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SEMI-CONVERGENCE OF FILTERS AND NETS

RAJA MOHAMMAD LATIF

ABSTRACT. In 1963, N. Levine introduced the concept of semi-open
set and semi-continuity. Semi-convergence and semi-compactness were
first introduced, investigated and characterized by C. Dorsett in 1978
and 1981 respectively. In this paper semi-convergence and semi-clus-
terence of filters are introduced, investigated and characterized.

Throughout, for a subset A of a topological space X, CI(A) denotes
the closure of A in X; no map is assumed to be continuous or surjective
unless mentioned explicitly. Moreover X and Y denote topological spaces.
For more details on nets and filters we refer the reader to [Willard; 1970].

Definition 1. Let (X, 7) be a topological space and let A C X. Then
A is semi-open if and only if there exists an open set U in X such that
UCACCI(U). Let SO(X) denote the class of all semi-open sets in a
topological space X.

Remark 2. N. Levine proved that a set A in a topological space X
is semi-open if and only if A is contained in the closure of the interior of A
in X. We note that every open set in a topological space X is a semi-open
set but clearly a semi-open set may not be an open set in X. He also proved
that the union of a collection of semi-open sets in a topological space is
always semi-open. It is clear that a nowhere dense set in a space X is never
semi-open in X and the complement of a nowhere dense set in X is always
semi-open in X, In particular for any semi-open set S in a space X, the
difference of the closure of S and S is not semi-open in X. The intersection
of any family of semi-closed sets in a space X is always semi-closed in X.
We observe that the intersection of two semi-open sets in a space X may
not be a semi-open set in X. The semi-interior of a set A in a topological
space X, denoted by sInt (A4), is the union of all semi-open sets contained
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in A. We note that a set A of a space X is semi-open in X if and only if
A=sInt(A).

Definition 3. If (X,7) is a topological space, A C X and z € X,
then z is a semi-limit point of A if and only if every semi-open set containing
z contains a point of A different from z. The union of A and the set of
all semi-limit points of A is called the semi-closure of A and is denoted by

sCl(A).

Definition 4. Let X be a topological space. We say that a set M, C
X is a semi-neighborhood of a point z € X if and only if there exists a
semi-open set S such that z € § C M,.

Definition 5. Let (X,7) be a topological space. For each z € X,
let S(z) = {A € SO(X) : z € A}. Then S(z) has the finite intersection
property. Thus S (z) is a filter subbasis on X. Let S; be the filter generated
by S(z), i.e.,, Sz = {A C X : there exists p C S (z) such that g is finite
and Nu C A}. We will call S; the semi-neighborhood filter at z.

Definition 6. Let (X, 7) be a topological space. Let £ be a filter on
X. Let z € X. We say that f semi-converges to « if and only if /* contains
Sz, that is, if and only if £ is finer than the semi-neighborhood filter at z.

Definition 7. Let (X, 7) be a topological space. Let f be a filter
on X, and let z € X. We say that f has = as a semi-cluster point (or, f
semi-clusters at z) if and only if every F € F meets each S € S (z).

In the following we consider an example for elaboration.
1
Example 8. Consider R with the usual metric. Let A = {;|n >

1 00 1 1
= = cC cC = - =
1} U { nanl}CR,F {FCRACF}LU nLil n+1’n) and
S=UU{0}. Then we have U C S C CI(U).So § € S(g), but SNA=¢.
This implies that f does not semi-cluster at 0.

Proposition 9. Let (X, 7) be a topological space. Let [ be a filter
on X, and let x € X such that [ has z as a semi-cluster point. Then
zenN{sCI(F): FeF}.

Proof. Easy. O

Proposition 10. If (X,7) is a topological space and F is a filter on
X such that F semi-converges to  in X, then [ converges to x.

Proof. The straightforward proof is omitted. O
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The following example shows that the converse of proposition 10 may
not hold in general.

Example 11. Let X={1,2,3,4}. Let 7={¢,{1},{1,2},{1,2,3} ,X}
be a topology on X. Consider the filter £ = {{1,2},{1,2,3},{1,2,4}, X}
on X. The neighborhood filter at 3 is N3 = {{1,2,3},X}. Clearly N3 C F
implies F converges to 3. Now Cl({1}) = X implies that {1,3} € S3. But
{1,3} ¢ F. Hence F does not semi-converge to 3.

Definition 12. Let (X,7) be a topological space. Let / be a filter
on X, and let z € X. We say that / has z as a strong semi-cluster point

(or F strongly semi-clusters at ) if and only if every F' € f meets each
SeS;.

Proposition 13. If (X, 7) is a topological space and | is a filter on
X such that [ strongly semi-clusters at z in X, then f semi-clusters at x.

Proof. Obvious. O

The following example shows that the converse of proposition 13 is
not true in general.

Example 14. Consider R with the usual metric. Let 4 = (—1,0) U
(0,1) C R, and f = {F C R|A C F}. Then F is a filter on R. Clearly £
semi-clusters at 0. Note that {0} = (—1,0]N [0, 1) being the intersection of
two semi-open sets is in Sp. But AN {0} = ¢. Hence F does not have 0 as
a strongly semi-cluster point.

Definition 15. If £ is a filter on X and f : X — Y is a single-
valued function where X and Y are topological spaces, then f(F) is the
filter on Y having for a base the sets f (F), F € [.

Definition 16. Let f : X — Y be a single-valued function where X
and Y are topological spaces. Then f: X — Y is called semi-continuous
if and only if, for any open set V in Y, f~}(V) € SO (X).

Theorem 17 ([Latif; 1993]). Let f : X — Y be a single-valued
function where X and Y are topological spaces. Then f : X — Y s
semi-continuous if and only if, for each z in X and each neighborhood U
of f (z), there is a semi-neighborhood V of z such that f (V) C U.

Theorem 18. Let f : X — Y be a single-valued function where
X and Y are topological spaces. Then f is semi-continuous at z* € X if
and only if whenever f semi-converges to z* in X then f (f) converges to

f(z*) inY.
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Proof. Suppose f is semi-continuous at z* and f semi-converges
to z*. Let V be any neighborhood of f(z*) in Y. Then for some semi-
neighborhood U of z* in X, f(U) C V. Thensince U € [,V € f(I).
Hence f (F) converges to f(z*) in Y.

Conversely, suppose whenever £ semi-converges to z* in X then f ()
converges to f (z*) in Y. Let /™ be the filter of all semi-neighborhoods of z*
in X. Then each neighborhood V of f (z*) belongs to f (£). It follows that
for some semi-neighborhood U of z*, f (U) C V. Thus f is semi-continuous
at z*. O

Definition 19. Let X and Y be topological spaces. We say that a
function f : X — Y is irresolute at a point z € X if and only if for each
semi-open subset T of ¥ containing f (z), there exists a semi-open subset
S of X such that z € S and f(S) CT. A function f : X — Y will be
called an irresolute if it is irresolute at each point z € X.

In the following we give an equivalent definition of an irresolute func-
tion.

Definition 20. Let X and Y be topological spaces. Then a function
f X — Y is said to be an irresolute if and only if for any semi-open
subset S of Y, f~1(S) is semi-open in X.

Theorem 21 ([Latif; 1993]). Let X and Y be topological spaces. Then
a function f : X — Y s irresolute if and only if for each z in X and

each semi-neighborhood U of f (z), there is a semi-neighborhood V of x
such that f(V) CU.

Theorem 22. Let f: X — Y be a single-valued function where X
and Y are topological spaces. Then f is an irresolute at z* € X if and
only if whenever a filter F on X semi-converges to =* in X then f (F)
semi-converges to f (z*) in'Y.

Proof. Suppose f is an irresolute at z* and F semi-converges to z*.
Let V be any semi-neighborhood of f(z*) in Y. Then for some semi-
neighborhood U of z* in X, f(U) C V. Thensince U € F,so V € f(F).
Thus f (F) semi-converges to f (z*) in Y.

Conversely, suppose whenever f semi-converges to z* in X then f (F)
semi-converges to f (z*) in Y. Let F be the filter of all semi-neighborhoods
of z* in X. Then each semi-neighborhood V of f (z*) belongs to f (), so
for some semi-neighborhood U of z*, f (U) C V. Thus f is an irresolute at
z*. O

Definition 23. Let (X, ) be a topological space. Let (z; :1 € I) be
anet in X, and let z € X. Then (z; : ¢ € I) semi-converges to z if and only
if (z; : i € I) is eventually in every semi-open set containing z.
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Definition 24. If f isafilteron X, and A = {(z,F):z € Fe [ }.
Then Aj is directed by the relation (z;,F1) < (z2,F2) if and if F> C F},
so the map P : Ay — X defined by P (z,F) = z is a net in X. It is called
the net based on F.

Theorem 25. Let X be a topological space. Then a filter F semi-
converges to x in X if and only if the net based on | semi-converges to
z.

Proof. Suppose F semi-converges to z. If S is a semi-neighborhood
of z,then S € F. Pick p € S. Then (p,S) € A and if (¢,T) > (p, S), then
g € T C S. Thus the net based on / semi-converges to z.

Conversely, suppose the net based on F semi-converges to z. Let
S be a semi-neighborhood of z. Then for some (p*,F*) € Af, we have
(p, F) > (p*, F*) implies p € S. But then F* C S; otherwise, there is some
g € F* — S, and then (q,F*) > (p*,F*), but ¢ ¢ S. Hence S € F, so [
semi-converges to . g

Definition 26. If (z; :7 € I) is a net in X, the fillter generated by
the filter base  consisting of the sets B;, = {z;|i > io}, io € I, is called
the filter generated by (z;: i € I).

Theorem 27. A net (z; : i € I) semi-converges to z in X if and only
if the filter generated by (z; : i € I) semi-converges to x.

Proof. The net (z;:i € I) semi-converges to z if and only if each
semi-neighborhood of = contains a tail of (z;:7 € I). Since the tails of
(zi:i€I) form a base for the filter generated by (z;:i € I), the result
follows. O

Definition 28. Let (X, 7) be a topological space. Let (z;:i € I) be
a net in X, and let € X. Then r is a semi-cluster point of (z; : 7 € I) if
and only if (z; : ¢ € I) is frequently in every semi-open set containing z.

Definition 29. A topological space (X, 7) is called semi-compact if
and only if every semi-open cover of X, i.e., a cover of X by semi-open sets
in X has a finite subcover.

Theorem 30. The following conditions are equivalent for a topolog-
tcal space X .

(a) X ts semi-compact.

(b) Every filter in X has a semi-cluster point.

(¢) Every net in X has a semi-cluster point.

Proof. (a) == (b). If F is a filter, then F* = {sCI(S): Se€F}isa
collection of semi-closed sets with the finite intersection property. Hence it
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is fixed by theorem 3.3 of [Dorsett; 1981] and each point in its intersection
is a semi-cluster point.

(b) = (c) . Given a net, its associated filter has a semi-cluster point;
this is a semi-cluster point of the net, by definition.

(¢) = (b). Let F be a filter on X. For any F € F, we fix a point
pr € F. We give an order to f, E < F < E D F. Then (/ ,<) is a
directed set. So, (pp: F € F) is a net. Hence there exists a semi-cluster
point p of (pr : F € F). Then, p is a semi-cluster point of £.

(b)) = (a). Let C be a collection of semi-closed sets with finite in-
tersection property. Let 8 be the set of all finite intersections of members
of C. Then clearly 8 is a filterbase for a filter / and C is included in F.
Let = be a semi-cluster point of F. Then z € N{sCI(S) : S € F} C
N{sCI(S) : S € C}. Thus C is fixed, and X is semi-compact by theorem 3.3
of [Dorsett; 1981]. O
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