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UNIVERSAL FACTORIZATION EQUALITIES FOR
QUATERNION MATRICES AND THEIR APPLICATIONS

YONGGE TIAN

ABSTRACT. We present in this paper two types of universal factor-
ization equalities for real quaternions, as well as for matrices of real
quaternions. These universal factorization equalities can serve as a
valuable tool for developing matrix analysis over the real quaternion
algebra.

1. INTRODUCTION

Let a = ag +a1i+azj +azk be an element over the real quaternion algebra
H, where ag—a3 are four real numbers, > = 52 = k2 = —1 and ijk = —1.
As two fundamental facts, it is best known in algebra theory that a has
two complex and real matrix representations as follows

b(a) = ( aop +aii —(as + aszi) ) }

as — asl ag — ait

(1.1) g —a; —az —ag
a ag —a a

and ¢(a) := 1 0 3 2

az as ap —ai

az —ap ai ag

and H is algebraically isomorphic to the matrix algebras composed by all
¥(a) and ¢(a), respectively. In this article we shall reveal two new facts on
the relationship between a quaternion and their two matrix representations,
which can be stated that for any a € H, there are two independent unitary
matrices P and @ over H such that a satisfies the following two similarity
factorizations

(1.2) Pdiag( a, a)P* = ¢(a), Qdiag( a, a, a, a)Q" = ¢(a).
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where P and () have no relations with a. Based on these two equalities,
we shall derive a variety of new properties on quaternions, and matrices of
quaternions.

Throughout, R and C stand for the real and the complex number
fields, respectively. For any a = ag + a1? + azj + agk € H, we used the
notations, Rea = ag; Ima = ayi + agj + ask; @ = apg — a1i — azj — ask;
la| = Vaa@ = (a2 + a} + a% + a)}/2, @ = (ag, a1, a2, a3 )?. For any
quaternion matrix A = (ay) € H™*"?, A* = (4)T = (@;) stands for the
conjugate transpose of A. A square quaternion matrix A of size n is said
to be unitary if AA* = A*A = I, the identity matrix.

2. BASIC RESULTS

In this section, we first establish two universal similarity factorization
equalities for quaternions, and then present various operation properties
derived from them for quaternions.

Theorem 2.1. Let a = ag + a1t + asj + ask € H be given. Then als
satisfies the universal similarity factorization equality

2.1) P( a 2 )P* _ ( ap +a1i —(az + asi) ) ~ bla) € O,

0 as — asl apg —ax?

where

(2.2) P= _\}—i( _;. _; )

1s a unitary matriz over HL.
Proof. Note that a —iai = 2ag +2a11, a+iai = 2asj +2a3k. We have

1 a — iai aj + iak
* fed —
Plalk)P* = 3 ( —ja+kai —(jaj + kak) )

_ a —iai (a + iai)j

2\ —jla+iai) —j(a—iai)j

_ au + ai (azj + azk)j )
j(azj +azk) —j(ao + a11)j

( ag + ait —((12 + asi) )

as — ast ag — a1

| -

establishing (2.1). a
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Theorem 2.2. Let a = ag + a1i +azj + azk € H be given. Then aly
satisfies the following universal similarity factorization

a ag —a; —az —ag
a + _ | a1 ap —as az
(2.3) ¢ a Q= az a3 @ —o
a as —az a1 a
:¢(a) € R4X4,
where the matriz Q@ has the following independent ezpression
1 i j  k
A U R T .
-k j —i 1

which is a unitary matriz over H.

Proof. First we build a unitary matrix U = % ( L :i ) over H|
and then calculate
vl @ 0 U — 1 a— jaj (a + jaj)i
0 a 2\ —ila+jaj) —i(a— jaj)i

_ [ @+ay —ai+ass
a1 +azj ag — agj

:(ao ~a1>+(az ag )j
ai ag az —ag

= Ag+ A7 = A,

where Ay and A; are two real matrices. Next we build another block

unitary matrix V = % —2] _IIzkzr ) over H, and then calculate
1 — 1Al (A +1i4d)j
0 2 (A +iAi) —j(A —idi)j
) -,

*

(

Vdiag(U, U )diag(a, a, a, a)diag(U

Substituting A = Udiag(a, a in its left-hand side gives

(2.5) , U V* = g(a).
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Set
1 —j —i k
1/ U —iU\_1| —i -k -1 —j
Z =Vdiag(U, U) = \/_(—]U kU)_§ ioo1 ok
ki
Then (2.5) is Zdiag(a, a, a, a)Z* = ¢(a). Next set
1 0 00
0 0 -1 0
J = 0 -1 0 0
0 0 01

Then it is easy to see that Jdiag(a, a, a, a)J = diag(ae, a, a, a). Thus
we have ZJdiag(a, a, a, a)JZ* = ¢(a). Finally, let us set @ = ZJ. Then
we have (2.3) and (2.4). O

Some direct consequences can directly be derived from (2.1) and (2.3),
most of them are well known.

Corollary 2.3. Let a = ag + a1t + a2j + a3k € H be given. Then a
and its two matriz representations ¥(a) and ¢(a) satisfy

1 1
a= ﬁEzzb(a)Eg, and a = 1E4¢(a)EZ,
where BEo = (1, 7) and E4 = (1, 4, j, k).
Corollary 2.4. Leta, b€ H, and A € R. Then

(a) a=b < t(a) =¢() < ¢(a) = ¢(b).

(b) ¥(a+0b) =v(a) +¥(b),  ¢(a+b)=d(a)+ &(b).
(c) P(ad) = P(a)p(b),  ¢lab) = ¢(a)d(d).

(d) ¥(ra) = ¥(ar) = Mp(a), ¢(ra) = ¢(ar) = Ag(a).
(&) (1) =D, ¢(1) =14

(f) ¥(@) =¢*(a),  &(a) = ¢7(a).

(g) '(/)(a'_l) = "/)_l(a)a ¢(a—1) = ¢_1(a)! a 76 0.
(b) det[¢(a)] = af?>,  det[¢(a)] = |a|*.

We can also introduce from (2.3) another real matrix representation
of a as follows.

ay —a; —az —as
(2.6) r(a) := L¢T (a)L = a @ ag —ay |

az —as ap ay
as az —a ag
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where L = diag(1, —1, —1, —1). Some basic operation properties on 7(a)
are

(2.7) 71(a+0b) = 71(a) + 7(b), 7(ab) = 7(b)71(a), T(a) = ‘rT(a).

Combining the two real matrix representations of quaternions with
their real vector representations, we find the following important result.

Theorem 2.5. Leta, b, x € H. Then

(2.8) @ =¢(a)P,  zb=1(b)7,
(2.9) azh =¢(a)r(B) 2 = 7(b)d(a) P,
and

(2.10) é(a)7(b) = 7(b)¢(a).

Proof. 1t is easy to see from (2.3) and (2.6) that for all a € H, its real

vector representation @ can be expressed as
@ = ¢(a)al, @ = 7(a)al, ag=(1, 0, 0, 0).

Thus by Corollary 2.4(c) and (2.7), we get
at =¢(az)a] = ¢(a)¢(z)e] = ¢(a) T,
zb =7(zb)at = r(b)r(z)a] = 7(b) 2,

azb =a(zb) = ¢(a)(wb) = ¢(a)7(b) 2,

azh :(ax)f\J = 'r(b)(a:zrj = 7(b)¢(a) 7.
These four equalities are exactly the results in (2.8) and (2.9). Note that
T in (2.9) is, in fact, an arbitrary real vector when x runs over H. Thus
(2.10) follows. d

The three formulas in (2.8) and (2.9) can be applied to deal with
various linear equations over H, which we will consider in the next section.

3. HOw TO SOLVE LINEAR EQUATIONS OVER H

Since H is a noncommutative algebra, the general system of linear equations
over H should have the following two-sided form

anzibn  +  apxabis 4+ - 4+ apzhbin = o,
(3.1) anxibyr  +  aTbyn + - 4+ amTaby, = o,
am1Tibm1 + amaTobma + -+ AmnTpbmn = Cm,

where a4, b5y and ¢g(1 < s <m, 1 <t < n)are given, and 4(1 <t < n)
is an unknown quaternion. This kind of system over a division algebra
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was first examined in [14] through a specifically defined determinant. Now
applying the formula in (2.9) to the two sides of each equation in (3.1), we
obtain a new system as follows

$lar)r(b11)T  + -+ dlawm)t(bhia)Zm = &
(3.2) : : :
$@m)T(bm))T + o+ Samn)T(bmn)Zn = G,
or simply
#lar)7(bn) -+ @(a1n)7(b1n) ! o
(3.3 z s =] ]
$(am1)T(bm1) -+ (amn)T(bmn) T T

which shows that all systems of linear equations over H can be solved by

transforming them into conventional systems of linear equations over K.
As a special case, we next consider the following well-known linear

equation

(3.4) az —zb=c¢

over H, which was examined in [6, 10, 18, 21], but they did not get a

complete resolution to this fundamental equation.
According to (2.8), the equation (3.4) is equivalent to

(3.5) [é(a) —7(®)]7 =2,

which is a simple system of linear equations over R. In order to symbolically
solve it, we need to examine some operation properties on the matrix ¢(a)—

7(b).
Lemma 3.1. Leta = ag+aii+agj+ask, b=>bp+bii+byj+bsk € H
be given, and denote 6(a, b) := ¢(a) — 7(b). Then
(a) The determinant of 8(a, b) is
6(a, )] = [s*+([Ima|— [Imd|)?][s* + ( [Ima] + |Imb] )?]
= s*+2¢[(IImal? + |Imb|?) | + (|Ima|® — Imb|?)?,

where s = ag — bg.
(b) 8(a, b) is a normal matriz, and has four eigenvalues as follows

A =(ag— bo) £ i||Ima| + [Imb||.
(¢) If ap # bo, or |Ima| # |Imb|, then 6(a, b) is nonsingular and its
inverse can be ezxpressed as
67 (a, b) = ¢7'(a® —2boa+[b]* )[ $(a) — 7(B) ]
= ¢7'[2(a0 — bo)a + [b* — |a|*][ 6(a) — 7(B) ],
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and
07 (a, b) = T7(b% - 2a0b+ |a|?)[H(@) — 7(b) ]
T 2(bo — a0)b + laf? — |b* ][ (@) — 7(b) ).
(d) If ap = by and |Ima| = |Imb|, then 6(a, b) is singular and has a
generalized inverse as follows
-1 1
Tmap ™ = fiwap

Proof. It is a known result (see [3] and [21] ) that for all a, b € H|
there are nonzero p, ¢ € H such that

6~ (a, b) = [7(Imb) — ¢(Ima) |.

a=p(ag+|lmali)p™ =pap™', and b=q(by+|Imbli)g~' = gbg™!

Now applying Corollary 2.4(c) and (2.7) to both of them we obtain
¢(a) = ¢(p)p(@)p(p™"),  7(b) = (g~ )T(B)7(q).
Thus from Corollary 2.5 we can derive
8(a, D) = |(@)$(@)(p™") — (a7 )7(B)7(q) |
[¢(p)| | 6(a) — (A_l)T(q_l)T(B)T(q)Gﬁ(p) | ¢(p~")]
| ¢(a) ~ (¢~ )7(b)7(q) |
(a7 )l I7(9)d(a)r(¢™) = 7(B) | I7(g)| = | $(a) — 7(B) |,

in which case, substituting @ = ag + |Imali and b = by + |Im |7 into it may
produce Part (a). From the structure of §(a, b) and |0(a, b)|, we also know
that

|A;—6(a, b)| = [(A—s)?+(|Ima| - [Imb| )?][(A— )%+ (|Im a|+ |Im B] )?].

Thus we have Part (b). The normality of #(a, b) can be seen from the
following equality

B(a, b) +6T(a, b) = &(a) —7(b) + ¢7(a) — 7T (b)
= ¢(a) — () + ¢(a) — 7(b)
= ¢la+a) — 7(b+b) = 2(ag — by)I4
The results in Part (c) come from the following two equalities
[¢(a) = 7(b) [ (a) — 7(8) ] =¢(a®) — 2bog(a) + |8]*I4
=¢( a? - 2bga + |b]?),
[6(@) — 7(b) ][ $(a) — 7(b) ] =7(b?) — 2ao7(b) + |al’Iy
=7(b% — 2a¢b + |a|?).

Il



52 YONGGE TIAN

Finally, under the conditions that ap = by and |[Ima| = |Imb|, it is easily
seen that

8(a, b) = ¢(a) — 7(b) = ¢(Ima) — 7(Imb).
From it and a simple fact (Ima)? = (Imb)? = —|Imal?, we can easily
deduce the following equality #%(a, b) = —4|Im a|?6(a, b). So we have Part
(d). d

Based on Lemma 3.1, we have the following several results.

Theorem 3.2. Let a € H and a ¢ R. Then the general solution of
the equation

(3.6) ar = za

18

(3.7) 2= p - ——(Ima)p(Ima)
. =p T al? ma)p(Ima),

where p € H is arbitrary, or equivalently,
(38) = Xg+ Ma,
where A1, Ay € R are arbitrary.

Proof. According to (2.8), the equation (3.6) is equivalent to [¢(a) —
7(a)]Z = f(a, a) ¥ = 0, and the general solution of this equation can be
expressed as

? = 2[14 - 9—(0'2 0,)9(0,, 0)]7,
where 7 is an arbitrary real vector. Now substituting Lemma 3.1(d) in it,
we get

T = 2[[4-1———1—

T a>] 7
= 2 [14 — Zl[Iri—aF( 2lIma|?Iy + 2¢(Ima)r(Ima)) | 7

= [14 - IITlay—zqﬁ(lm a)T(Ima)] 7.

Returning it to quaternion form by (2.8) and (2.9), we have (3.7). Next let
p = (Ima)gq in (3.7), where ¢ € H is arbitrary. Then (3.7) becomes

z = (Ima)g+ g(Ima) = 2(Regq)(Ima)+ (Ima)(Imgq) + (Img)(Ima)
= o+ t1(Im a),
where tg, t; € R, which is equivalent to (3.8). O

Theorem 3.3. Let a, b € H be given. Then
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(a) [3] The linear equation

(3.9) ar = zb
has a nonzero solution, i.e., a and b are similar, if and only if
(3.10) Rea =Reb, and |[Ima|=|Im}|.

(b) In that case, the general solution of (3.9) is

(3.11) rT=p (Ima)p(Im d),

1
 |Ima|[Imb|

where p € H is arbitrary; in particular, if b # @, i.e., Ima+Imb # 0,
then the general solution of (3.9) can be written as

(3.12) z = Ai(Ima +Imbd) + Ao |Ima| |Imb| — (Ima)(Imb) ],
where A1, Ay € R are arbitrary.

Proof. According (2.8), the equation (3.9) is equivalent to
(3.13) [6(a) - 7(8) @ = 6(a, )@ = 0,

and this equation has a nonzero solution if and only if |6(a, b)| = 0, which
is equivalent, by Lemma 3.1(a), to (3.10). In that case, the general solution
of this equation can be expressed as

T =2(I; — 6 (a, b)8(a, b)] P,

where P’ is an arbitrary real vector. Now substituting 6~ (a, b) in Lemma
3.1(d) in it, we get
T = 2[I4+ 262((1, b)]?

1
4|Im a|

2 [L; - 4|Trlla_|2(2llm al’Iy + 2¢(Im a)7(Imd)) | P

[14 — M%P¢(Ima)T(Im b)] 7.

Returning it to quaternion form by (2.8) and (2.9), we have (3.11). Ifb #a
in (3.9), then we set p = (Ima) and p = |Ima||Imb| in (3.11), respectively,
and (3.11) becomes

z; =Ima+Imb, 22 =|Ima||lmb| — (Ima)(Imb).

Thus (3.12) is also a solution to (3.9) under (3.10). The independence of
z; and 72 can be seen from two simple facts that Rez; = 0 and Rezs # 0.
Therefore (3.12) is exactly the general solution to (3.9), since the rank of
6(a, b) is two under (3.10). a

A direct consequence of Theorem 3.2 is given below.
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Corollary 3.4. Let a € H be given with a ¢ C. Then the equation
(3.14) az = z( Rea + |Imali)

always has a nonzero solution, namely, a ~ Rea+|Imali, and its general
solution is

(3.15) =M\ [|Imali + Ima] + Az[[Ima| — (Ima)i],
where A1, A2 € R are arbitrary.

The equality (3.14) can easily help to find powers and n-th roots of
quaternions, this work was previously examined in (2, 13, 16].

Now for the nonhomogeneous linear equation (3.4), we have the fol-
lowing two general results, which give a complete resolution for (3.4).

Theorem 3.5. Let a, b € H be given with a ~ b. Then the equation
in (3.4) has a solution if and only if

(3.16) ac = cb,
in which case, the general solution of (3.4) can be written as
1
3.17 =——(cb— - —(1 Imb
( ) z 4lIma|2 (C a‘c) +p |Ima|2( ma‘)p( m ))

where p € H is arbitrary.

Proof. According to (2.8), (3.4) can equivalently be written as
(3.18) [¢(a) —7(B) ]2 = b(a, B)T = .
This equation is solvable if and only if

6(a, b)0~(a, b)C = ¢

)

which is equivalent to
$(Im a)7(Imb) @ = [Ima|* 2.
Returning it to quaternion form by (2.8) and (2.9) produces
(Ima)c(Im b) = |[Imal?c,

which is equivalent to ¢(Imb) = —(Ima)c and then (3.16). In that case,
the general solution of (3.18) can be expressed as

?"\ = 9_ (a, b)?> + 2[-[4 - 9_(‘1‘: b)e(a” b)]?:

where 7’ is an arbitrary real vector. Returning it to quaternion form, we
find (3.17). O
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Theorem 3.6. Let a, b € H be given with a and b not similar, that
s, Rea # Reb or |Ima| # |Imb|. Then (3.4) has a unique solution

(3.19)
z=(2sa+|b)* — |a|* ) "M(ac — cb) = (cb—@c)( 2sb+ |b* — |a? )7},
where s = Rea — Reb.

Proof. Under the assumption of this theorem, §(a, b) = ¢(a)— 7(b) is
nonsingular by Lemma 3.1(c). Hence (3.5) has a unique solution as follows

T =6""(a, )T = ¢~ (250 + |b* — |a® )( $(a) — 7(5)) P,
T =07 (a, b)@ =77 (—2sb+ |a]* — |b)?)( ¢(@) — (b)) C.

Returning them to quaternion expressions yields (3.19). a

4. TWO UNIVERSAL FACTORIZATION EQUALITIES FOR QUATERNION
MATRICES

The two universal similarity factorization equalities in Section 2 can also
be extended to all quaternion matrices. Next are the corresponding results.

Theorem 4.1. Let A = Ay + A1i + Azj + Ask € H™*" be given,
where Ag—Az € R™*™. Then diag( A, A) satisfies the following universal
factorization equality

P A 0 pro— Ag + Aqi —(A2+A3i)
M0 A ) T\ Ay — Asi Ag— Ayi

= @(A) c C?men’

where Poy, and Py, are the following two unitary matrices over H

1 I, —il 1 (I, jI
9 - m m * —- n n
(4.2)  Pom \/5( —iI, kI, ) Pn = 5 ( iI, —kI, )
In particular, if m = n, then (4.1) becomes a universal similarity factor-
ization equality over H.

(4.1)

Proof. Calculating the matrix product in the left-hand side of (4.1)
yields
o (A 0\ _ Im, —iln, Y[ A 0 I, I,
m\ 0 A )" T —jI,  kIn 0 A il, —kI,
A—1Ai Aj + iAk
—jA+ kAT —(jAj + kAk)

1
2
1
2
l( A—iAi (A +iAi)j )

5 .

—j(A+1A41) —j(A —idi)j
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It is easy to verify that A —3Ai = 249+ 2417 and A+ iAi = 2425 + 2A3k.
Substituting both of them in the right-hand side of the above equality, we
obtain (4.1). O

Theorem 4.2. Let A = Ag + Aji + Asj + Ask € H™™ be given,
where Ag—Az € R™*". Then diag( A, A, A, A) satisfies the following
universal factorization equality

A Ay —A1 —Ay —A;

0 A Q) = Ay Ay —A3 A

(4.3) m A in A2 A3 Ao -4
A A3 —A2 Al AO

= ®(4) € R4,
where Qq; is the following unitary matriz over H
I iy 3L, kI

P —il; I kI =il
(4.4) Qat = Q3 = 2| - —kL I oIy ’

—kI; jI; —i; I

t=m, n.

In particular, if m = n, then (4.3) becomes a universal similarity equality
over H.

The proof of (4.3) is much analogous to that Theorem 2.2. Hence
we omit it here. Some direct consequences of the above two theorems are
listed below.

Corollary 4.3. Let A = Ag + A1i + Asj + Aszk € H™*™ be given.
Then A and its two adjoint matrices V(A) and ®(A) satisfy the following
four equalities

1 * 1 *
(45) A= §E2mq;(A)E2n A= ZE4mq)(A)E4n7

and
(4.6) V(A)E},Eon = By Bon¥(4),  O(A)E}Bin = Bin Eam®(A),
where Egy = (I, 7I;) and Egy = (I, ily, jI, kL), t =m, n.
Proof. The two equalities in (4.1) and (4.3) can also be written as
diag( A, A) = Py, V(A)Poy, diag( A, A, A, A) = Q3,2(A)Q4n.
Thus A can be expressed as
A =(In, 0)P;, ¥(A)Ps,( I, 0)7,
A=(In, 0, 0, 0)Q},8(A)Q4n(I,, 0, 0, 0)T.
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Written in explicit forms, they are the desired results in (4.5). On the
other hand, note that

E;A=Y(A)E;, AEs, = Ep ¥ (A).
Thus
(E3mA)Eqn, = V(A)E5, Esy,, E3n(AE2,) = E3, ErnU(A).

Since (E3,,A)Eq, = E3,,(AE>,), the first one in (4.6) holds. In the same
manner, we can also show the second one in (4.6). O

The results of the following corollary are well-known or easy to prove.

Corollary 4.4. Let A, B H™"*", C € H**P and A\ € R. Then

(a) A=B <= Y(A4)=¥(B) < &(4) = &(B).

(b) ¥(A+ B)=¥(A)+ ¥(B), P(A+ B)=3(A) + &(B).
(c) ¥(AC) = T(A)¥(C), ®(AC) = d(A)P(C).

(d) T(AA) = V(AN) = AT(A), P(AA) = ®(AN) = AP(A).
(e) ¥(A") =¥"(4), &(4")= ‘I’T(A)

(f) rankA = frank¥(4), rankd = irank®(A).

(g) if A is a nonsingular matriz of size m, then
1
T(AT)=971(4), @A) =07"(4),47" = ZEllm‘I’—l(A)EZm,

where Eyy, and Eyp, are as in (4.5).
(h) The Moore-Penrose inverse of Al of A, i.e., the unique solution X to
the following four equations

AXA=A, XAX =X, (AX)*=AX, (XA)'=XA,
satisfies
v(Ah) =wi(4), a4l =al(4),
1
At = %Egn\I'T(A)Egm, At = ZEM(IJ(A) o

where Eyp, Eon, Esm and Eg, are as in (4.5).

From the structure of two adjoint matrices of a quaternion matrix,
we can also derive the following results.

Theorem 4.5. Let A = Ag + A1i + Agj + Ask € H™*" be given.
Then

(a) The complex adjoint matriz U(A) of A satisﬁes the following equality
(4.7) V(A) = Kom P(A)KS L,

wherngtz( 0 —% ), t=m, n.
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(b) The real adjoint matriz P(A) of A satisfies the following equalities

(4.8)
®(A) = Rin®(A)R;!, ®(A) = Sun®(A)S;), ®(A) = Tym®(A)TL),
where
( 0 -I; 0 0
L o o o
Ru=1 9 ¢ o L |
ws) \0 0 - 0
) /0 0 - 0
oo o - B
Syt = L 0 0 0 , t=m, n,
\0 L 0 0 /
( 0 0 0 —It\
0 0 L O
(4.10) Tu=1| , 1, 6 0 t=m, n

\L, 0 0 0 |

The correctness of (4.7) and (4.8) can directly be verified by multi-
plying the matrices in them.

The two equalities in (4.1) and (4.3) can directly be applied to deal
with various matrix problems over quaternion algebra. In most cases, we
can easily extend various known results in real and complex matrix theory
to quaternion algebra.

We next just present a general method to solve linear matrix equa-
tions over H. We illustrate this method by considering the followineg linear
matrix equation

(4.11) A XBy+---+ A XB =C.

Theorem 4.6. Let A; € H™*", B, € HP*? and C € H™*? be given,
s=1,2, ---, l. Then the matriz equation (4.11) has a solution X € H'*P,
if and only if the following complex matriz equation

(4.12) U(A)YU(B) + -+ ¥(4)Y¥(B) = ¥(C)

has a solution Y € C?™*?  in which case, if Y is a solution to (4.12), then
the following quaternion matriz

1 — I
(4.13) X = (I, jIn)(Y+Kg‘nIYK2p)< _i )
Jip

is a solution to (4.11), where Ko, and Ko, are defined in (4.7).
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Proof. Suppose first that (4.11) has a solution X € H**P. By apply-
ing Corollary 4.4(a)—(c) to the both sides of (4.11), we obtain
V(A)Y(X)¥(B1) + - -+ T (A)¥(X)¥(B) = ¥(C),

which shows that Y = ¥(X) is a solution to (4.12). Conversely, assume
that (4.12) has a solution

y=(0 2)comw vy v 1w, veo.
Y; Y,

Then taking the complex conjugate on both sides of (4.12), we have

(4.14) V(A Y Y(By) +---+ V(A4 Y ¥(B;) = ¥(C).

According to (4.7), the matrix equation (4.14) can also be written as
Kom U (A1) K5 Y KopU(B1) Ky + - + Kom ¥ (A1) K5, Y K5p ¥ (B) K5,
= Kom¥(C) K5,
which can be simplified to
\Il(Al)(K;,}?sz)xp(Blj + -+ (A (K5 Y Kop) ¥ (B)) = ¥(C).

This equality shows that K{,}?Kgp is also a solution to (4.12). Thus the
sum of

” 1 —
Yy = §(Y + K, 'Y Ko,)

is also a solution to (4.12). Written in a block matrix, this sum is

-_1(T1n Y 1Y, -7 Zy —2Z,
4.1 Y =- - = = = =22 _=
(4.15) z(n n)*z(—n i Z 7 )
where Z; = %(Yl +Y;) and Z, = %(—Yg + Y3 ). From it we construct a
quaternion matrix as follows

.1 . - I
X=27Z1+295 = E(In’ jIn)Y( _ij )
p

Then its complex adjoint matrix apparently is
_v_ (41 —2Z
¥(X)=Y= ( Z 7 ) .

Since this ¥(X) is a solution to (4.12), the corresponding matrix X in
(4.13) by Corollary 4.4(a)—(c) is, of course, a solution to (4.11). a

An analogous result is given below.
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Theorem 4.7. Let A; € H™*", B, € HP*? and C € H™*? be given,
s=1, 2, ---, l. Then the matriz equation in (4.11) has a solution X €
H"*P if and only if the following real matriz equation

(4.16) (ALY ®(By) + -+ + B(A)Y ®(B)) = (C)

has a solution Y € R 4P, in which case, if Y is a solution to (4.16), then
the following quaternion matriz derived from Y

1 _ - - ‘
(4.17) X = Ban(Y + Ry\YRay + S, Y Syp + T, Y Tup) B,

is o solution to (4.11), where E4, and E4p are as in (4.5), and R4y, Rap,
Sin, Sap, Tan and Ty, are defined given in (4.9) and (4.10).

Proof. We only show that if

Yin Yio Yz Y

(4.18) Y = Yo €ERYP 4, v=12 3,4

Y31 Yz Y3z Yiq |

is a solution to (4.16), then the quaternion matrix given in (4.17) is a
solution to (4.11). In fact, according to (4.8),
@(As) = R4mq)(As)R4_nla Q(Bs) = R4p@(Bs)R4_q1a @(C) = R4m®(C)R4_qla
‘@(As) = S4m¢(As)S4_nl, ‘I)(Bs) = S4p(p(Bs)Se;11a q)(C) = S4mq)(C)S;11,
B(As) = Tuim®(A)Ty,!, 2(Bs) = Tip®(Bs)Ty, s 8(C) = Tum®(C)Ty,
Substituting them into (4.16), respectively, and simplifying the correspond-
ing equation, we get three equations as follows
®(A1)(Ryy Y Rap)®(B1) + -+ + ®(A)(R5, Y Rap)®(By) = &(C),
B(A1)(S4 Y Sap)B(B1) + - + B(A))(S;, Y Su)2(By) = 8(0),
(AT Y Tap)®(By) + -+ + B(A)(Ty, Y T4,)8(B)) = &(C).

These three equations show that if Y is a solution to (4.16), then Rznl Y Ryp,
5,1Y Sy, and T Y Typ are also solutions to (4.16). Thus the following sum

L 1
(4.19) v=2(Y+ R Ry + S Y Sy + T, YTy )
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is also a solution to (4.16). Now substituting (4.18) in (4.20) and then
simplifying the expression, we get

Zy -2y —-Zy —2Z3

2y Zo —Z3 2y

(4.20) Y = Z 7 Zy -7 ,
Zy —Zy Zv Zy
where
1 1
ZOZZ(Y11+Y22+Y33+Y44 )s ZIZZ(Y21—Y12+Y;13_Y34 )s

1
T4

The process from (4.18) to (4.20) needs much space, so we have to omit it
here. From (4.20) we construct a quaternion matrix as follows

1
ZzZz(Y31—Y42—Y13+Y24 ),  Z3 (Yo + Y3 — Yo3 — Y14 ).

X = Zo+ Zvi+ Zoj + Zsk = iEmYE,’{p.

Then its real adjoint matrix apparently is ®(X) = Y. Since the matrix
$(X) =Y is a solution to (4.16), the corresponding matrix X in (4.17) by
Corollary 4.4(a)—(c) is, of course, a solution to (4.11). a

The above two theorems show that the solvability and solution of the
matrix equation (4.11) can all be determined by its two complex and real
adjoint matrix equations in (4.12) and (4.16).

The methods showing in Theorems 4.6 and 4.7 can also be applied to

deal with any other linear matrix equations over H.
Conclusions. In this paper, we have established a group of universal fac-
torization equalities for quaternions, as well as for matrices of quaternions.
These equalities clearly reveal the relationship between the real quaternion
algebra and the complex matrix algebra, as well as, the real matrix algebra.
Based on the results presented in the paper, it is expected that a perfect
theory on matrix analysis over the real quaternion algebra can be routinely
established. Furthermore, the methods and results developed in this paper
can also extend to octonions and matrices of octionions. We shall present
them in another paper.

The author wishes to thank Professors George P. H. Styan and Agnes
M. Herzberg for their guidance and encouragement. The work was sup-
ported by the Natural Sciences and Engineering Research Council of Canada.
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