Studies on the Nodule Bacteria. VIII.

Influence of Ash Content of the Nodules on the Growth of Nodule Bacteria with a Special Reference to the Titanium Salts.

By

Arao Itano and Akira Matsuura.

[Feb. 25, 1937.]

In a preceding paper¹⁾, it was reported that the nodules of leguminous plants stimulated the growth of nodule bacteria best of all the parts used. In this paper, the influence of ash contents in the nodules was investigated with a special reference to the titanium salts, and the results are presented.

It was reported by Konishi and his co-worker²⁾ that the nodules are rich with titanium as their results of spectrum analysis, and that the addition of titanium increased the formation of nodules and it was suggested that titanium may have some intimate relation with the physiological activities of nodule bacteria.

Experimental.

I. Cultures Used :

The cultures were the same as used in the previous investigation, namely Nodule bacterial strains A, B and C of Genge and one of each bean and clover.

II. Chemical Analysis of the Nodules and other Parts of Bean Plant:

The samples were burnt to ashes and analysed for various inorganic constituents, as noted in table 1, in the soluble portion, in hot hydrochloric acid. Titanium was determined by Hildebrand's^{4),5)} method which is carried out as follows: the HCl solution is evaparated to dryness and taken up with KHSO₄ solution to which H₂O₂ is added and the quantity of titanium is determined colorimetrically. The results of analysis are shown in Table 1.

(See Table 1 on next page.)

Table 1 indicates that the ash content was largest in leaves and stems which amounted to 8.016 percent and the least in the nodules, 3.013 percent on the dry matter basis. The insoluble matter in hot HCl was rather high in the roots and

Table 1.

Inorganic Constituents in various Parts of Bean Plants.

		Dry n	natter.		Ash.					
Constituents.	Seeds.	Stem and leaves.	Roots.	Nodules.	Seeds.	Stem and leaves.	Roots.	Nodules		
Ash.	(%) 4.285	(%) 8.016	(%) 4.947	(%) 3.013	100,000	(%) 100,000	(%) 100,000	100.000		
Insol. matter in HCl.	0.857	0.865	0.617	0,202	1.330	10.791	12.472	6.704		
SO ₃	0.011	0.188	0.101	0.037	0.252	2.340	2.038	1.221		
Fe ₂ O ₃	0.014	0.023	0,053	0.031	0.320	0.287	1.063	1.019		
CaO	0.230	0.898	0.458	0.335	5.356	11.199	9.266	11.112		
Na ₂ O	0.418	0.799	0.632	0.406	9.757	9.971	12.775	13.468		
K ₂ O	1.276	1.299	0.934	0.668	29.767	16.201	18.874	22.184		
MgO	0.443	0.959	0.418	0.411	10,336	11.966	8.450	13.641		
P ₂ O ₅	1.300	2.340	1.044	0.671	30.338	29.189	21.100	22.273		
TiO ₂	0,000	0.000	trace.	trace.	0.000	0.000	trace.	trace.		

leaves-stems while very low in the seeds. The sulfate salts were low in all parts but comparatively high in the leaves and stems. The iron content was also rather small except in the roots and nodules which contained comparatively large amount. The calcium content was highest in the seeds. Na2O was found in the order of nodules, roots, leaves and stems and seeds while the distribution of K2O was different, the order being the seeds, nodules, roots, leaves and stems; MgO was highest in the nodules and lowest in the roots; P2O5 was highest in the seeds and least in the roots; TiO2 was found only in trace in the roots and nodules. As noted above, a considerable amount of P2O5, K2O, Na2O, MgO and CaO were found while the others were very small quantity. The presence of MgO in the nodules is noteworthy although it was found in other parts as well, so that it may not have special significance on the nodule bacteria. However it is worthy to note that even a trace of TiO2 was found only in the roots and nodules. Consequently further quantitative determination of TiO2 was carried out by extracting it with KHSO4 directly from the ash instead of the hot HCl solution since it is difficultly dissolved in hot HCl. The results are given in Table 2.

Table 2.

Titanium Contents in various Parts of Bean Plants. (P. P. M.)

	Seeds.	Stem and leaves.	Roots.	Nodules
Dry matter. ·	0,00000	0.43458	1.73059	1.54448
Ash. · · · ·	0.00000	5.52502	34.45304	52,31001

As shown above, a small quantity of TiO₂ was found in all parts except the seeds, and greatest in the nodules followed by the roots.

1.) Influence of ash constituents of the bean nodules on the growth of nodule bacteria.

In place of the yeast extract, the ash corresponding to 1 percent of the original nodule was added to the mannit agar medium, and the growth of nodule bacteria was examined by the naked eyes and also by the weight of bacterial cells. The results are given in Table 3.

Table 3.

Influence of Ash Constituents of Bean Nodules on the Growth of Genge,
Bean and Clover Nodule Bacteria.

Nodule	Substance -	Rate	e of grov	wth by	days.	Weight of bacteria
bacteria.	added.	2	4	7	Sum of +.	
	Control. · ·	+	+	+	3	2.1
0	Yeast. · · ·	+	1111	##	9	5.4
Genge Strain A.	1% Nodule. ·	+	##	*****	11	14.8
Swall A.	A	+	+	+	3	1.4
	Ash { A. · · B. · ·	+	+	+	3	2.8
	Control. · ·	+	+	+	3	6.9
0	Yeast. · · ·	+	##	##	8	11.3
Genge Strain B.	1% Nodule. ·	+	##	###	11	17.4
Buam D.	Ash { A. · ·	+	+	+	3	3.4
	Asn B. · ·	+	+	+	3.	4.6
	Control. · ·	+	+	+	3	3.2
0	Yeast. · · ·	+	1111	###	9	11.7
Genge Strain C.	1% Nodule. ·	+	1111	11111	11	13,4
Determ C.	Anh (A	+	+	+	3	5.2
	Ash { A. · · · B. · · ·	+	+	+	3	3.0
	Control. · ·	+	++	++	5	5.8
	Yeast. · · ·	+	##	HH	10	12.1
Bean.	1% Norlule. ·	+	***	###	11	18.4
	Ash { A. · ·	+	+	+	3	5.0
	B	+	+	+	3	4.5
	Control. · ·	+	++	++	5	2.6
	Yeast. · · ·	++	###	HHH	11	9.4
Clover.	1% Nodule. ·	++	IHH	11111	13	14.8
	Ash { A. · ·	+	++	++	5	3.7
	B. · ·	+	++	##	6	5.0

Table 3 indicates that the addition of nodules stimulated the growth very markedly which was followed by the yeast extracts while the ash did not show any benefical effect and almost equal to the control.

2.) Influence of titanium salts on the growth of nodule bacteria.

The same experimental procedure was used as in the preceding experiment except various concentrations of titanic acid [Ti(OH)₄], titanium sulfate and potas-

Table 4.

Influence of Titanium Salts on the Growth of Genge Nodule Bacteria, Strain A.

					With	out yea	ast extracts.	
Ti salts.	Conc.	Ra	ite of g	rowth	by da	iys.	Morpholo	gy on 14th day.
	(%)	2	4	7	14	Sum of +.	Form.	Size. (µ)
Contr	ol.	+	++	#	++	7	Short rod.	$0.3 \times 0.6 - 0.4 \times 1.0$
	5.000	_	_	_	-	0	_	_
	2,000	-	_	_	_	0	_	_
	1.000	_	_	+	+	2	Short rod.	0.3 × 0.6 - 0.4 × 1.0
	0.500	_	+	+	+	3	Rod.	0.3 × 0.6 - 0.4 × 1.5
Titanie acid.	0.100	+	+	+	+	4	Short rod.	0.3 × 0.5 - 0.4 × 1.0
	0.050	+	+	+	+	4	Rod.	0.3 × 0.5 - 0.4 × 1.5
	0.010	+	+	+	++	5	Short rod.	0.3×0.5 - 0.4×1.0
	0.005	+	++	++	++	7	"	0.3×0.5 - 0.4×1.0
	0.001	+	++	#	++	7	"	$0.3 \times 0.5 - 0.4 \times 0.5$
	0.500							
	0.100	+	+	+	+	4	Short rod.	$0.3 \times 0.5 - 0.4 \times 0.3$
Titanium	0,050	+	+	+	+	4	22	$0.3 \times 0.6 - 0.4 \times 1.$
sulfate.	0.010	+	+	++	++	6	",	$0.3 \times 0.5 - 0.4 \times 0.5$
	0.005	+	++	#-	++	7	Rod.	$0.3 \times 0.6 - 0.4 \times 1.$
	0.001	+	++	++	++	7	"	$0.3 \times 0.6 - 0.4 \times 0.$
	5,000	-	_	_	-	0	_	-
	2.000	-	_	-	-	0	_	_
	1.000	-	-	-	-	0	_	-
	0,500	-	-	_	_	0	_	_
Potassium acid titanate.	0,100	-	+	+	+	3	Coccic.	0.3 - 0.4
	0.050	+	+	++	++	6	Rod.	$0.3 \times 0.5 - 0.4 \times 1.$
	0,010	+	+	++	++	6	Short rod.	$0.3 \times 0.5 - 0.4 \times 0.$
	0.005	+	+	++	++	6	21	17
	0,001	+	+	+	+	4	Coccie- short rod.	$0.3 \times 0.4 - 0.4 \times 0.$

sium acid titanate were added to the mannit agar medium, and the growth was examined by the naked eyes and the morphological examination was carried out microscopically staining with Carbol fuchsin.

The data in Table 4 indicate that while the yeast extracts have marked influence on the growth, the titanium salts have very slight influence. As the concentration of titanate increases, the growth became worse and 0.1% was the limit for the growth while very small quantity caused stimulation. Morphologi-

Table 4. (Continued.)

					Wi	th yeas	t extracts.	
Ti salts.	Conc.	R	ate of	growth	by d	ays.	Morpholo	gy on 14th day.
•	(%)	2	4	7	14	Sum of +.	Form.	Size. (µ)
Contr	ol.	+	##	##	##	10	Short rod.	$0.2 \times 0.4 - 0.3 \times 0.8$
	5,000	_		_	_	0	_	
	2,000	_	_	_	_	0		
	1.000	_	_	-	_	0		_
	0.500	_	+	+	+	3	Coccie-	0.3×0.4-0.4×0.8
Titanic acid.	0.100	++	++	++	##	9	Rod.	$0.3 \times 0.5 - 0.4 \times 1.2$
	0.050	++	##	##	##	11	Short rod.	0.3×0.5 - 0.5×1.0
	0.010	+	##	##	##	10	"	,,
	0.005	+	##	##	##	10	Rod.	$0.3 \times 0.6 - 0.5 \times 1.3$
	0.001	#	++	++	##	9	Short rod- coccic.	$0.3 \times 0.4 - 0.4 \times 0.8$
	0.500	-	+	+	+	3	Rod.	0.2×0.5 - 0.6×1.2
	0.100	+	##	##	##	10	Short rod.	$0.3 \times 0.4 - 0.4 \times 0.8$
Titanium	0.050	+	+++	##	##	10	Rod.	$0.3 \times 0.5 - 0.5 \times 1.5$
sulfate.	0.010	++	##	##	###	12	Short rod.	$0.2 \times 0.4 - 0.4 \times 0.8$
	0.005	++	###	##	+++	14	Rod.	$0.2 \times 0.5 - 0.4 \times 1.2$
	0.001	++	##	##	##	12	"	$0.3 \times 0.5 - 0.7 \times 1.5$
	5.000	_	_	-	-	0	_	_
	2,000		_	_	_	0	_	_
	1,000	-	-	_	_	0	******	
	0,500			_	_	0	-	_
Potassium acid titanate.	0.100	_	+	+	++	4	Short rod- coccic.	$0.3 \times 0.4 - 0.6 \times 0.8$
	0.050	_	++	++	++	6	Short rod.	$0.3 \times 0.5 - 0.5 \times 1.0$
	0.010	++	##	+++	###	12	Rod.	$0.3 \times 0.5 - 0.6 \times 1.2$
	0.005	++	##	##	###	14	Short rod.	$0.3 \times 0.5 - 0.6 \times 1.0$
	0.001	#	###	HHH	HH	16	"	$0.2 \times 0.5 - 0.5 \times 0.8$

cally no great variation was noted except some bacteroids were noted where the 0.005% titanic acid and 0.001% titanium sulfate were added.

Same experiment as the preceding one was carried out with Strain B of Genge nodule bacteria, and the results are reported in Table 5.

The results indicate that titanic acid stimulates the growth and the optimum concentration was 0.05% in the presence of yeast extract and when no

Table 5.

Influence of Titanium Salts on the Growth of Genge Nodule Bacteria,
Strain B.

				Strai	п.Б.			
					With	out yes	st extracts.	
Ti salts.	Conc.	Re	ate of	growth	by da	ays.	Morpholo	gy on 14th day.
	(%)	2	4	7	14	Sum of +,	Form.	Size. (µ)
Contr	ol.	+	#	#	++	7	Short rod.	$0.3 \times 0.6 - 0.4 \times 1.0$
	5.000	_	_	_	_	0	_	_
	2.000	_	_	_	_	0	_	_
	1.000		_	+	+	2	Short rod.	0.3 × 0.5 - 0.4 × 1.
	0.500	-	+	+	+	3	93.	,,
Titanic acid.	0.100	+	+	+	+	4	27	"
	0.050	+	#	++	++	7	59	0.3×0.6 - 0.4×0.4
	0.010	+	##	##	##	10	>>	0.3×0.5 - 0.4×1.
	0.005	+	##	##	##	10	,,	0.3×0.5 - 0.4×0.1
	0,001	+	##	##	##	10	"	0.3×0.5 - 0.4×0.8
+	0,500							
	0.100	-	+	++	++	5	Short rod.	0.3×0.5-0.4×1.0
Titanium	0.050	+	++	++	++	7	"	0.3×0.5 - 0.4×0.5
sulfate.	0.010	+	++	##	##	9	Rod.	0.3×0.6 - 0.4×1.5
	0.005	+	##	##	##	10	Short rod.	0.3×0.5 - 0.4×0.8
	0.001	+	++	#	++	7	"	$0.2 \times 0.5 - 0.4 \times 1.6$
	5.000	_	-	_	_	0	_	_
	2,000	-	-	_	-	0	_	
	1.000	-	_	_	-	0	_	-
	0.500		_	-	-	0	_	_
Potassium acid titanate.	0.100	-	-	-	-	0		
	0.050	-	-	_	-	0	-	_
	0.010	+	+	++	++	6	Short rod.	0.3 × 0.5 - 0.4 × 0.8
	0.005	+	++	++	++	7	39	"
	0.001	+	++	++	++	7	>>	0.3×0.6 - 0.4×1.0

yeast extract was present, even in 1.0% concentration some growth was observed. The optimum concentration of titanium sulfate was 0.005% while that of potassium acid titanium was 0.001% and the limit for the growth was 0.1 and 0.01% in the presence and absence of yeast extract respectively. Morphologically only slight change was observed except some bacteroids were found in 0.005% titanium sulfate.

Table 5. (Continued.)

					Wi	th yeas	extracts.	
Ti salts.	Conc.	Re	ate of	growth	by d	ays.	Morpholo	gy on 14th day.
	(%)	2	4	7	14	Sum of +.	Form.	Size. (µ)
Contr	ol.	++	##	###	##	14	Rod.	0.3×0.5 - 0.4×1.2
	5.000	_	_	_	-	0		_
	2.000	_	_	-	-	0	_	_
	1.000		_	-	-	0	_	_
	0,500	_	+	+	+	3	Rod.	0.3×0.4 - 0.4×1.5
Titanic acid.	0.100	++	+++	##	##	13	Short rod.	0.3×0.5 - 0.4×0.8
	0.050	++	11111	11111	HH	17	Rod-oval.	0.3×0.5 - 0.6×1.2
	0.010	++	###	##	##	14	Short rod- coccic.	0.3×0.4-0.4×0.3
	0.005	++	###	##	###	14	Short rod.	0.3×0.5 - 0.4×1.0
	0.001	+++	###	##	###	15	Short rod- coccic.	0.3 × 0.5 - 0.5 × 0.8
	0.500	_	+	+	++	4	77	0.3×0.4 - 0.5×1.0
	0.100	+	##	##	##	10	Short rod.	$0.2 \times 0.5 - 0.4 \times 1.0$
Titanium	0.050	+	##	##	'##	10	Rod.	0.2×0.5 - 0.3×1.
sulfate.	0.010	++	##	##	##	13	Short rod.	0.3×0.5 - 0.4×1.0
	0.005	++	HH	HH	11111	17	Rod.	$0.3 \times 0.5 - 0.6 \times 1.5$
	0.001	++	###	***	###	14	Short rod.	$0.2 \times 0.5 - 0.4 \times 1.0$
	5,000	-	-	_	-	0		_
	2,000	-	-	-	-	0	-	_
	1.000	_	-	-	-	0	-	_
	0,500	-	-	-	-	0	_	_
Potassium acid titanate.	0.100	+	+	++	++	6	Rod.	$0.3 \times 0.5 - 0.6 \times 1.$
7,000	0.050	+	##	##	+++	10	Short rod.	0.3×0.5 - 0.5×0.
	0.010	++	##	##	-	15	"	0.2×0.4 - 0.3×1.
	0.005	++	##	HH	11111	16	Coccic.	0.3 × 0.4 - 0.4 × 0.
	0.001	++	##	1111	1111	16	Short rod.	0.2×0.5 - 0.5×0.

Further the similar experiment was carried out with Strain C of Genge nodule bacteria, and the results are presented in Table 6.

As noted in Table 6, titanic acid has no stimulation where the yeast extract was absent while in its presence 0.1% stimulated the growth fairly well, and 1.0 and 0.5% were the limit for the growth in the absence and presence of yeast

Table 6.

Influence of Titanium Salts on the Growth of Genge Nodule Bacteria,
Strain C.

					With	out yes	st extracts.	
Ti salts.	Conc.	Ra	ate of	growth	by d	ays.	Morpholo	gy on 14th day.
	(%)	2	4.	7	14	Sum of +.	Form.	Size. (µ)
Contr	ol.	+	++	#	++	7	Short rod.	0.3×0.6 - 0.4×1.6
	5,000	_	_	_		0	_	_
	2.000	-	-	-	-	0	_	_
	1.000	_	-	+	+	2	Short rod.	0.3×0.5-0.4×1.0
	0.500	_	+	+	+	3	Rod.	0.3×0.5 - 0.4×1.5
Titanic acid.	0.100		++	++	++	6	Short rod.	0.3×0.5-0.4×0.
	0.050	+	++	++	++	7	"	0.3×0.5 - 0.4×0.1
	0.010	+	++	++	++	7	37	27
	0.005	+	++	++	++	7	Coccie- short rod.	0.3 × 0.4 - 0.4 × 0.5
	0.001	+	++	++	++	7	Short rod.	$0.3 \times 0.5 - 0.4 \times 0.5$
	0 500							
	0.100	-	-	+	+	2	Short rod.	0.3×0.5 - 0.4×1.0
Titanium	0.050	+	++	++	++	7	97	0.3×0.5-0.4×0.8
sulfate.	0.010	+	++	++	++	7	37	"
	0.005	+	#	++	++	7	29	27
	0.001	+	#	#	++	7	"	0.3 × 0.5 0.4 × 0.8
	5.000	-	-	-	-	0	_	_
	2,000	_	-	-	-	0	******	_
	1.000		-	-	-	0	_	_
	0.500	-	-	-	-	0	_	_
Potassium acid titanate.	0.100	-	-	-	-	0	-	_
0.00.000	0.050	-	-		+	1	Coccie.	0.3 - 0.4
	0.010	+	++	++	++	7	Short rod- coccie.	0.3×0.4 - 0.4×0.8
	0.005	+	++	++	++	7	Short rod.	0.3×0.5 - 0.4×0.8
	0.001	+	++	++	++	7	"	0.3×0.5-0.4×1.6

extract. Titanium sulfate has no stimulation at all as well as potassium acid titanium. No marked morphological change was observed.

The similar experiment was carried out as the foregoings, with the bean nodule bacteria, and the results are given in Table 7.

Table 6. (Continued.)

					Wit	th yeast	extracts.	
Ti salts.	Conc.	Re	te of	growth	by d	ays.	Morpholo	gy on 14th day.
	(%)	2	4	7	14	Sum of +.	Form.	Size. (µ)
Contr	ol.	#	++	##	##	11	Short rod- rod.	0.3×0.4 - 0.4×0.8
	5.000	_	_	_	_	0	_	_
	2.000	-	-	-	_	0	_	_
	1.000	_	-	-	_	0	_	_
	0 500	-	+	+	+	3	Short rod.	$0.3 \times 0.5 - 0.5 \times 1.0$
Titanic acid.	0.100	++	##	##	##	13,	"	$0.3 \times 0.5 - 0.4 \times 0.8$
	0.050	++	++	##	##	11	Rod.	0.3×0.5 - 0.4×1.2
	0.010	+	++	##	##	11	Short rod.	0.3 × 0.5 - 0.4 × 0.8
	0.005	++	##	##	##	12	"	$0.2 \times 0.5 - 0.5 \times 1.0$
	0.001	#	++	++	##	9	"	$0.3 \times 0.5 - 0.5 \times 0.8$
	0,500	-	+	+	+	3	Short rod- coccic.	0.2×0.4 - 0.4×1.0
	0.100	+	+	++	##	7	Coccic- short rod.	0.3×0.5,-0.5×0.5
Titanium	0.050	+	++	##	##	9	Short rod.	0.2×0.5 - 0.3×0.5
sulfate.	0.010	+	++	##	+++	9	Rod.	$0.3 \times 0.5 - 0.5 \times 1.$
	0.005	++	++	##	##	10	29	0.2×0.5 - 0.4×1.5
	0.001	+	++	++	##	8	29	$0.2 \times 0.5 - 0.5 \times 1.5$
	5,000	_	_		_	0	_	_
	2.000	-	_	-	-	0	_	_
	1.000	_	_	-	-	0	_	
	0.500	-	-	-	-	0	_	_
Potassium acid titanate.	0.100	+	+	++	++	6	Short rod- coccic.	$0.3 \times 0.4 - 0.5 \times 0.$
V-057-10001	0.050		+	++	##	6	Short rod.	$0.3 \times 0.5 - 0.4 \times 1.$
	0.010	++	++	##	##	10	"	0.3×0.5 - 0.5×1.
	0.005	++	##	##	##	11	" "	$0.2 \times 0.5 - 0.4 \times 1.$
	0.001	++	++	##	##	10	Rod.	$0.2 \times 0.5 - 0.5 \times 1.$

As shown below the growth of bean nodule bacteria was stimulated by 0.01% concentration of titanic acid with the yeast extract and no action without it; the

Table 7.

Influence of Titanium Salts on the Growth of Bean Nodule Bacteria.

					With	out yes	st extracts.	
Ti salts.	Conc.	Ra	ite of g	growth	by d	ays.	Morpholo	gy on 14th day.
*	(%)	2	4	7	14	Sum of +.	Form.	Size. (µ)
Contr	ol.	+	++	++	++	7	Rod.	$0.3 \times 0.5 = 0.4 \times 1.3$
	5,000	_	_		_	0	_	_
	2.000	_	_	+	+	2	Rod.	0.3×0.5 - 0.4×1.5
	1.000	-	+	+	+	3	39	0.3×0.7 - 0.6×1·8
	0,500	-	+	+	+	3	***	0.3×0.5 - 0.5×1.2
Titanic acid.	0.100	+	++	+++	+++	9	Short rod.	0.3×0.8 - 0.5×1.0
	0.050	-	+++	##	- ##	9	22	0.3×0.5-0.4×0.8
	0.010	-	##	##	+++	9	"	0.3×0.5 - 0.4×1.0
	0,005	+	++	++	++	7	"	,,
	0.001	+	++	++	++	7	"	$0.3 \times 0.5 - 0.5 \times 1.0$
	0.500							
	0.100	+	+	+	+	4	Short rod.	0.3×0.5 - 0.4×0.8
Titanium	0.050	-	++	++	++	6	"	"
sulfate.	0.010 -	_	++	++	++	6	"	0.3×0.5 - 0.4×1.0
	0,005	+	##	##	+++	10	22	0.3×0.5 - 0.5×1.0
	0.001	+	#	#	++	7	33	0.3×0.8 - 0.4×1.0
	5,000	_	-	_	-	0		-
	2,000	-	-	-	-	0	_	-
	1,000	-	-	_	-	0	_	-
	0.500	_	-	-	-	0	_	-
Potassium acid titanate.	0.100	-	-	-	-	0	_	_
	0.050	-	-	+	+	2	Short rod.	0,3×0,5 - 0,4×0,
	0.010	-	+	+	+	3	"	$0.3 \times 0.5 - 0.4 \times 1.$
	0.005	+	++	++	##	8	Rod.	$0.3 \times 0.5 - 0.4 \times 1.$
	0.001	+	++	++	+++	8	Short rod.	$0.3 \times 0.5 - 0.5 \times 0.$

limit was 2.0 and 1.0% without and with the yeast extract respectively. The optimum concentration of titanium sulfate was 0.001 and 0.005% with and without

Table 7. (Continued.)

					Wit	th yeast	extracts.	
Ti salts.	Conc.	R	ate of	growth	by d	ays.	Morpholo	gy on 14th day.
	(%)	2	4	7	14	Sum of +.	Form,	Size. (µ)
Contr	ol.	++	#	#	++	8	Short rod.	0.2×0.5 - 0.3×0.
	5.000	-	_	_	_	0	_	_
	2.000	_	_	-	_	0	_	
	1.000	-	_	+	+	2	Short rod.	0.2×0.5 - 0.4×0.1
	0,500	-	++	++	++	6	"	0.2×0.4 - 0.3×1.0
Titanic acid.	0.100	++	++	##	##	10	**	0.2×0.5 - 0.4×0.
	0.050	+	++	###	###	11	29	$0.3 \times 0.5 - 0.5 \times 1.0$
	0.010	++	++++	##	##	14	"	0.2×0.5 - 0.5×1.0
	0.005	++	##	##	+++	11	99	0.2×0.5 - 0.5×0.
	0.001	++	##	##	##	11	37	0.2×0.4 - 0.3×1.
	0,500	and the same of th	+	+	+	3	Rod.	0.1×0.5 - 0.2×1.
	0.100	+	++	++	##	8	Short rod.	0.2×0.4 - 0.3×0.
Titanium	0.050	+	##	##	+++	10	"	$0.2 \times 0.5 - 0.3 \times 0.$
sulfate.	0.010	+	##	##	+++	10	79	$0.2 \times 0.5 - 0.3 \times 1.$
	0.005	+	##	##	##	10	99	$0.2 \times 0.5 - 0.5 \times 1.$
	0.001	#	###	###	##	14	Rod.	$0.2 \times 0.5 - 0.5 \times 1.$
	5.000	_	_	_	_	0		
	2.000	-	-	-	-	0	_	_
	1.000	-	-	-	-	0	****	
	0.500	_	-	-	-	0	-	_
Potassium acid titanate.	0.100	+	+	+	++	5	Short rod.	$0.2 \times 0.5 - 0.4 \times 1.$
	0.050	+	++	++	++	7	"	$0.2 \times 0.5 - 0.3 \times 1.$
	0,010	+	##	##	##	10	Short rod- coccic.	$0.3 \times 0.5 - 0.5 \times 1.$
	0.005	++	##	##	##	11	"	$0.2 \times 0.5 - 0.5 \times 1.$
	0.001	++	##	##	##	11	Rod.	0.2×0.5 - 0.4×1.

the yeast extract respectively. Some bacteroids were observed only in 0.001% titanium sulfate with the yeast extract.

Table 8.

Influence of Titanium Salts on the Growth of Clover Nodule Bacteria.

					With	out yes	st extracts.	
Ti salts.	Conc.	R	te of	growth	by d	ays.	Morpholo	gy on 14th day.
	(%)	2	4	7	14	Sum of +.	Form.	Size. (µ)
Contr	ol.	+	#	##	##	9	Rod.	$0.3 \times 0.8 - 0.6 \times 2.9$
41	5,000	_	-	_	_	0	_	
	2.000	-	+	+	+	3	Rod.	0.3×0.5 - 0.4×2.
	1.000	-	+	++	++	5	"	0.3×0.8 - 0.8×3.
	0.500	+	++	##	##	9	27	0.3×0.8 - 0.7×4.
Titanic acid.	0.100	+	++	##	##	9	22	0.3×0.8 - 0.7×2.
	0.050	+	##	##	##	10	72	$0.4 \times 0.8 - 0.7 \times 2.6$
	0.010	+	++	##	##	9	19	0.3×0.7-0.6×2.
	0.005	+	##	##	##	10	27	03×1,0-0.6×2.
	0,001	+	##	##	##	10	"	0.4 × 1.0 - 0.8 × 3.
	0.500							
	0.100	-	+	++	++	5	Rod.	$0.5 \times 0.7 - 0.7 \times 2.$
Titanium	0.050	+	++	++	++	7	29	0.3×0.8 - 0.6×2.
sulfate.	0.010	+	##	##	###	12	"	0.3 × 0.5 - 0.6 × 1.
	0,005	+	++	##	##	9	>>	0.3×0.8 - 0.6×2.
	0.001	+	##	##	##	10	27	$0.3 \times 0.8 - 0.4 \times 2$
	5.000	-	_	-	_	0	_	_
	2.000	-	-	-	_	0	_	_
	1.000		_	-		0		_
	0.500	_	_	_	-	0	_	_
Potassium acid titanate.	0.100	-	-	-	-	0	_	_
	0.050	-	-	-	-	0	_	
	0.010	-	+	##	##	7	Rod-	0.3×0.8 - 0.6×2.
	0.005	+	##	##	##	10	99	77
	0.001	+	##	##	+++	10	77	0.3×0.8 - 0.5×2.

Again the similar experiment was carried out with clover nodule bacteria and the results are noted in Table 8.

Table 8. (Continued.)

Ti salts.	Conc. (%)	With yeast extracts.						
		Rate of growth by days.					Morphology on 14th day.	
		2	4	7	14	Sum of +.	Form.	Size. (µ)
Control.		##	+111	1111	###	17	Rod.	0.3×0.6 - 0.5×1.5
Titanic acid.	5,000	-	_	-	-	0	-	_
	2,000	_	_	_	-	0	_	_
	1.000	+	+	+	+	4	Rod.	$0.3 \times 0.4 - 0.5 \times 2.6$
	0.500	+	++	##	###	10	"	$0.3 \times 0.5 - 0.5 \times 2.5$
	0.100	##	-	1111	HHH	19	Oval.	$0.3 \times 0.5 - 0.7 \times 1.0$
	0.050	++	###	1111	нн	17	22	$0.5 \times 0.8 - 0.7 \times 1.$
	0,010	##	{##	11111	HH	18	Rod.	0.3×0.5 - 0.6×1.
	0.005	##	11111	-	1111	18	**	$0.2 \times 0.5 - 0.6 \times 2.$
	0,001	##	11111	11111	Ш	19	"	$0.2 \times 0.5 - 0.4 \times 1.$
Titanium sulfate.	0.500	+	##	##	##	10	22	0,3×0,5 - 0.6×1.
	0.001	##	###	###	##	15	Oval.	$0.3 \times 0.5 - 0.7 \times 1.$
	0.050	++	###	###	##	14	29	$0.4 \times 0.5 - 0.8 \times 1$.
	0.010	##	##	11111	HH	17	29	$0.2 \times 0.5 - 0.7 \times 1.$
	0.005	##	****	####	111111	20	Oval-rod.	$0.3 \times 0.6 - 0.6 \times 2.$
	0.001	##	HHH	111111	###	20	Rod.	$0.4 \times 0.6 - 0.7 \times 2.$
Potassium acid titanate.	5.000	_	_	-	_	0	_	_
	2.000	-	_	_	_	0	-	_
	1,000		-	-	-	0		_
	0.500	-	-	_	-	0	_	
	0.100	+	++	##	##	9	Rod.	$0.3 \times 0.5 - 0.4 \times 1.$
	0.050	++	1111	1111	11111	18	79	$0.3 \times 0.5 - 0.5 \times 1.$
	0.010	##	+++++	+++++	11111	22	79	$0.2 \times 0.7 - 0.7 \times 2.$
	0,005	##	HH	1111	1111	18	Oval.	$0.4 \times 0.5 - 0.7 \times 2$
	0,001	##	###	1111	нн	18	Rod-oval.	$0.4 \times 0.8 - 1.0 \times 1.$

The stimulation effect of titanic acid was noted only in 0.1% with the yeast extract while none without the yeast extract, and the limits for growth were 2.0 and 1.0% without and with the yeast extracts respectively; the optimum concentration of titanium sulfate was 0.001 and 0.005% with and without the yeast extract respectively, and no lethal limit was found clearly. The optimum concentration of potassium acid titanium was 0.01 and 0.001% with and without the yeast extract respectively; the lethal limit was 0.1 and 0.01% respectively with and without the yeast extract. Morphologically some bacteroids were found in some cases especially some oval cells were observed.

Summary.

In a preceding paper, it was reported that the nodules of leguminous plants stimulated the growth of nodule bacteria best of all the parts used. In this paper, the influence of ash contents in the nodules was investigated with a special reference to the titanium salts, and the following results were obtained:

- 1.) The ash content of the nodules is comparatively small relative to the other portions of leguminous plants, and it was 3.013 percent while the leaves and stems contained 8.016 percent.
- 2.) Comparatively large amount of Na₂O, MgO and TiO₂ were found in the ash from the nodules which amounted to 13.468 percent; 13.614 percent and 52.3 p.p.m. respectively.
- 3.) The seeds contained somewhat a large amount of K₂O, P₂O₅ while more of SO₃ and CaO were found in the leaves and stems; and in the roots, the insoluble matter in hydrochloric acid and Fe₂O₃ were prevalent.
- 4.) An addition of ash equivalent to 1 percent nodules to the culture medium did not effect the growth of nodule bacteria at all so that the stimulation of growth of bacteria obtained by the addition of nodules seems due chiefly to the organic constituents of the nodule rather than the inorganic components.
- 5.) The influence of titanic acid, titanium sulfate and potassium titanate on the growth of nodule bacteria was tried and found that the titanium as a whole has slightly beneficial effect. As the concentration of titanium increased the growth of bacteria became worse, and in case of titanic acid and potassium titanate, the growth was prohibited altogether at certain concentration which varies somewhat by different strain of bacteria as well as by the constituents in the medium. The critical concentration of titanic acid was somewhat 1 percent, and 0.1 percent for potassium titanate, and the optimum concentration was about 0.05 percent for the former and 0.001—0.005 percent for the latter.
- 6.) No special influence of titanic compounds on the morphological change of nodule bacteria was noted and a few bacteroids were found.

The authors wish to acknowledge with thanks the financial support rendered by the Japanese Society for Promotion of Scientific Investigation (Nippon Gakuzyutu Sinko Kwai) to carry out a part of this investigation.

Literature.

- 1.) ITANO, A. and A. MATSUURA, Nõgaku Kenkyū, 25:423, 1935.
- 2.) Konishi, K. and T. Tsuge, J. Science Soil and Manure, Japan. (Supplement) 9:67, 1935.
- 3.) ITANO, A. and A. MATSUURA, (In manuscript.)
- 4.) MERWIN, H. E., Amer. J. Science, 28:119, 1909.
- 5.) JOFFE, J.S. and KARDOS, L.T., Soil Science, 38:241, 1934.