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1 Introduction

A common theme in geostatistical analysis is to detect a spatial structure

of observed data. Using the estimated spatial structure, data at unobserved

points can be predicted. A well-known prediction methods is kriging. To

apply kriging to geostatistical data, second-order stationarity is required.

Second-order stationarity shows the directional homogeneity of spatial auto-

correlation, including mean and variance. Therefore, it is very important to

determine whether the spatial autocorrelation for each direction is homoge-

neous.

One of the criteria for spatial autocorrelation is the variogram, a model

that ordinarily has three parameters: nugget effect, sill and range values.

Zimmerman (1993) introduced three kinds of anisotropy: nugget effect anisotropy,

sill anisotropy and range anisotropy. Geostatistical analysis is often applied

in fields such as environmental science, soil science and water quality sci-

ence. Cheng et al. (2000) applied an anisotropic spatial modeling approach

of image rectification in the field of remote sensing.

However, almost all applications assume isotropy, not anisotropy. Geo-

metric anisotropy (GA) is another way of expressing the range anisotropy,

because GA data have different range values in different directions. The

derivation and the properties of GA were given by Chilès and Delfiner (1999)

and Wackernagel (1995). It was derived from isotropy to GA by axis rotation

and extension of one axis.

In previous studies, Journel and Froidevaux (1982) presented a case study

in which anisotropic data were applied to the hole-effect model. Guan et al.

(2006) proposed a formal nonparametric approach to test for isotropy.

Since GA is important for geostatistics, this paper focused on only GA,

not nugget effect anisotropy nor zonal anisotropy (sill value anisotropy). Be-
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cause nugget effect is jump value of zero distance, nugget effect anisotropy

is not theoretically existent. The zonal anisotropy is combined of isotropic

model plus GA. The zonal anisotropy is sometimes resolved by decreasing

directional trend.

Kubota and Tarumi (2007) applied environmental data in Okayama pre-

fecture to detect GA interactively by using the web system. The system was

applied GoogleMapsAPI and SVG to visualize GA.

In another previous study that focused on the estimation of the parame-

ters of GA, Kubota and Tarumi (2008a) proposed fitting an ellipse to points

whose coordinates are calculated by the range values of the directional vari-

ograms in all directions. In that paper, the ellipse parameters were estimated

as follows: calculation of directional variograms, parameter estimation of

each directional variogram and parameter estimation of the ellipse model.

There are many kinds of parameters which define geostatistical data

through a process of generating data and estimating GA: the density of

data, the ratio of anisotropy and the number of directions for directional

variograms. Kubota and Tarumi (2008b) produced data from a simulated

random point pattern, which included several kinds of densities in random

fields, in order to discuss the relation between these densities and the number

of directions. In that paper, we used the RandomFields R package to sim-

ulate the anisotropic data. Four parameters were used for estimating range

values: two kinds of anisotropic parameters (the ratio of the semi-major and

semi-minor axes, and the angle of the semi-major axis), data densities (the

number of points per unit area), and the number of directions.

Kubota and Tarumi (2009) focused on two parameters: data densities

and anisotropic ratio. We also introduced a statistical test to clarify the

geostatistical predictions of isotropic assumptions and the correction of GA,
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detected by Kubota and Tarumi (2008a). Only in the case of large sample

size and strong anisotropic ratio, the correction of anisotropy showed good

results.

On the other hand, another detection method uses likelihood in esti-

mating anisotropic parameters. Kubota and Tarumi (2010) compared this

likelihood-based detection method with that of Kubota and Tarumi (2008a),

which used the environmental data of water quality in Okayama. Cross val-

idation was used to compare the two detection methods. The prediction

criteria were as follows: mean square error of cross validation and final pre-

diction error. The number of directions, 2, 4, 8 and 16, was used to compare

the results of the cross validations. The result of the paper showed that

the prediction method of Kubota and Tarumi (2008a) was better than the

likelihood-based model.

In this paper, we apply three kinds of detection methods: the four-

directional restriction of Kubota and Tarumi (2008a), the maximum like-

lihood method and the method that assumes isotropy, after generating sev-

eral kinds of geostatistical data having GA. The objective of this simulation

study is to confirm whether the proposed method of Kubota and Tarumi

(2008a) is better than the maximum likelihood method or the method as-

suming isotropy. We compensated for unconfirmed data areas other than

those in the practical case study of Okayama water quality data (Kubota

and Tarumi, 2010).

We describe the geostatistical data that were used in this study in Sec-

tion 2. Then, we describe the estimation of variogram parameters with the

assumption of isotropy in Section 3. Also, visualizing applications are also

explained in both Section 2 and 3. Meanwhile, we describe the estimation

and the correction of the GA parameters in Section 4 that is the proposed
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method in this paper. Next, we describe the simulation study, including gen-

erating data from a random point pattern which has GA, and the method of

cross validation in Section 5 that is the main simulation part of this study.

Finally, we offer our concluding remarks in Section 6.
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2 Geostatistical Data

In spatial data, there are three kinds of data type: geostatistical data, lattice

data and point pattern data. In this paper, geostatistical data are used to

detect and correct geometric anisotropy.

In this section, we explain geostatistical data. First, we explain what is

geostatistical data in Section 2.1. Next, R packages and related data sets with

geostatistical data are briefly introduced in Section 2.2, and environmental

data of geostatistical data is also introduced to be applied to R system in

Section 2.3. Because we focused on the GA, we explain what are two kinds of

variogram; omni-directional variogram and directional variogram in Section

2.4 and 2.5 respectively. By using real geostatistical data, the exploratory

GA detection is also explained in Section 2.5. Finally, visualizing application

of geostatistical data is explained in Section 2.6.

2.1 What Is Geostatistical Data?

Geostatistical data consist of two kinds of information; spatial reference and

attribute. Spatial reference has coordinate values and system of reference for

these coordinates, for example pairs of longitude and latitude degree values

and pairs of horizontal and vertical distances from determined central point.

Attribute is the characteristic values at the observed point, for example

the number of scallops on a coast, pH values in a watershed area, and the

densities of CO2 (carbon dioxide) or SOx (sulphur dioxide or sulphur trioxide)

near large roads
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2.2 R Packages and Their Data Sets

The R system is a free software environment for statistical computing and

graphics. There are a lot of expanded packages that analyze geostatistical

data, for example gstat, geoR and so on. They include geostatistical data.

For example, meuse of gstat is the data set that gives locations and topsoil

heavy metal concentrations of Meuse river (collected by Ruud van Rijn and

Mathieu Rikken; data were compiled for R by Edzer Pebesma (Burrough and

McDonnell, 1998)).

Some R packages have special functions to analyze geostatistical data.

The gstat provides a wide range of functions for univariate and multivariate

geostatistics, while the geoR contains functions for model-based geostatistics.

By using plot function of the geoR, figure 1 shows the four plots of the

attribute; logarithm of topsoil zinc concentration (mg/kg soil); the top left

figure shows the observation points with four classes, the top right figure

shows the attribute versus Y coordinate with lowess line, the bottom left fig-

ure shows the attribute versus X coordinate with lowess line and the bottom

right figure shows the histogram of the attribute.
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Figure 1: Plots of the meuse data; observation points(top left), latitude v.s.
attribute (top right), longitude v.s. attribute (bottom left) and histogram
(bottom right) of meuse data.
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Even in the other R packages, which focus on other functions, there are

also many data sets of geostatistical data. For example, the SemiPar package

provides the scallop data frame that has triplets concerning scallop abun-

dance (from Ecker and Heltshe (1994)).

Figure 2 also shows the four plots of the scallop; the top left figure shows

the observation points with four classes, the top right figure shows the at-

tribute versus Y coordinate with lowess line, the bottom left figure shows the

attribute versus X coordinate with lowess line and the bottom right figure

shows the histogram of the attribute.
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Figure 2: Plots of the scallop data; observation points(top left), latitude v.s.
attribute (top right), longitude v.s. attribute (bottom left) and histogram
(bottom right) of scallop data.
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2.3 Environmental Data

Environmental numerical database (National Institute for Environmental

Studies, 2012) also provides geostatistical data that is discussed on envi-

ronment. They can be downloaded from the web site and can be loaded into

R to use geostatistical functions. There are the data of areal environment

and water quality data of public water area.

Figure 3 also shows the four plots of the water quality data at Okayama

prefecture (the Okayama water data); the top left figure shows the observa-

tion points with four classes, the top right figure shows the attribute versus

Y coordinate with lowess line, the bottom left figure shows the attribute

versus X coordinate with lowess line and the bottom right figure shows the

histogram of the attribute.
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Figure 3: Plots of the Okayama water data; observation points(top left),
latitude v.s. attribute (top right), longitude v.s. attribute (bottom left) and
histogram (bottom right) of Okayama water quality data.
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2.4 Omni-directional Variogram

Variogram is the graph of variance versus distances of pairs of observation

points, and it explains the spatial structures of dependences of data. Omni-

directional variogram is calculated by using attributes of all observed points.

Figure 4 shows empirical variogram and theoretical variogram model of

the meuse data. The details of calculating empirical variogram and fitting

theoretical variogram model are explained in Section 3.

Figure 4: Omni-directional variogram with theoretical variogram of meuse
data.

15



2.5 Directional Variogram and Exploratory GA detec-

tion

On the other hand, directional variogram is restricted for directions with

some tolerances. For example figure 6 shows four directional variograms of

the meuse data; 0, 45, 90 and 135◦ by clockwise rotation from the northern

direction.

Figure 5: Four directional variograms of the meuse data.
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From figure 6, we can perform exploratory detection of the GA. We can

detect different range values as follows and we pointed them in figure 6.

1. north direction (0◦ from the north direction axis), range: 1400

2. northeast direction (45◦ from the north direction axis), range: 1100

3. east direction (90◦ from the north direction axis), range: 1000

4. southeast direction (135◦ from the north direction axis), range: 800

Figure 6: Exploratory GA detection; plotted range values and the detected
ellipse.
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Then, we detect the GA parameter; the ratio of the semi-major and semi-

minor axes was 1.7, and the angle of the semi-major axis was 168.75◦ (15

π / 16) by trial-and-error method. These parameters means that the effect

toward south of south-southeast is 70% stronger than that toward east of

east-northeast.

2.6 Visualizing Application

In order to find the spatial structure of geostatistical data, to visualize in

effective for application, because spatial reference relates to maps with the

coordinates. Kubota and Tarumi (2007) developed the system to use Google

Maps API to visualize geostatistical data. In that paper, they overlaid the

attribute on the Google Maps by using colored squares at the coordinate

points. Figure 7 shows the example of that system that shows the data of

areal environment at Okayama prefecture.
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Figure 7: Visualizing application; Observation points on the Google Maps
(colors are based on the values of attributes)
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3 Parameter Estimation of Variogram

In this paper, the range value, which is one of the estimated variogram param-

eters of directional theoretical variogram, was used for proposed method. In

this section, we explain the details of how to detect the range values. First,

we explain how to select the appropriate cutoff value that is limitation of

calculating relations of observation points, in Section 3.1. Next, the calcu-

lation of variogram cloud is explained in Section 3.2, then the calculation

of empirical variogram is explained in Section 3.3. Then, some theoretical

variograms are explained and parameter estimation of theoretical variogram

from the emperical variogram by least squared method is explained in Sec-

tion 3.4 Finally, visualizing application of variogram for goeostatistical data

is explained in Section 3.5.

3.1 Cutoff Value

The cutoff value is the length of distance to user for calculation and model

fitting of variogram. Variogram models are depended on the cutoff value

because in the case of small cutoff value only the small distance effects are

modeled while in the case of large cutoff value large distance which only uses

edge observation of observed area are sensitive.

In order to detect the appropriate cutoff value, Kubota and Tarumi

(2005b) simulated geostatistical data in the area of 100x100 by using Ran-

dom Fields packages. Then, they calculated the differences between given

variogram model and estimated variogram model by changing various cut-

off values. Furthermore, Kubota and Tarumi (2006) used the data of areal

environment at Tokyo and Osaka prefectures (the areal environmental data)

to estimate the characteristic values at the same point of observation points
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and discuss the differences between the estimated value and observed value

by changing various cutoff values. Meanwhile, Kubota, et al. (2005a) simu-

lated geostatistical data in different observation area sizes; 20x20, 40x20 and

40x40. They calculated the differences between given variogram model and

estimated variogram model by changing various cutoff values in the same

way of Kubota and Tarumi (2006).

From these previous studies, we assumed the cutoff value as the half of

maximum distance in all pairs of observation and used it in this paper.

3.2 Variogram Cloud

If the observed data are assumed isotropic, we can develop the variogram

model which express the spatial dependence. Figure 8 shows typical vari-

ogram model with parameters; the nugget effect is 0.1, the silll value is 0.9

and the range value is 1.
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Figure 8: Typical variogram model.
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The variogram model is predicted in the following order: calculate a vari-

ogram cloud, calculate an empirical variogram, and estimate the parameters

of the theoretical variogram. To obtain a variogram cloud, we measure the

difference between pairs of characteristic values, z(xp1) and z(xp2), which are

located at the points xp1 and xp2 . Some examples of characteristic values

are the number of scallops on a coast, pH values in a watershed area, and

the densities of CO2 (carbon dioxide) or SOx (sulphur dioxide or sulphur tri-

oxide) near large roads. The dissimilarity of squared difference (z(xp1) and

z(xp2)) at points xp1 and xp2 is given by

γ(h)∗ =
1

2
(z(xp1 + h)− z(xp1))

2,h = xp2 − xp1 . (1)

A variogram cloud is a graph with plots of dissimilarities γ∗l which is calcu-

lated by (1) versus distances dp1,p2 = dl = |xp1−xp2 | in all pairs of observation

((p1, p2) ∈ {1, 2, . . . , n}, l = 1, 2, . . . , n(n + 1)/2, where n is the number of

observations).

3.3 Empirical Variogram

An empirical variogram is calculated as follows:

• Separation and classification

The distance axis is separated

I1 = (0, α], I2 = (α, 2α], . . . , IK = ((K − 1)α,Kα]

where K is the number of classes and α is the distance on each class.

• Average distances and dissimilarities

The points of a variogram cloud are classified and the calculated mean

values of distance and dissimilarities are
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hk =
1

|Nk|
∑

Nk
dpipj

γ̂k =
1

|Nk|
∑

Nk

(z(xpi )−z(xpj ))
2

2

where Nk is the class in which the points include the distance dpipj =

|xpi − xpj | ∈ Ik, and |Nk| is the number of elements in Nk.

An empirical variogram is used to fit the theoretical variogram.

3.4 Theoretical Variogram

Many kinds of models of theoretical variograms are proposed in various fields.

We used the spherical model

γ(h; ξ0, ξ1, ξ2) =


ξ0 + ξ1(

3
2
|h|/ξ2 − 1

2
[|h|/ξ2]3), 0 < |h| ≤ ξ2

ξ0 + ξ1, |h| > ξ2

0, |h| = 0

(2)

where ξ0 is the nugget effect value, ξ1 is the sill value and ξ2 is the range

value. We used the least-squares method to estimate the parameters of the

theoretical variogram. Figure 9 shows calculated variogram cloud, empirical

variogram (plots) and fitted theoretical variogram (solid line) of the areal

environmental data. In this case the cutoff value is set to 0.45, and the dis-

tance from zeto to 0.45 is divided to fifteen classes to calculate the empirical

variogram.
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Figure 9: Variogram models of the areal environmental data; variogram cloud
(top) and empirical variogram with fitted theoretical variogram.
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3.5 Geometric Anisotropy

The theoretical variogram model (2) with the isotropic assumption has the

same parameters (ξ0, ξ1, ξ2) in different directions. Practically, these param-

eters sometimes have different values in different directions, because the geo-

statistical data exhibit anisotropy. A case with different ξ1 values in different

directions is called zonal anisotropy. A case with different ξ2 values in dif-

ferent directions is called geometric anisotropy (GA). In the former problem,

one solution for zonal anisotropy is to remove the directional trend. On the

other hand, in the latter problem, little attention has been given to solving

it. For example, using exploratory data analysis to draw a rose diagram.

Figure 10 shows the example of rose diagram of uniform data which uses the

CircStats package of R (Jammalamadaka and SenGupta, 2001).

Figure 10: The example of rose diagram of uniform data.
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The other and parametric way for detection geometric analysis was fit-

ting ellipse to points which coordinates were calculated by range values of

directional variogram in all directions (Kubota and Tarumi, 2008a).

3.6 Visualizing Application

In order to find the relation between the observed points and the variogram

cloud, the interactive handling system, which used SVG and HTML, was also

developed by Kubota and Tarumi (2007). SVG is the abbreviation of Scalable

Vector Graphics, and is an XML-based file format for two-dimensional vector

graphics. Therefore, the user can easily zoom in the selected point of the

variogram cloud.

In that system, the point of variogram cloud in figure 11 is connected to

the pair of the observed points in figure 12. For example, the #1 point of

the variogram cloud in figure 11, which is the pair with long distance and

large difference, corresponds to the #1 pair (the both edges of the red line)

of the observed points in figure 12, while the #2 point of the variogram

cloud in figure 11, which is the pair with short distance and small difference,

corresponds to the #2 pair (the both edges of the red line) of the observed

points in figure 12.
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Figure 11: The example of the visualizing application (variogram cloud)
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Figure 12: The example of the visualizing application (conection between
observed points; solid lines are the pairs of observations which selected in
variogram cloud)

Also, Kubota and Tarumi (2007) developed interactive changing of cutoff

values and model selection of theoretical variogram. Figure 13 shows the

example of that system which includes the empirical variogram, cutoff values

and theoretical variogram.
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Figure 13: The example of the visualizing application (empirical variogram,
cutoff values and theoretical variogram)
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4 Detection and Correction of Geometric Anisotropy

In this section, we explain how to detect and correct GA. First, both least-

squares method of parameter estimation by the method of Kubota and

Tarumi (2008a) and likelihood-based parameter estimation are explained in

section 4.1. Next, Geometric anisotropy correction method, which is common

method in two estimated parameters, is explained in section 4.2.

4.1 Geometric Anisotropy Detection Method

4.1.1 Directional Variogram and Least-squares Method for Fit-

ting to An Ellipse

In this paper, for the simulation, we applied only the case in which the

number of directions (nd) was four. Fewer nds (such as two or three) were

too unstable for fitting to an ellipse and greater nds caused small number

of pairs in each directional (empirical) variogram, which creates instability

for fitting to a theoretical variogram. Therefore, we chose four directions for

fitting to the ellipse model.

At the beginning, we set the directional start angle and tolerance values

(tol). Because a small change in the directional start angle has no effect

on fitting to an ellipse, we set the four directions as 0, 45, 90 and 135◦

by clockwise rotation from the northern direction. In order to cover all

observation data, we used 22.5◦ of tolerance on both sides of each direction.

To obtain a variogram cloud, we measured the difference between the

pairs of characteristic values, z(xα) and z(xβ), located at points xα and xβ

in each direction. The difference is given by (1) in h of h = xβ−xα. We had

to consider not only the distance between each pair of the observed points but

also the corresponding direction. In the calculation of a variogram cloud, it
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is important to choose a cutoff value that is the limit of the distance between

observation pairs. We adopted half the maximum value of the distance in

all pairs as the cutoff value (Kubota et al., 2005). We used the spherical

model in (2). For the j-th direction, we applied the above method and got

the j-th range values ξ2. Then, we calculated the coordinates of point P0j

in the j-th direction. The coordinates are expressed by the direction and

the corresponding range value, which are parameters of the fitted variogram

model. P0j is as follows:

P0j =

 dj cos θ0j

dj sin θ0j

 , (j = 1, 2, 3, 4). (3)

P1j, the point on the ellipse line corresponding to P0j, is defined as follows:

p1j =

 cosψ sinψ

− sinψ cosψ

 a cos θ1j

b sin θ1j

 , (j = 1, 2, 3, 4). (4)

The parameter a is the length of the semi-major axis, b is the length of the

semi-minor axis, and ψ is the position angle of the semi-major axis, where

tan θ1j = a
b
tan θ0j. We calculated the weighted least-squares criterion, the

weighted regression sum of the squared error of the ellipse (WRSSE), by

using OP0j and OP1j that are the distance between O and P0j, and the

distance between O and P1j, respectively:

WRSSE =

nd∑
j=1

νj
N
(OP0j −OP1j)

2 (5)

where N is the total number of all pairs and νj is the number of pairs in

the j-th direction. We fitted the parameters a, b and ψ by optimizing the

WRSSE with the restrictions a > 0 and b > 0.
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Thus, the estimated anisotropy parameters are as follows: the semi-major

axis’ angle of the fitted ellipse (ψ
(EL)
A = ψ), and the ratio of the semi-major

and semi-minor axes (ψ
(EL)
R = a

b
). By using this detection method, we used

the scallop data from SemiPar (Ecker and Heltshe (1994)) and meuse data

from gstat (Burrough and McDonnell, 1998). In the former data, the loga-

rithm of the number of scallops, there was a geometric anisotropy (GA) of

(ψ
(EL)
A , ψ

(EL)
R ) = (47, 4.1). In the latter data, the logarithm of zinc, there

was a GA of (ψ
(EL)
A , ψ

(EL)
R ) = (120, 1.0). The former results showed that

the effects of the northeastern direction were four times larger than that of

the southeastern direction. The latter results showed there was no GA effect

because the ratio was equal to 1. In other example, figure 14 shows the four

fitted theoretical variograms and the fitted ellipse with the GA parameter of

(ψ
(ML)
A , ψ

(ML)
R ) = (11, 2.64) in the Okayama water data.

Figure 14: An example of fitting to an ellipse; the four fitted theoretical
variograms (left) and the fitted ellipse (right).
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4.1.2 Likelihood-based Estimation

Another method involves the likelihood-based estimation for a Gaussian ran-

dom field. Assuming that the characteristic values Z(y) of the observed

points y = (y1, y2, . . . , yn)
′ are n dimensional normally distributed with mean

µ(y) and covariance S(y), the probability density function f is as follows:

f(Z(y)) =
1

(2π)n/2|S(y)|1/2
exp(−1

2

(
Z(y)− µ(y))′S(y)−1(Z(y)− µ(y))

)
.

(6)

If we assumed GA, the observed point x with GA is written using y

without the GA and GA parameters, ψA and ψR as follows:

x = y

 1 0

0 1
ψR

 cos(ψA) sin(ψA)

− sin(ψA) cos(ψA)

 . (7)

We denote (7) as x = τ(y;ψA, ψR); in other words, y can be transformed

by using the inverse function (τ−1) as y = τ−1(x;ψA, ψR). The probability

density function in this case is as follows:

g(Z(x);ψA, ψR) = f(Z(τ(y;ψA, ψR))) (8)

We estimated the GA parameters (ψA, ψR) as (ψ
(ML)
A , ψ

(ML)
R ) as well as other

parameters.

We used this detection method and the scallop and meuse data. From

the scallop data, the logarithm of the number of scallops, there was a GA

of (ψ
(ML)
A , ψ

(ML)
R ) = (40, 11). From the meuse data, the logarithm of zinc,

there was a GA of (ψ
(ML)
A , ψ

(ML)
R ) = (120, 1.0). The former showed that the

effects of the northeastern direction were 11 times larger than that of the

southeastern direction. The latter showed there was no GA effect.
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4.2 Geometric Anisotropy Correction Method

Once parameters (ψA, ψR) are estimated, the original position is inversely

transformed from an ellipse to a circle. Kubota and Tarumi (2008a) also

proposed a correction method for geometric anisotropy (GA). We applied

this method to the results of both the ellipse and the likelihood method.

It was assumed that the observed data exhibited GA, specified as ψA and

ψR. The estimated parameters, ψA and ψR, were used in the correction

process: reverse rotation of the observed points by (−ψA) and extension of

the vertical direction by ψR. The original coordinates of the observed data,

X = (x1,x2, . . . ,xn) were transformed to Y = (y1,y2, . . . ,yn) as follows:

Y = X

 cos(−ψA) sin(−ψA)

− sin(−ψA) cos(−ψA)

 1 0

0 ψR

 . (9)

On the other hand, the characteristics of the observed data were fixed. In

this process, the GA data were transformed to isotropic data.

For example, figure 15 shows the original position and transformed po-

sition which corresponds to the ellipse and the circle in the Okayama water

data.
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Figure 15: An example of correction method; the fitted ellipse (top left), the
original position (bottom left), transformed position(bottom right) and the
corresponding circle (top right).
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5 Simulation Study

In this section, we explain how the anisotropy data were generated as well

as the method and the results of cross validation. First, we explain the

calculation steps; to simulate data, detect a GA, correct the GA, do Kriging

and validate the results to compare among three types in Section 5.1. Second,

we explain the application of parallel computing in Section 5.2. Third, we

explain the parameters that we used in the simulation study in Section 5.3.

Finally, we show the results of the simulation study in Section 5.4.

5.1 Calculations

We did a simulation study to compare the three types of calculations as

follows:

Type 1 (IS) Assumption of isotropy

Type 2 (EL) Fitting to an ellipse

Type 3 (ML) Likelihood-based method

The order of simulation was as follows:

Step 1 Determine the parameters

We used the parameters mean = 0, variance = 1, a spherical variogram

model of (ξ0, ξ1, ξ2) = (0.2, 0.8, r) with density d and the anisotropy

parameter (angle of ellipse, ratio of ellipse) = (0, ψR), in area (lon-

gitude, latitude)= ([0, 10], [0, 10]), with changing parameters r = 5

and 10, d = 0.5, 1 and 2, and ψR = 2, 3 and 5. Using these param-

eters, the data were simulated by distribution in random fields. On

the simulated random points in a rectangular area (longitude, lati-

tude) = ([0, 10], [0, 10ψR]) by geometric anisotropy (GA) the ψR, vari-
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able characteristic values corresponding to these points were simulated.

Then, only the latitudes of the data were transformed (1/ψR), fixing

the other values (longitude and characteristic values) as a rectangular

area (longitude, latitude) = ([0, 10], [0, 10ψR]) which transformed it to

a square area ([0, 10], [0, 10]).

Step 2 Data simulation

The simulated data were (z,x), where x were simulated points, z

were the characteristic values on x and the size of the data was n.

At first, we simulated the homogeneous Poisson point process, Y =

(y1,y2, . . . ,yn)
′, for the observed points, by using the determined pa-

rameters of ψR. Then, we simulated the characteristic values onY with

the determined mean, variance and variogram parameters. In order to

add GA, the scale of the latitude was shrunk from [0, 10ψR] to [0, 10].

We used two packages for simulating the data: spatstat for simulating

the Poisson point process, and RandomFields for simulating charac-

teristic values. Figure 16 shows the rectangle of the points that was

simulated in the Poisson point process (left), and a shrunken square of

points where the scale of the latitude direction was changed with the

parameters d = 1, r = 10 and ψR = 3 (right).
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Figure 16: Random point (left) and constricted square (right).
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Step 3 Detect and correct anisotropy

We used (n− 1) data (z(i),x(i)), where the i-th data point (zi,xi) was

removed as testing data. Then, GA was detected by the three methods

mentioned above:

Type 1 (IS) We assumed that the data had isotropy, therefore no

transformation to correct anisotropy was done to the original sim-

ulated points (ψ
(IS)
A = 0, ψ

(IS)
R = 1).

Type 2 (EL) We detected the GA parameters (ψ
(EL)
A , ψ

(EL)
R ) by way

of fitting to an ellipse, as denoted in Section 4.2.1. Then, points

x were transformed to y(EL) in order to correct the GA denoted

in Section 4.3.

Type 3 (ML) We detected the GA parameters (ψ
(ML)
A , ψ

(ML)
R ) using

the likelihood method denoted in Section 4.2.2. Then, points x

were transformed to y(ML) in order to correct the GA, as denoted

in Section 4.3.

Step 4 Estimate the variogram parameters

The omni-directional theoretical variogram γ∗(t) was estimated using

the least-squares method, fitting to the corresponding empirical vari-

ogram calculated from (z(i),y
(t)
(i)), where t was the type of method, and

t = IS,EL,ML.

Step 5 Do kriging and calculate the prediction square error

The characteristic value at the transformed testing point y
(t)
i was pre-

dicted using the parameters of gamma and (zi,yi) as ẑ
(t)
i .

Step 6 Calculate the predicted mean square error of cross validation

For all n points, the calculations from Steps 3 to 5 were iterated to
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predict the mean square error of cross validation (CV)

CV (t) = 1
n

∑n
i=1(zi − ẑ

(t)
i )2.

Step 7 Iterate 100 times in different seeds

We denote CV
(t)
s as the calculated CV (t) of seed s in Step 6. We

performed 100 iterations from Steps 2 to 6 in different seeds to calculate

the mean and standard deviation (s.d.) of CV
(t)
s

CV ∗(t) =
1

100

100∑
s=1

CV (t)
s , (10)

sd(t) =

√√√√ 1

99

100∑
s=1

(
CV

(t)
s − CV ∗(t)

)2

. (11)

Because (10) is just the average of CV
(t)
s , CV ∗(t) is strongly affected

by outliers. Furthermore, we have to compare the detection methods

to determine which method is most appropriate for GA. Therefore, we

also calculated the frequency of the minimum case among the three

types to check for goodness of fit among the three types and to remove

the effect of extremely high values of CV
(t)
s .

5.2 Parallel computing

In order to shorten the calculation time, we applied the multicore package

(Urbanek, 2012) of R to these simulations. The package provides a way of

running parallel computations with multiple cores or CPUs and it provides

methods for results collection. Especially, the Step 7 of the simulation in

Section 5.1 used the function mclapply of the package.
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5.3 Parameters

In the simulation process of Steps 1 and 2 in Section 5.1, we used three

kinds of changing parameters (d, r, and ψR). The first parameter, d, is the

density of the simulated points (d points per unit area). We could control the

number of observation points by the observation area, (longitude, latitude)

= ([0, 10], [0, 10]), and d. The expected number of observation points in

parameter d = 0.5, 1.0 and 2.0 corresponded, respectively, to 50, 100 and

200 in a 100-unit area of (longitude, latitude) = ([0, 10], [0, 10]). We assumed

that d = 2.0 corresponded to the case of scallops where geometric anisotropy

(GA) was detected by Kubota and Tarumi (2010) and d = 0.5 corresponded

to the case of Okayama water quality data (Kubota and Tarumi, 2008a).

The second changing parameter, r, was the range of the theoretical var-

iogram. We assumed two types of range values: r = 5 and 10. The former

(r = 5) corresponded to the case in which points near the center (5,5) were

affected by almost all of the points. In contrast, points near (0,0) were only

affected by the other quarter points. This situation might have two or more

groups of points. The latter (r = 10) corresponded to the case in which any

point was affected by almost all points. In Step 4, we used a cutoff value of

half the maximum value of the distance in all pairs (around 7). We assumed

two kinds of range values: small range (r = 5) and large range (r = 10). If

we assumed r larger than 10, it was difficult to estimate the range values and

if we assumed r smaller than 5, more than two groups might be included.

The third changing parameter was ψR, the GA ratio. We assumed ψR =

2, 3 and 5. Because a weaker GA ratio does not make sense, we assumed

ψR = 2 as the weakest ratio. Because a stronger ratio produces only one-

dimensional spatial data, we assumed ψR = 5 as the strongest ratio. On the

other hand, in practical data analysis, ψR = 3 is sometimes estimated as the
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stronger ratio. Therefore, we also used ψR = 3 as the strongest ratio for

practical data analysis.

If we use other units of interaction times such as 10, 50, 200 and 1000,

there might be small differences, but EL and ML might sometimes be in error

because of the extremely large GA ratio.

5.4 Results

Table 1 shows the values of the mean and standard deviation of CV
(t)
s for

Step 7, in the density parameter d = 0.5 by two kinds of changing parameters

(ratio of anisotropy and range of theoretical variogram). The table compares

the three types of correction methods (IS, EL, ML) that we mentioned in

Section 5.1. Table 2 is similar to Table 1, but d is 1.0. Table 3 is also similar

to Table 1, but d is 2.0.
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Tables 4, 5 and 6 show the frequency of the minimum case of d = 0.5, 1.0

and 2.0 (corresponding respectively to Tables 1, 2 and 3). The sums of IS,

EL and ML for each ratio and range are not equal to 100 because there are

some equally predicted values with anisotropic parameters (ψA, ψR) of (0, 1).

If (ψA, ψR) = (0, 1), the data exhibit isotropy. If the ML case was the

minimum and its parameter was (0, 1), the values of IS and ML were added

up.
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In Table 1, EL showed good results in the range of both 5 and 10 for

almost all ratios(ψR) of 2, 3 and 5 (except ψR = 3 of r = 10, which was

larger) although the differences in all d, ratios and ranges were not always

statistically significant (5%). In Table 2, there were differences between the

small range (r = 5) and the large range (r = 10). In the three left-hand

columns of Table 2, IS showed good results. In the three right-hand columns

of Table 2, the goodness of fit for the results depended on the ratio; the IS

results were good for ψR = 2; the ML results were good for ψR = 3, and EL

had a good result in ψR = 5. The trend in Table 3 was similar to that in

Table 2.

The terms of Tables 4, 5 and 6 are the same as those in Table 1. However,

the figures in each cell are not the average of CV
(t)
s but rather frequencies

of minimum cases; the bigger the counts, the better the results. Tables 4, 5

and 6 correspond to Tables 1, 2 and 3, respectively. In Table 5, the results

depended on the range and ratio; IS showed good results for the weak ratio

of r = 5; ML showed good results for the weak ratio of r = 10, and EL had

good results in a strong ratio of both r = 5 and 10. The trend in Table 6

was the same as that in Table 5. Upon comparison of Tables 5 and 2 (or

6 and 3), ML improved. Because the figures of Tables 4, 5 and 6 are the

frequencies of the minimum cases of CV
(t)
s , the choice of ML is robust.
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Table 4: Frequencies of minimum of CV
(t)
s values in d = 0.5

range 5 10
PPPPPPPPPratio

method
IS EL ML IS EL ML

2 42 46 31 30 46 35
3 45 47 34 41 48 33
5 37 45 35 47 46 37

Table 5: Frequencies of minimum of CV
(t)
s values in d = 1.0

range 5 10
PPPPPPPPPratio

method
IS EL ML IS EL ML

2 51 39 47 38 25 44
3 46 48 42 38 41 45
5 44 47 43 34 60 34

Table 6: Frequencies of minimum of CV
(t)
s values in d = 2.0

range 5 10
PPPPPPPPPratio

method
IS EL ML IS EL ML

2 54 36 49 43 29 46
3 46 48 42 38 41 45
5 44 47 43 34 60 34

49



6 Concluding Remarks

In this paper, we applied a detection method of geometric anisotropy (GA)

using four theoretical directional variograms that produced four sets of pa-

rameters. This method was one of the proposed methods by Kubota and

Tarumi (2008a). The objective of this simulation study is to identify which

detection method is effective in reducing prediction errors. The detection

methods used in this study were the assumption of isotropy (IS), fitting to

an ellipse (EL) and the likelihood-based method (ML), as denoted in Section

3.1.

On the basis of our results, we make three suggestions regarding the

detection and correction of GA: (1) if the number of observation points is

low (50 or less; d=0.5 or less), EL should be chosen because of minimum

prediction error; (2) if the GA ratio is strong (ψR is 5 or more), EL should

be chosen; otherwise, (3) IS produces sensitive results that the predicted

values depend on the attributes or the spatial structures of observed data

because CV ∗(IS) is minimum but the frequencies are not maximum, while

(4) ML produces robust results because CV ∗(ML) is not minimum but the

frequencies are maximum. Suggestions (1) and (2) were anticipated, but

suggestion (3) and (4) were not. Suggestion (1) confirmed the case study of

Okayama water quality data (Kubota and Tarumi, 2010) that corresponded

to ψR = 2 or 3 of r = 5 in Table 1.

Practically, GA is sometimes ignored even though it is one of the pa-

rameters that express the background character in a study area. From the

results of the simulations, we propose the correction of GA in the case of (1)

and (2) using the detected parameter of ψA and ψR that was proposed by

Kubota and Tarumi (2008a). To find more details and relations among the

parameters, in the future, we have to simulate other models of theoretical
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variograms, such as linear, exponential, Gaussian and so on; other types of

anisotropy (zonal anisotropy); and smaller or larger number of data. Fur-

thermore, the likelihood method sometimes produces a very strong GA ratio

and isotropy (practical application of scallop and meuse data; (ψA, ψR) =

(4, 11) and (120, 1.0) in 2.2.2). Therefore, determining the properties of the

likelihood method will the subject of a future study.
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Appendix

A Theoretical Variograms

We used the spherical model in Section 3.4. In this section we list the other

typical theoretical variogram models, and figure 17 shows the corresponding

graphs of the models.

1. Nugget effect model

γ(h; ξ0, ξ1) =

 ξ0 + ξ1, |h| > 0

0, |h| = 0
(12)

2. Linear model

γ(h; ξ0, ξ1) =

 ξ0 + ξ1|h|, |h| > 0

0, |h| = 0
(13)

3. Circular model

γ(h; ξ0, ξ1, ξ2) =


ξ0 + ξ1(

2|h|
πξ2

√
1− (|h|/ξ2)2 + 2

π
arcsin |h|/ξ2), 0 < |h| ≤ ξ2

ξ0 + ξ1, |h| > ξ2

0, |h| = 0

(14)

4. Exponential model

γ(h; ξ0, ξ1, ξ2) =

 ξ0 + ξ1(1− exp(−|h|/ξ2)), |h| > 0

0, |h| = 0
(15)
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5. Logarithmic model

γ(h; ξ0, ξ1, ξ2) =

 ξ0 + ξ1(log(|h|+ ξ2)), |h| > 0

0, |h| = 0
(16)

6. Gaussian model

γ(h; ξ0, ξ1, ξ2) =

 ξ0 + ξ1(1− exp(−|h|/ξ2)2), |h| > 0

0, |h| = 0
(17)
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Figure 17: Typical theoretical variograms; .
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B CRAN Task Views

In this paper, we used a lot of packages in R, which related CRAN Task

Views (CTV). CTV provides the packages and functions for specific research

areas. In order to use CTV, we used the ctv packages in R. We list the CTV

and URL that we used in this paper.

• Analysis of Spatial Data

http://cran.r-project.org/web/views/Spatial.html

• Analysis of Ecological and Environmental Data

http://cran.r-project.org/web/views/Environmetrics.html

• High-Performance and Parallel Computing with R

http://cran.r-project.org/web/views/HighPerformanceComputing.html
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