d2, (4.17a)

N1 = (d2 + d4)β + (d0 + d4)β2+ (d3 + d1)β22
+ (d0 + d1)β23

+ (d2 + d3). (4.17b)

A squaring S = D2 can be carried out with theoretically no delay as follows.

S = d3β + d0β
2+ d1β

22
+ d2β

23
+ d4. (4.18)

From here on, suppose that D is a non�zero element in F24 , then an inversion I = D−1 is
given as follows (Fig. 4.3). See Sec. 4.4 about how to derive it.

I = i0β + i1β
2+ i2β

22
+ i3β

23
+ i4 (ij ∈F2)

= (a2,4+a0,4a1,4a1,3)β + (a3,4+a1,4a2,4a0,2)β2 + (a0,4+a2,4a3,4a1,3)β22

+ (a1,4+a3,4a0,4a0,2)β23
+ (a0,4a2,4a1,3+a1,4a3,4a0,2), (4.19a)

aj,l = (dj + dl) (0 ≤ j < l ≤ 4), (4.19b)

where d (d ∈ F2) means �NOT d�.
The critical path delay of each arithmetic operation circuit with RRB is given as Table 4.3.

As shown in Table 4.3, compared to Rudra et al.'s [26] and Jeon et al.'s [32] implementations,
RRB can reduce each critical path delay of a multiplication circuit and a squaring circuit in F24

by 1TXOR.
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Table 4.2: Classi�cation of non�zero elements in F24

Class (I) (II)

(1, 0, 0, 0, 0) (1, 1, 0, 0, 0), (1, 0, 1, 0, 0)
(0, 1, 0, 0, 0) (0, 1, 1, 0, 0), (0, 1, 0, 1, 0)

Element in F∗
24

† (0, 0, 1, 0, 0) (0, 0, 1, 1, 0), (0, 0, 1, 0, 1)
(0, 0, 0, 1, 0) (0, 0, 0, 1, 1), (1, 0, 0, 1, 0)
(0, 0, 0, 0, 1) (1, 0, 0, 0, 1), (0, 1, 0, 0, 1)

Hamming weight 1 2
† (e0, e1, e2, e3, e4) denotes an element E in Eq. (4.15).

Table 4.3: The critical path delay of each arithmetic operation circuit in F24

Multiplication Multiplication
Implementation Multiplication Squaring Inversion by the class (I) by the class (II)

element element

Rudra al.'s [26]
(1, 3)† (0, 1)† � �

Jeon al.'s [32] (2, 2)†

With RRB (1,2)† (0,0)† (0, 0)† (0, 1)†

† (j, l) means jTAND + lTXOR.
‡ The delay when TAND≥TXOR is shown. That when TAND≤TXOR is given as (1, 3).

4.2.2 2�nd Towering Field F(24)2

Irreducible Polynomial and Normal Basis: In the same way as Sec. 4.2.1, this subsection
�rst considers the setting of irreducible polynomial. Let a quadr- atic polynomial over F24 be
described as follows.

g(t) = t2 + µt + ν (µ, ν ∈ (F24 − {0})). (4.20)

In order that g(t) is irreducible over F24 , g(t) needs to satisfy that µ2/ν 6∈ F22 . Suppose that γ is
a zero of g(t), then the sets {γ, γ16} and {1, γ} respectively form a normal basis and a polynomial
basis in F(24)2 . Among these bases, this subsection focuses on the normal basis only.

Arithmetic Operations: Let C denote an element in F(24)2 , B denote a basis conversion
matrix from the F28 to its isomorphic towering �eld F(24)2 , and `j' (0 ≤ j < 256) denote an
element in F28 described by the integer style of Table 4.1. Then, C and `j'B is represented with
the normal basis {γ, γ16} as follows.

C = Dγ + Eγ16 (D,E ∈ F24), `j'B = Qjγ + Rjγ
16 (Qj , Rj ∈ F24), (4.21)

where D, E, Qj , and Rj are represented with RRB in F24 . Then, a multiplication W = C× `j'B
is given as follows. See Sec. 4.4 about how to derive it.

W = Y γ + Zγ16 (Y,Z ∈ F24) = {Dδj + Eεj}γ + {Dεj + Eηj}γ16, (4.22a)

δj = Qj(µ +
ν

µ
) + Rj ·

ν

µ
, εj = (Qj + Rj)·

ν

µ
, ηj = Qj ·

ν

µ
+ Rj(µ +

ν

µ
), (4.22b)
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where δj , εj , and ηj can be preliminarily calculated. According to Tables 4.2, 4.3, the critical
path delay of the multiplication circuit given by Eq. (4.22a) is at most 2TXOR even if δj , εj , and
ηj are assigned with arbitrary elements.

From here on, suppose that C is a non�zero element in F(24)2 , then with Itoh�Tsujii inversion

Algorithm (ITA) [35], an inversion X = C−1 =(C · C16)−1C16 is given as follows (Fig. 4.6(a)).
Note that it is derived by generalizing the approach in [30], in detail, by appending a µ2�
multiplication in F24 .

X = Y γ + Zγ16 (Y,Z ∈ F24) = {Eγ + Dγ16}/{DEµ2 + (D+E)2ν}, (4.23)

where each multiplication by µ2 and ν can be carried out with theoretically no delay according
to Table 4.3 when the following condition is satis�ed.

Condition 6 Both µ2 and ν belong to the class (I) of Table 4.1.

Thus, this thesis considers that both µ2 and ν are assigned with the class (I) elements. Then,
there exist 20 irreducible polynomials over F24 which satis�es Cond. 6, and the critical path
delay of the inversion circuit in F(24)2 is given as 4TAND + 7TXOR from Table 4.3 and Fig.
4.6(a). As shown in Table 4.4, the circuit of this work can carry out an inversion in the towering
�eld isomorphic to the F28 faster than those of the others. On the other hand, the circuit size
is given as Table 4.5 (before downsizing). As shown in Table 4.5, the inversion circuit in F(24)2

of this work (before downsizing) uses more XOR gates than that of Jeon et al. Thus, the next
subsection considers how to downsize the inversion circuit in F(24)2 .

4.2.3 Theoretical Downsizing the Inversion Circuit in F(24)2

Focus on Fig. 4.6(a), then it is seeable that the wire (i) directly connects to the multiplication
circuit (I) and (II), the wire (ii) connects through the µ2�multiplication circuit to the multiplica-
tion circuit (I) and directly connects to the multiplication circuit (III), and the wire (iii) directly
connects to the multiplication circuit (II) and (III). Thus, for the inversion circuit in F(24)2 , a
part, namely 1�st part shown in Fig. 4.2(a), of each multiplication circuit in F24 can be shared
with each other as Fig. 4.6(b). Then, the circuit size can be reduced by 30XOR gates according
to Table 4.5. As a result, the inversion circuit in F(24)2 of this work (after downsizing) uses less
logic gates than that of Jeon et al.

Table 4.4: The critical path delay of an inversion circuit in towering �eld

Towering �eld Implementation Critical path delay

Satoh and Morioka et al.'s [27, 28]
4TAND + 17TXOR

F((22)2)2
Mentens's et al. [29]

Canright's [30] 4TAND + 15TXOR

Nogami et al.'s [31] 4TAND + 14TXOR

Rudra et al.'s [26]
4TAND + 10TXOR

F(24)2 Jeon et al.'s [32]

This work 4TAND + 7TXOR
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Table 4.5: The number of logic gates for an inversion circuit in F(24)2

Implementation Before downsizing After downsizing

Rudra et al.'s [26] 60AND + 72XOR

Jeon et al.'s [32] 58AND + 67XOR + 2OR

This work 42AND + 98XOR + 2XNOR 42AND + 68XOR + 2XNOR

4.3 Basis Conversion between F28 and F(24)2

This section evaluates the calculation e�ciencies given by basis conversion matrices for Eq. (4.3)
(namely, SubBytes), Eq. (4.4) (namely, ShiftRows, MixColumns, and AddRoundKey), Eq. (4.7)
(namely, InvShiftRows and InvSubBytes), and Eq. (4.8) (namely, InvMixColumns and AddRoundKey).

4.3.1 Calculation E�ciency of Eqs. (4.3) and (4.7)

This subsection considers each multiplication by B̄AB and B̄ĀB in Eqs. (4.3) and (4.7), where
B, B̄, A, and Ā respectively denote a basis conversion matrix from the F28 to its isomorphic
towering �eld F(24)2 , its inverse matrix, A�ne transformation matrix, and the inverse A�ne
transformation matrix. In the case of adopting RRB described in Sec. 4.2.1, both conversion
matrices B̄AB and B̄ĀB from F(24)2 over the F24 constructed by RRB to the same F(24)2 are
required. Actually, these conversion matrices are given by a basis conversion matrix B from the
F28 to F(24)2 over the F24 constructed by type�I ONB of Eq. (4.12) or the polynomial bases of
Eq. (4.13) according to Eq. (4.14).

In order to show an example, suppose an extension �eld F24 constructed by type�I ONB
{β, β2, β22

, β23}, a �eld F(24)2 which 2�nd towers over the F24 with the normal basis {γ, γ16}, and
a basis conversion matrix B from the F28 to the F(24)2 . Then, B̄AB in Eq. (4.3) is represented
as the left�hand equation in Eq. (4.24), and an example of the B̄AB is given as the right�hand
equation in Eq. (4.24).

B̄AB=



u0,0 u0,1 u0,2 . . . u0,6 u0,7

...
. . .

...

u3,0 u3,1 u3,2 · · · u3,6 u3,7

v0,0 v0,1 v0,2 . . . v0,6 v0,7

...
. . .

...

v3,0 v3,1 v3,2 · · · v3,6 v3,7


, B̄AB=



1 1 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 0 0 1 0 1 1 0
0 0 0 0 0 1 0 0
0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (4.24)

Let Cr−1,j,l in Eq. (4.3) be corresponding to a non�zero element C = Dγ + Eγ16 (D,E ∈ F24)
which is the input of the inversion circuit of Fig. 4.6(b), and let (Cr−1,j,l)−1 in Eq. (4.3) be
corresponding to X =C−1 =Y γ+Zγ16 (Y,Z ∈ F24) which is the output of the inversion circuit of
Fig. 4.6(b). In the case that the elements Y and Z in F24 are represented with RRB as shown in
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Fig. 4.6(b), converting the representations from RRB to type�I ONB is easy from Eq. (4.11a) as

Y = y0β + y1β
2+ y2β

22
+ y3β

23
+ y4

= (y0 + y4)β + (y1 + y4)β2+ (y2 + y4)β22
+ (y3 + y4)β23

, (4.25a)

Z = z0β + z1β
2+ z2β

22
+ z3β

23
+ z4

= (z0 + z4)β + (z1 + z4)β2+ (z2 + z4)β22
+ (z3 + z4)β23

. (4.25b)

Then, a multiplication by B̄AB is given as Eq. (4.26), and the circuits of Eq. (4.26) is drawn
as Fig. 4.1.

XB̄AB=



y0 + y4

y0 + y1

(y0 + y4) + (z0 + z4)
(y0 + y1) + (y2 + y4)
(y0 + y1) + (z0 + z4)
(y0 + y1) + (y2 + y3)(
(y0 + y1) + (y2 + y4)

)
+ (z0 + z4)

(y0 + y1) + (z0 + z1)



T

. (4.26)

-±°²¯
+ ¾

-±°²¯
+

y0 y1

-±°²¯
+ ¾

¾

y3y2

6

±°²¯
+ : XOR

(a) 6�th row

-±°²¯
+ ¾

y0 y1 y4

-±°²¯
+ ¾

-±°²¯
+ ¾

y2

6

-±°²¯
+ ¾

z4z0

-±°²¯
+ ¾

(b) 7�th row

Figure 4.1: Example images of circuits for Eq. (4.26)

According to the above consideration, a conversion matrix B̄AB from the F(24)2 over the F24

constructed by RRB to the same F(24)2 over the F24 constructed by RRB (actually, type�I ONB)
is obtained.

A row of B̄AB can be represented with the following 2 vectors from Eq. (4.24).

Uj = [ uj,0 uj,1 uj,2 uj,3 ]T , Vj = [ vj,0 vj,1 vj,2 vj,3 ]T . (4.27)

Let Hw(U) denote the number of �1� in the vector U , namely the Hamming weight of U . Accord-
ing to Eq. (4.26) and Fig. 4.1, the critical path delay of the circuit multiplying B̄AB is equal to
or less than 2TXOR when all vectors Uj and Vj (0 ≤ j < 8) satisfy that Hw(Uj) :Hw(Vj) 6= 3:1,
1:3, and Hw(Uj)+Hw(Vj) ≤ 4; otherwise, it is 3TXOR. The probability when all column vectors
of B̄AB satisfy that Hw(Uj) :Hw(Vj) 6= 3:1, 1:3, and Hw(Uj) + Hw(Vj) ≤ 4 is given as

(8C0 + 8C1 + 8C2 + 8C3 + 4C4 · 4C0 + 4C2 · 4C2 + 4C0 · 4C4)8/28×8 ≈ 0.47%. (4.28)

Note that the above probability is not strictly accurate because a basis conversion matrix must
be a regular matrix.
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On the other hand , the above consideration of a multiplication by B̄AB in Eq. (4.3) is also
available for a multiplication by B̄ĀB in Eq. (4.7).

4.3.2 Calculation E�ciency of Eqs. (4.4) and (4.8)

The calculation circuit of Eq. (4.4a) is shown in Fig. 4.4. Naturally, the calculation circuit of
Eq. (4.4b) can be drawn in the same way as Fig. 4.4. According to Fig. 4.4, the calculation
e�ciency of Eq. (4.4) depends on the element `2'B or `3'B in F(24)2 . In more detail, when a
multiplication by either `2'B or `3'B can be carried out in 1TXOR, the critical path delay of the
calculation circuit of Eq. (4.4) is 3TXOR; otherwise, it is 4TXOR since each multiplication by `2'B
and `3'B needs at most 2TXOR according to Sec. 4.2.2.

On the other hand, the calculation e�ciency of Eq. (4.8) depends on the elements `14'B,
`11'B, `13'B, and `9'B in F(24)2 . This section proposes how to �nd the B such that the critical
path delay of the calculation circuit of Eq. (4.8) is 4TXOR. In order to achieve the above proposal,
according to Eq. (4.22a), both an element among δ14, δ11, δ13, δ9, ε14, ε11, ε13 and ε9 of Eq.
(4.22b), and an element among ε14, ε11, ε13, ε9, η14, η11, η13 and η9 of Eq. (4.22b) must be a
zero element or the class (I) element of Table 4.2. For example, when ε9 is a zero element or the
class (I) element, the calculation of Eq. (4.8) can be carried out as Fig. 4.5, where Dj,l and Ej,l

denote elements in F24 which satisfy that Gr,j,l = Dj,lγ + Ej,lγ
16, Yj,l and Zj,l denote elements

in F24 which satisfy that Cr−1,j,l = Yj,lγ +Zj,lγ
16, and Uj,l and Vj,l denote elements in F24 which

satisfy that Jr,j,l = Uj,lγ + Vj,lγ
16.

4.3.3 More Miscellaneously Mixed Basis (MMMB)

This thesis tries for the following goals.

Goal 1: Each multiplication by B̄AB and B̄ĀB in Eqs. (4.3) and (4.7) is carried out in
2TXOR.

Goal 2: The calculation of either Eq. (4.4a) or Eq. (4.4b) is carried out in 3TXOR.

Goal 3: The calculation of Eq. (4.8) is carried out in 4TXOR.

In order to achieve the above goals, it is important that an e�cient basis conversion matrix B
among a lot of prepared basis conversion matrices Bs is selectable. As an e�cient technique
to prepare more Bs, Nogami et al. have proposed Mixed Bases (MB) [31], which is applied
to an implementation with F((22)2)2 in [31]. This subsection �rst considers to apply MB to an
implementation with F(24)2 .

For a multiplication in F(24)2 in Eq. (4.8), consider the following multiplication instead of
Eq. (4.22a). See Sec. 4.4 about how to derive it.

W = Y + Zγ (Y,Z ∈ F24) = {Dδj + Eεj}γ + {Dζj + Eηj}γ16, (4.29a)

δj = (Qj + Rj)ν, εj = Qjν + Rj(µ2 + ν), ζj = Qjµ, ηj = Rjµ, (4.29b)

where δj , εj , ζj , and ηj can be preliminarily calculated. In Eq. (4.29a), the normal basis {γ, γ16}
is adopted for the input in the same way of Eq. (4.22a). On the other hand, the polynomial
basis {1, γ} is adopted for the output instead of the normal basis {γ, γ16}. The critical path
delay of this multiplication circuit in F(24)2 is considered in the same way of that of Eq. (4.22a)
(See Sec. 4.3.2). This multiplication circuit in F(24)2 can provide conversion matrices B̄ĀBs
from F(24)2 2�nd towering with not only the normal basis {γ, γ16} but also the polynomial basis
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{1, γ}. However, the number of B̄ĀBs prepared by this technique is not enough to perfectly
achieve the above goals. Thus, this section improves MB.

As described in Sec. 4.3.1, in the case that F24 is constructed by RRB, the basis conversion
matrices Bs when F24 are constructed by type�I ONB of Eq. (4.12) and the polynomial bases
of Eq. (4.13) are available. In more detail, a combination of two bases among the bases of Eqs.
(4.12), (4.13) can be used to represent an element in F(24)2 . Let C denote an element in F(24)2 .

For example, consider the combination of the normal basis {β, β2, β22
, β23} and the polynomial

basis {1, β, β2, β3}, then C is represented with the combination as

C = (d0β + d1β
2+ d2β

22
+ d3β

23
)γ + (e0 + e1β + e2β

2+ e3β
3)γ16 (dj , ej ∈F2). (4.30)

By only adopting the combinations as above, 20 × 5 × 5 × 5 × 5 = 12,500 kinds of B̄ABs and
B̄ĀBs can be respectively prepared. In this thesis, the technique to adopt di�erent bases for the
input and output of arithmetic operation in F(24)2 and to use a combination of di�erent bases in
F24 is especially called More Miscellaneously Mixed Bases (MMMB).

Actually, by using MMMB, some B̄ABs and B̄ĀBs to achieve Goal 1, and some Bs to
achieve Goal 3 can be found; however, no `2'Bs and `3'Bs to achieve Goal 2 can be found.
Thus, in this case, the calculation delay of Eq. (4.4) becomes 4TXOR, not 3TXOR. This issue will
be kept as a future work.

By adopting RRB and MMMB as described in this chapter, the critical path delays of the
encryption and decryption procedures of AES algorithm are shown as Tables 4.6, 4.7. Then,
each round of the encryption procedure can be carried out in 4TAND + 13TXOR. On the other
hand, each round of the decryption procedure also can be carried out in 4TAND + 13TXOR.

Table 4.6: The critical path delay of the encryption procedure of AES

Implementaion
SubBytes

MixColumns AddRoundKey
Inversion Others

Rudra et al.'s [26] (4, 10)†
no data

Satoh and Morioka et al.'s [27, 28] (4, 17)† (0, 7)† (0, 1)†

Jeon et al.'s [32] (4, 10)† (0, 11)†

This work (4,7)† (0,2)† (0,4)†

† (j, l) means jTAND + lTXOR.

Table 4.7: The critical path delay of the decryption procedure of AES

Implementaion
SubBytes

MixColumns AddRoundKey
Inversion Others

Jeon et al.'s [32] (4, 10)† (0, 10)† (0, 7)† (0, 1)†

This work (4,7)† (0,2)† (0,4)†

† (j, l) means jTAND + lTXOR.
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4.4 Derivation of Eqs. (4.19), (4.22), and (4.29)

Eq. (4.19) is derived with ITA [35] as

I = D−1 = (D · D4)−1D4 = (D · D22
)−1D22

= {(d0β + d1β
2+ d2β

22
+ d3β

23
+ d4)(d2β + d3β

2+ d0β
22

+ d1β
23

+ d4)}2

× (d2β + d3β
2+ d0β

22
+ d1β

23
+ d4) ( ∵ Eq. (4.18), D ·D22 ∈ F22)

= {(d1d2+d2d0+d0d3+d3d4+d4d1)(β+β22
)

+ (d0d1+d1d3+d3d2+d2d4+d4d0)(β2+β23
) + (d0+d1+d2+d3+d4)}

× (d2β + d3β
2+ d0β

22
+ d1β

23
+ d4) ( ∵ Eqs. (4.16a), (4.18))

= (a2,4+a0,4a1,4a1,3)β + (a3,4+a1,4a2,4a0,2)β2 + (a0,4+a2,4a3,4a1,3)β22

+ (a1,4+a3,4a0,4a0,2)β23
+ (a0,4a2,4a1,3+a1,4a3,4a0,2) ( ∵ Eqs. (4.16a)), (4.31a)

aj,l = (dj + dl) (0 ≤ j < l ≤ 4), (4.31b)

On the other hand, because γ and γ16 in Eq. (4.22a) are zeros of g(t) in Eq. (4.20), the
following relations are obtained with the Vieta's formulas.

γ + γ16 = µ, γ · γ16 = ν =
ν

µ
·(γ + γ16). (4.32)

Thus, Eq. (4.22) is derived as

W = C × `j'B = (Dγ + Eγ16)(Qjγ + Rjγ
16)

= (D + E)(Qj + Rj)(γ · γ16) + DQj(γ + γ16)γ + ERj(γ + γ16)γ16

= (D + E)(Qj + Rj)·
ν

µ
·(γ + γ16) + DQj ·µ·γ + ERj ·µ·γ16 ( ∵ Eq. (4.32))

= {Dδj + Eεj}γ + {Dεj + Eηj}γ16, (4.33a)

δj = Qj(µ +
ν

µ
) + Rj ·

ν

µ
, εj = (Qj + Rj)·

ν

µ
, ηj = Qj ·

ν

µ
+ Rj(µ +

ν

µ
). (4.33b)

On the other hand, Eq. (4.29) is derived in the same way.
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Chapter 5

Conclusion

This thesis described as follows:
Chap. 2 brie�y reviewed group and �nite �eld theories.
Chap. 3 exteneded CVMA technique for type�〈h,m〉 GNB. As the result, this extension

improved some ine�cient situations because it is possible that hmin becomes smaller by this
expansion. After that, in order to theoretically obtain the tendency of the computational com-
plexity of CVMA with respect to extension degrees, this chapter proposed an important theorem
such that the existence probability of type�〈h,m〉 GNB in Fpm and the expected value of hmin

can be explicitly obtained. Then, this chapter demonstrated the e�ciency di�erence for hmin

between type I�X and II�X CVMAs and the CVMA expanded for type�〈h,m〉 GNBs.
Chap. 4 proposed RRB as how to make arithmetic operations in F(24)2 more e�cient, and

MMMB as how to �nd more e�cient basis conversion matrices. By utilizing RRB and MMMB,
this chapter theoretically showed that the encryption and decryption circuits of AES can be
provided by the critical path delay 4TAND + 13TXOR.
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