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Because 3-D data are acquired using 3-D sensing such as stereo vision and laser range finders, they
have inhomogeneous and anisotropic noise. This paper studies optimal computation of the similarity
(rotation, translation, and scale change) of such 3-D data. We first point out that the Gauss-Newton
and the Gauss-Helmert methods, regarded as different techniques, have similar structures. We then
combine them to define what we call the modified Gauss-Helmert method and do stereo vision
simulation to show that it is superior to either of the two in convergence performance. Finally, we
show an application to real GPS geodetic data and point out that the widely used homogeneous and
isotropic noise model is insufficient and that GPS geodetic data are prone to numerical problems.

1. Introduction

The task of autonomous robots to reconstruct the
3-D structure of the scene using stereo vision and
simultaneously compute its location in the map of
the environment, called SLAM (Simultaneous Local-
ization and Mapping), is one of the central themes
of robotics studies today. One of the fundamental
techniques for this is to compute the 3-D motion of
the robot between two time instances. This informa-
tion is obtained by tracking a particular 3-D object to
compute its rotation, translation, and scale change. A
similar task occurs in reconstructing the entire shape
of a 3-D object by 3-D sensing, for which multiple sen-
sors are necessary, because one sensor can reconstruct
only the part that is visible to it. Hence, we need to
map a partial shape obtained from one sensor to a
partial shape obtained from another by computing an
appropriate similarity between them. The same task
arises for geodetic measurement of the earth surface
from multiple satellite sensor data [1, 5, 7, 18].

Thus, 3-D similarity estimation is an important
problem in many engineering applications. To this
end, many researchers have focused on accurate ro-
tation estimation since 1980s. This is because trans-
lation can be estimated from the displacement of the
centroid of the object, and the scale change is eas-
ily perceived from its changing size, while rotation
estimation is not so straightforward in the presence
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of noise. However, almost all rotation estimation al-
gorithms proposed in the past [3, 4, 9, 10, 13, 24]
have assumed homogeneous and isotropic noise. This
is unrealistic for 3-D data acquired by 3-D sensing
such as stereo vision and laser/ultrasonic range find-
ers, because the accuracy is usually different between
the depth direction and the direction orthogonal to it,
resulting in an inhomogeneous and anisotropic noise
distribution depending on the position, orientation,
and type of the sensor.

It is [21] who first pointed out the inevitable in-
homogeneity and anisotropy of the noise in 3-D data
and presented a 3-D rotation estimation scheme that
takes it into account. They used a technique called
renormalization, which iteratively removes statistical
bias of reweight least squares [14]. Recently, [19] pre-
sented a numerical scheme for computing an exact
maximum likelihood (ML) solution. [20] extended
it to 3-D similarity estimation. They used for the
optimization computation the Levenberg-Marquardt
(LM) method, the most widely used standard opti-
mization technique in the field of computer vision [8].
The LM is basically the Gauss-Newton method, to
which the gradient descent principle is combined to
ensure convergence [23].

In geodetic science, on the other hand, the Gauss-
Helmert method [2, 17, 18] is popular for similarity
estimation; Helmert himself was a geodesist, and the
similarity transformation is sometimes referred to as
the “Helmert transformation”. The Gauss-Helmert
method is also used in some computer vision ap-
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plications [6, 22]. However, the Gauss-Newton and
Gauss-Helmert methods have been regarded as dif-
ferent principles, and no comparative studies of them
are found, partly because they have been mainly used
in different domains: the former in robotics and com-
puter vision, the latter in geodetic science. In this
paper, we reformulate the Gauss-Helmert method in
a form that makes the comparison easier and point
out that the two have a very similar mathematical
structures. Then, we combine them to define what
we call the “modified Gauss-Helmert method” and
do stereo vision simulation to show that it is superior
to either of the two in the convergence performance.
Finally, we show an application to real GPS geode-
tic data and point out that the widely used homo-
geneous and isotropic noise model is insufficient and
that the numerical problem sometimes regarded as a
shortcoming of Gauss-Helmert method is due to the
inherent nature of GPS geodetic data.

2. Maximum likelihood estimation

Suppose we are given 3-D position measurements
rα and r′

α, α = 1, ..., N , before and after a similarity
motion. We model the measurement uncertainty by
independent Gaussian noise of mean 0 and covariance
matrices ε2V0[rα] and ε2V0[r′

α], where ε, which we call
the noise level, describes the magnitude and V0[rα]
and V0[r′

α], which we call the normalized covariance
matrices, describe the directional characteristics of
the noise. If the noise is isotropic and homogeneous,
we can let V0[rα] = V0[r′

α] = I (the unit matrix)
for all α, but in general V0[rα] and V0[r′

α] are not
diagonal and also different from position to position.

Let r̄α and r̄′
α be the true positions of rα and

r′
α, respectively, that undergo a similarity of rotation

R, translation t, and scale change s. Their optimal
estimation in the sense of ML is to minimize the Ma-
halanobis distance, which we hereafter call “residual”
for simplicity (the multiplier 1/2 is merely for conve-
nience),

J =
1
2

N∑
α=1

(rα − r̄α, V0[rα]−1(rα − r̄α))

+
1
2

N∑
α=1

(r′
α − r̄′

α, V0[r′
α]−1(r′

α − r̄′
α)), (1)

with respect to r̄α and r̄′
α subject to

r̄′
α = Sr̄α + t, (2)

for some rotation R, translation t, and scale change
s. Here, we combine the rotation R and scale change
s into a “scaled rotation” S = sR and express it
in terms of the quaternion1 q = (q0, q1, q2, q3)> as
follows:

1Mathematically, q is called a “quaternion” when associated
with its algebra, i.e., the rule of composition [11]. However, the
quaternion algebra does not play any role in this paper.

S=

0

@

q2
0+q2

1−q2
2−q2

3 2(q1q2−q0q3) 2(q1q3+q0q2)
2(q2q1+q0q3) q2

0−q2
1+q2

2−q2
3 2(q2q3−q0q1)

2(q3q1−q0q2) 2(q3q2+q0q1) q2
0−q2

1−q2
2+q2

3

1

A.

(3)
This matrix represents a rotation if q is normalized to
unit norm [11]. If q is not restricted to a unit vector,
the square norm ‖q‖2 represents the scale change s.
This quaternion representation of similarity is well
known in computer vision and robotics, and it is also
used in geodesic recently [2].

Introducing to (1) Lagrange multipliers λα for the
constraint (2), we let

J̃ =
1
2

N∑
α=1

(rα − r̄α, V0[rα]−1(rα − r̄α))

+
1
2

N∑
α=1

(r′
α − r̄′

α, V0[r′
α]−1(r′

α − r̄′
α))

−
N∑

α=1

(λα, r̄′
α − Sr̄α − t). (4)

The ML estimators of r̄α, r̄′
α, q and t are obtained

by letting the derivatives of (4) with respect to them
be 0 and solving the resulting equations.

3. Gauss-Newton method

We first formulate the Gauss-Newton method, the
most fundamental optimization technique for robotics
and computer vision. Differentiating (4) with respect
to r̄α and r̄′

α, we obtain

∇r̄α J̃ = −V0[rα]−1(rα − r̄α) + S>λα,

∇r̄′
α
J̃ = −V0[r′

α]−1(r′
α − r̄′

α) − λα. (5)

Letting these be 0 and solving for r̄α and r̄′
α, we have

r̄α = rα − V0[rα]S>λα, r̄′
α = r′

α + V0[r′
α]λα. (6)

Substituting these into (2), we can obtain the La-
grange multipliers λα in the form

λα = −W αeα, (7)

where we define

eα = r′
α −Srα − t, W α = (SV0[rα]S> +V0[r′

α])−1.
(8)

Substituting (7) into (6) and substituting the result-
ing r̄α and r̄′

α into (1), we can express the residual J
in the following form:
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J =
1
2

N∑
α=1

(V0[rα]S>Wαeα, V0[rα]−1V0[rα]S>Wαeα)

+
1
2

N∑
α=1

(V0[r′
α]W αeα, V0[r′

α]−1V0[r′
α]W αeα)

=
1
2

N∑
α=1

(eα, W α(SV0[rα]S> + V0[r′
α])W αeα)

=
1
2

N∑
α=1

(eα, W αW−1
α W αeα)

=
1
2

N∑
α=1

(eα, W αeα). (9)

Differentiating (3) with respect to qi, i = 0, 1, 2, 3,
we obtain

∂S

∂qi
= 2Qi, (10)

where we define

Q0 =

 q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

 , Q1 =

0

@

q1 q2 q3

q2 −q1 −q0

q3 q0 −q1

1

A,

Q2 =

0

@

−q2 q1 q0

q1 q2 q3

−q0 q3 −q2

1

A, Q3 =

0

@

−q3 −q0 q1

q0 −q3 q2

q1 q2 q3

1

A. (11)

Letting
V α = SV0[rα]S> + V0[r′

α], (12)

and differentiating V αW α = I with respect to qi on
both sides, we obtain

2(QiV0[rα]S> + SV0[rα]Q>
i )W α + V α

∂W α

∂qi
= O,

(13)
from which ∂W α/∂qi is expressed as

∂W α

∂qi
= −4W αS[QiV0[rα]S>]W α, (14)

where S[ · ] denotes symmetrization (S[A] = (A +
A>)/2). Thus, the derivative of (9) with respect to
qi is

∂J

∂qi∂qj
= 4

N∑
α=1

(Qirα, W αQjrα). (19)

From (18), the second derivative with respect to t is

∇2
tJ =

N∑
α=1

W α. (20)

Differentiation (18) with respect to qi and doing the
Gauss-Newton approximation, we obtain the follow-
ing mixed second derivative:

∇t
∂J

∂qi
= 2

N∑
α=1

W αQirα. (21)

Using the matrix Uα in (16), we can thus express
the Hessian of the residual J in the following form
(Gauss-Newton approximation):

H =

( ∑N
α=1 U>

α W αUα

∑N
α=1 U>

α W α∑N
α=1 W αUα

∑N
α=1 W α

)
. (22)

Thus, we obtain the following procedure for the
Gauss-Newton method.

1. Provide an initial guess of q and t, and let J0 =
∞ (a sufficiently large number).

2. Compute the scaled rotation S in (3) for q.

3. Compute the vectors eα and the matrices W α

in (8), and evaluate the residual J in (9).

4. If J ≈ J0, return q and t and stop. Else, let J0

← J .

5. Compute the matrices Qi in (11) and the matri-
ces Uα in (16).
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6. Solve the following 7-D linear equation:(∑N
α=1 U>

α W αUα

∑N
α=1 U>

α W α∑N
α=1 W αUα

∑N
α=1 W α

)(
∆q
∆t

)

=

(∑N
α=1 U>

α W αeα∑N
α=1 W αeα

)

+2
(∑N

α=1(eα, WαQiV0[rα]S>Wαeα)
0

)
. (23)

7. Update q and t as follows, and return to Step 2:

q ← q + ∆q, t ← t + ∆t. (24)

As described in textbooks of optimization, (23) and
(24) mean approximating, via Taylor expansion, the
residual J in (9) by a quadratic function around the
current values of q and t and moving to the minimum
of the approximated residual J until the iterations
converge.

4. Gauss-Helmert method

We now formulate the Gauss-Helmert method pop-
ular in geodetic science [2, 6, 17, 18, 22]. Suppose we
are given some approximations r

(0)
α and r′

α
(0) of the

true positions r̄α and r̄′
α. Let q and t be the current

estimates the true solution q̄ and t̄. We write

r̄α = r(0)
α + ∆r̄α, r̄′

α = r′
α

(0) + ∆r̄′
α,

q̄ = q + ∆q, t̄ = t + ∆t, (25)

and compute the correction terms ∆r̄α, ∆r̄′
α, ∆q,

and ∆t. Substituting (25) into (2), doing Taylor ex-
pansion, and omitting second and higher order terms
in the correction terms, we obtain

r′
α

(0)+∆r̄′
α = S(r(0)

α +∆r̄α)+
3∑

i=0

∆qi
∂S

∂qi
r(0)

α +t+∆t,

(26)
If (25) and (26) are substituted into (4), we obtain

J̃ =
1
2

N∑
α=1

(rα−r(0)
α −∆r̄α, V0[rα]−1(rα−r(0)

α −∆r̄α))

+
1
2

N∑
α=1

(r′
α−r′

α
(0)−∆r̄′

α, V0[r′
α]−1(r′

α−r′
α
(0)−∆r̄′

α))

−
N∑

α=1

(λα,
(
r′

α
(0) + ∆r̄′

α − S(r(0)
α + ∆r̄α)

−
3∑

i=0

∆qi
∂S

∂qi
r(0)

α − t − ∆t
)
). (27)

Differentiating this with respect to ∆r̄α, ∆r̄′
α, ∆qi,

and ∆t and letting the results be 0, we have

−V0[rα]−1(rα − r
(0)
α − ∆r̄α) + S>λα = 0,

−V0[r′
α]−1(r′

α − r′
α

(0) − ∆r̄′
α) − λα = 0,

N∑
α=1

(λα,
∂S

∂qi
r(0)

α ) = 0,

N∑
α=1

λα = 0. (28)

From the first and second equations, we obtain

r(0)
α + ∆r̄α = rα − V0[rα]S>λα,

r′
α

(0) + ∆r̄′
α = r′

α + V0[r′
α]λα. (29)

Substitution of these into (26) results in

2
3∑

i=0

∆qiQir
(0)
α +∆t−(SV0[rα]S>+V0[r′

α])λα = eα,

(30)
where eα is the first vector in (8). We have also used
the matrices Qi in (11) and the relation in (10). If
we define the 3 × 4 matrices

U (0)
α = 2

(
Q0r

(0)
α Q1r

(0)
α Q2r

(0)
α Q3r

(0)
α

)
,

(31)
the third equation in (28) has the form

N∑
α=1

U (0)>
α λα = 0. (32)

Using the matrices U (0)
α in (31) and the matrices V α

in (12) we can write (30) as

U (0)
α ∆q + ∆t − V αλα = eα. (33)

We see that (30), (32), and (33) define linear equa-
tions in λ1, ..., λN , ∆q, and ∆t. Solving these, we
can determine q̄, t̄, r̄α, and r̄′

α, which exactly min-
imize the residual J in (1) subject to the linearized
constraint (26). However, (26) is an approximation,
so we regard the computed solution q and t as new
current values and upgrade r

(0)
α by the left side of

the first equation in (29) using the computed λα (the
value of rα((0) is not used in the computation). We
repeat this until all variables converge. The proce-
dure is summarized as follows:

1. Provide an initial guess of q and t, and let r
(0)
α

= rα and J0 = ∞ (a sufficiently large number.

2. Compute the scaled rotation S in (3) for q.

3. Compute the vectors eα and the matrices W α

in (8), and evaluate the residual J in (9).

4. If J ≈ J0, return q and t and stop. Else, let J0

← J .

5. Compute the matrices Qi in (11) and U (0)
α in

(31).

6. Solve the following (3N + 7)-D linear equation:
−V 1 U

(0)
1 I

. . .
...

...
−V N U

(0)
N I

U
(0)>
1 · · · U

(0)>
N

I · · · I




λ1

...
λN

∆q
∆t

 =


e1

...
eN

0
0

 .

(34)
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7. Update r
(0)
α , q and t as follows, and return to

Step 2:

r(0)
α ← rα − V0[rα]S>λα,

q ← q + ∆q, t ← t + ∆t. (35)

5. Reduced Gauss-Helmert method

The above description gives an impression that the
Gauss-Newton and Gauss-Helmert methods are very
different disciplines. We now show that the Gauss-
Helmert method can be expressed in a form very sim-
ilar to the Gauss-Newton method. From (33), we can
express λα in the form

λα = W α

(
U (0)

α ∆q + ∆t − eα

)
, (36)

where W α is the matrix defined in (8). If (36) is
substituted into the first and the second equalities in
(28) to eliminate λα, we obtain linear equations only
in ∆q and ∆t. Hence, the procedure of the Gauss-
Helmert method can also be written in the following
form:

1. Provide an initial guess of q and t, and let r
(0)
α

= rα and J0 = ∞ (a sufficiently large number).

2. Compute the scaled rotation S in (3) for q.

3. Compute the vectors eα and the matrices W α

in (8), and evaluate the residual J in (9).

4. If J ≈ J0, return q and t and stop. Else, let J0

← J .

5. Compute the matrices Qi in (11) and the matri-
ces U (0)

α in (31).

6. Solve the following 7-D linear equation:(∑N
α=1U

(0)>
α W αU (0)

α

∑N
α=1U

(0)>
α W α∑N

α=1 W αU (0)
α

∑N
α=1 W α

)(
∆q
∆t

)

=

( ∑N
α=1 U (0)>

α W αeα∑N
α=1 W αeα

)
. (37)

7. Compute λα by (36).

8. Update r
(0)
α , q, and t as follows, and return to

Step 2:

r(0)
α ← rα − V0[rα]S>λα,

q ← q + ∆q, t ← t + ∆t. (38)

This reduction of the algorithm reduces the memory
usage in the computer; the effect is significant when
the number N of the data is very large. Also, the sim-
ilarity to the Gauss-Newton method becomes more
apparent. Comparing (23) and (37), we see that the

matrices Uα of (16) are replaced by the matrices U (0)
α

of (31). For the Gauss-Newton method, the right side
of (23) is the gradient of the residual J with respect
to q and t, but the counterpart of the second term
is missing on the right side of (37). However, when
∆q = ∆t = 0 at the time of the convergence of the
Gauss-Helmert iterations, we see from (36) that λα

= −W αeα. Hence, the first equation in (38) implies

r(0)
α = rα + V0[rα]S>W αeα, (39)

which coincides with (6) if (7) is substituted. Substi-
tution of (39) into (31) shows

U (0)
α = Uα

+2
(
Q0V0[rα]S>W αeα Q1V0[rα]S>W αeα

Q2V0[rα]S>W αeα Q3V0[rα]S>W αeα

)
. (40)

Hence, we have

U (0)>
α W αeα = UαW αeα

+2
(
(eα,W αQiV0[rα]S>W αeα)

)
. (41)

If this is substituted, the right side of (37) coin-
cides with that of (23). Since this is 0 when the
iterations have converged, we see that the Gauss-
Helmert method returns the same solution as the
Gauss-Newton method. Since the matrix on the left
side of (23) is the Gauss-Newton approximation of the
Hessian of the residual J , the matrix on the left side
of (37) can also be viewed as an approximation of the
Hessian of J . If we call it the Gauss-Helmert approx-
imation, the Gauss-Newton and the Gauss-Helmert
approximations differ by O(eα).

6. Modified Gauss-Helmert method

It is easily seen that (6) of the Gauss-Newton
method gives the maximum likelihood estimators of
r̄α and r̄′

α, given the current estimates q and t, while
the first equation in (35) (or (38)) gives an iterative
update using the Lagrange multipliers λα of (36) ex-
pressed in the increments ∆q and ∆t of q and t. Al-
though the resulting r

(0)
α converge to the first equa-

tion of (6), as we showed in the preceding section, we
can expect higher accuracy if we directly use the first
equation of (6) rather than the iterative update as in
(35) or (38). The modified procedure is summarized
as follows:

1. Provide an initial guess of q and t, and let J0 =
∞ (a sufficiently large number).

2. Compute the scaled rotation S in (3) for q.

3. Compute the vectors eα and the matrices W α

in (8), and compute r
(0)
α as follows:

r(0)
α = rα + V0[rα]S>W αeα. (42)
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4. Evaluate the residual J in (9). If J ≈ J0, return
q and t and stop. Else, let J0 ← J .

5. Compute the matrices Qi in (11) and the matri-
ces U (0)

α in (31).

6. Solve the following 7-D linear equation:(∑N
α=1U

(0)>
α W αU (0)

α

∑N
α=1U

(0)>
α W α∑N

α=1 W αU (0)
α

∑N
α=1 W α

) (
∆q
∆t

)

=

(∑N
α=1 U (0)>

α W αeα∑N
α=1 W αeα

)
. (43)

7. Update r
(0)
α , q, and t as follows, and return to

Step 2:

q ← q + ∆q, t ← t + ∆t (44)

As shown in the preceding section, if the values of r
(0)
α

defined in (42) are used, the right side of (43) coin-
cide with that of (23). In other words, while the right
side of (37) of the (reduced) Gauss-Helmert method
converges to that of the Gauss-Newton method, the
above modified Gauss-Helmert method uses, from
the beginning, the same value as the Gauss-Newton
method on the right side of (43). Consequently,
the only difference between the Gauss-Newton and
the Gauss-Helmert methods is whether the Gauss-
Newton approximation or the Gauss-Helmert approx-
imation is used on the left side.

7. Simulated Stereo Vision

7.1 Covariance evaluation

A curved grid surface is rotated around the world
origin O and translated after its scale is changed, as
depicted in Fig. 1. The 3-D positions of the grid
points are reconstructed by stereo vision before and
after the similarity motion. The simulated stereo im-
ages are shown in Fig. 2. The image size is set to
500 × 800 pixels and the focal length to 600 pixels.
The two cameras are positioned so that the disparity
angle, or the parallax, of the world origin O is 10◦.
We added independent Gaussian noise of mean 0 and
standard deviation σ pixels to the x and y coordinates
of each of the grid points in these images and com-
puted their 3-D positions r̂α and r̂′

α by the method
described in [15]. For optimal similarity estimation,
we need to evaluate the normalized covariances V0[r̂α]
and V0[r̂

′
α] of the reconstructed 3-D positions r̂α and

r̂′
α. Following [16] and [19], we evaluated these as

follows.
We fix an XY Z world coordinate system and re-

gard the reference camera position as placed at the
coordinate origin O with the optical axis aligned to
the Z-axis. The image xy coordinate system is de-
fined in such a way that its origin o is at the princi-
pal point (the intersection with the optical axis) and

Figure 1: 3-D measurement of a grid point by stereo
vision and its uncertainty ellipsoid.

Before motion

After motion

Figure 2: Simulated stereo images of the grid before and
after the motion.

the x- and y-axis are parallel to the X- and Y -axis of
the world coordinate system, respectively. Then, the
camera is rotated around the world coordinate origin
O by R (rotation matrix) and translated by t from the
reference position. We call {R, t} the motion param-
eters of the camera. The camera imaging geometry is
modeled by perspective projection with focal length
f , projecting a 3-D point onto a 2-D point (x, y) by
the following relationship [8]:

x ' PX, x ≡

 x/f0

y/f0

1

 , X ≡
(

r
1

)
.

(45)
The symbol ' means equality up to a nonzero con-
stant multiplier, and f0 is a scale constant of approxi-
mately the image size for stabilizing finite length com-
putation. The 3 × 4 projection matrix P is given by

P =

 f/f0 0 0
0 f/f0 0
0 0 1

(
R> −R>t

)
, (46)

where the aspect ratio is assumed to be 1 with no
image skews, or so corrected by prior calibration.

We consider two cameras with motion parameters
{R, t} and {R′, t′} with focal lengths f and f ′, re-
spectively. Let P and P ′ be the projection matrices
of the respective cameras, and x and x′ the images
of a point in 3-D observed by the respective cam-
eras. Image processing for correspondence detection
entails uncertainty to some extent, and we model it
by independent isotropic Gaussian noise of mean 0
and standard deviation σ (pixels). Due to noise, the
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detected points x and x′ do not exactly satisfy the
epipolar constraint (Appendix A), so we correct x and
x′, respectively, to x̂ and x̂′ that exactly satisfy the
epipolar constraint in an optimal manner (Appendix
B). From the corrected positions x̂ and x̂′, the corre-
sponding 3-D position r̂ is uniquely determined (Ap-
pendix A). Note that although the noise in xα and
x′

α is assumed to be independent, the noise in the
corrected positions x̂α and x̂′

α is no longer indepen-
dent [14]. The normalized covariance matrices V0[x̂]
and V0[x̂

′] and the normalized correlation matrices
V0[x̂, x̂′] and V0[x̂

′, x̂] are given as follows [14, 16]:

V0[x̂] =
1
f2
0

(
P k − (P kF x̂′)(P kF x̂′)>

‖P kF x̂′‖2 + ‖P kF>x̂‖2

)
,

V0[x̂
′] =

1
f2
0

(
P k − (P kF>x̂)(P kF>x̂)>

‖P kF x̂′‖2 + ‖P kF>x̂‖2

)
,

V0[x̂, x̂′] =
1
f2
0

(
− (P kF x̂′)(P kF>x̂)>

‖P kF x̂′‖2 + ‖P kF>x̂‖2

)
= V0[x̂

′, x̂]>. (47)

Here, F is the fundamental matrix between the
two images (see Appendix A), and we define P k ≡
diag(1, 1, 0). Since the vector X̂ reconstructed from
x̂ and x̂′ satisfies the projection relationship in (45),
vectors x̂ and PX̂ are parallel, and so are x̂′ and
P ′X̂. Thus, we have

x̂ × PX̂ = 0, x̂′ × P ′X̂ = 0 (48)

It follows that if the noise in x̂ and x̂′ is ∆x̂ and
∆x̂′, respectively, the noise ∆X̂ in X̂ satisfies to a
first approximation

∆x̂ × PX̂ + x̂ × P∆X̂ = 0,

∆x̂′ × P ′X̂
′
+ x̂′ × P ′∆X̂ = 0. (49)

These are combined into one equation in the form(
x̂ × P̃

x̂′×P̃
′

)
∆r̂=

(
(PX̂) × I O

O (P ′X̂) × I

)(
∆x̂
∆x̂′

)
,

(50)
where ∆r̂ is the 3-D vector of the first three compo-
nents of ∆X̂ and P̃ and P̃

′
are the left 3 × 3 sub-

matrices of the 3 × 4 projection matrices P and P ′,
respectively. Here, we define the product a × A of a
3-D vector a and a 3 × 3 matrix A to be the 3 × 3
matrix whose columns are the vector products of a
and the respective columns of A [14]. Multiplying
both sides by the transpose of the left side from left,
we obtain(
(x̂ × P̃ )>(x̂ × P̃ ) + (x̂′ × P̃

′
)>(x̂′ × P̃

′
)
)
∆r̂

=
(
(x̂×P̃ )>((PX̂)×I) (x̂′×P̃

′
)>((P ′X̂)×I)

)(∆x̂
∆x̂′

)
.

(51)

The following identities hold [14]:

(x̂ × P̃ )>(x̂ × P̃ ) = P̃
>

(x̂ × I)>(x̂ × I)P̃

= ‖x̂‖2P̃
>

PN [x̂]P̃ ,

(x̂′ × P̃
′
)>(x̂′ × P̃

′
) = P̃

′>
(x̂′ × I)>(x̂′ × I)P̃

′

= ‖x̂′‖2P̃
′>

PN [x̂′]P̃
′
. (52)

Here, we define

PN [x̂] ≡ I −N [x̂]N [x̂]>,

PN [x̂′] ≡ I −N [x̂′]N [x̂′]>, (53)

where N [ · ] denotes normalization to unit norm (N [a]
= a/‖a‖). Similarly, we have

(x̂×P̃ )>((PX̂)×I) = P̃
>(

(x̂,PX̂)I − (PX̂)x̂>
)
,

(x̂′×P̃
′
)>((P ′X̂)×I)= P̃

′>(
(x̂′,P ′X̂)I−(P ′X̂)x̂′>

)
.

(54)

Using these, we can rewrite (51) in the following form:

A∆r̂ = B

(
∆x̂
∆x̂′

)
,

A ≡ ‖x̂‖2P̃
>

PN [x̂]P̃ + ‖x̂′‖2P̃
′>

PN [x̂′]P̃
′
,

B ≡
(
P̃

>(
(x̂, PX̂)I − (PX̂)x̂>

)
P̃

′>(
(x̂′, P ′X̂)I − (P ′X̂)x̂′>

))
. (55)

Hence, we obtain

∆r̂∆r̂>=A−1B

(
∆x̂∆x̂> ∆x̂∆x̂>

∆x̂′∆x̂> ∆x̂′∆x̂′>

)
B>(A−1)>.

(56)
Taking expectation on both sides, we obtain the nor-
malized covariance matrix V0[r̂] of the reconstructed
position r̂ in the following form:

V0[r̂] = A−1B

(
V0[x̂] V0[x̂, x̂′]

V0[x̂
′, x̂] V0[x̂

′]

)
B>(A−1)>.

(57)
Evaluating the normalized covariance matrix

V0[r̂α] in (57), we find that the uncertainty distribu-
tion has an ellipsoidal shape elongated in the depth
direction, as illustrated in Fig 1. The ratio of radii is,
on average over all the points, 1.00 : 1.685 : 5.090 in
the vertical, horizontal, and depth directions, respec-
tively, meaning that the error in the depth direction
is approximately five times as large as in the vertical
direction. We actually measured this ratio by adding
noise to the images many times and found that it is
about 1.00 : 1.686 : 5.095, a very close value to the
prediction by (57).
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Table 1: Three examples of the decrease in the residual J for the standard deviation σ = 1.0, 2.0, 3.0 (pixels) of the
error added to the stereo images. Unchanged digits are underlined.

σ = 1.0
Gauss-Newton Gauss-Helmert modified G-H

0 23368.98044646554 23368.98044646554 23368.98044646554
1 5923.560464358145 151.2986897231218 1285.065292480236
2 260.2294019664706 138.7852882171576 157.4589569299990
3 138.6397722443412 138.4925647492029 138.5000828752851
4 138.4925871308799 138.4925039364953 138.4925004345684
5 138.4924995387721 138.4924994558186 138.4924994516441
6 138.4924994515073 138.4924994515843 138.4924994514191
7 138.4924994514190 138.4924994514190 138.4924994514189
8 138.4924994514186 138.4924994514186 138.4924994514183

σ = 2.0
Gauss-Newton Gauss-Helmert modified G-H

0 23705.92405252490 23705.92405252490 23705.92405252490
1 6631.055953257285 594.2288594040884 1561.554831323493
2 736.3892569773028 558.1047339694743 558.6320435827311
3 553.9802729910044 553.1013519598023 553.0948890717049
4 553.1072304698275 553.0944258828818 553.0931283140471
5 553.0934173237943 553.0931334967796 553.0931253383568
6 553.9031314363093 553.0931261287393 553.0931253320340
7 553.9031254597525 553.0931253408035 553.0931253320183
8 553.9031253346927 553.0931253326902
9 553.9031253320766 553.0931253320288

10 553.9031253320209 553.0931253320218
11 553.9031253320202 553.0931253320192

σ = 3.0
Gauss-Newton Gauss-Helmert modified G-H

0 24182.94641626991 24182.94641626991 24182.94641626991
1 7749.683523117275 1385.515352477767 2074.419348255112
2 1602.792794683083 1264.397843471071 1237.583977963944
3 1243.659456346911 1237.444020868650 1237.288888227983
4 1237.725240249172 1237.323793869136 1237.288729761082
5 1237.327534736445 1237.289379736924 1237.288728527720
6 1237.292254473387 1237.288833051470 1237.288728517618
7 1237.289050047267 1237.288731797017 1237.288728517540
8 1237.288757863381 1237.288728948894 1237.288728517537
9 1237.288731196586 1237.288728533946 1237.288728517535

10 1237.288728762133 1237.288728519425
11 1237.288728539869 1237.288728517618
12 1237.288728519574 1237.288728517545
13 1237.288728517725 1237.288728517538
14 1237.288728517554
15 1237.288728517537
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7.2 Results

Table 1 shows how the residual J of each method
decreases with iterations. The standard deviation of
the error added to the stereo images is σ = 1.0, 2.0,
3.0 (pixels), respectively. We started from the iden-
tity (R = I, t = 0, s = 1) and imposed no threshold
for convergence: we stopped if J stops decreasing. In
each step, unchanged digits are underlined. What is
marked is that the initial decrease in J of the Gauss-
Helmert method is conspicuous; it drops sharply and
almost abruptly. In contrast, Gauss-Newton method
reduces J continuously and steadily. On the other
hand, the initial decrease in J of the modified Gauss-
Helmert method is smaller than the Gauss-Helmert
method. This is because the modified Gauss-Helmert
method computes the ML estimator of r̄α for the
“current” estimate of the similarity. Since the ini-
tial guess (the identity) is far from the truth, the
values r

(0)
α computed by (42) are very poor approxi-

mations, while the Gauss-Helmert method initializes
r

(0)
α by the data rα themselves, so they are better

estimates of r̄α. Nevertheless, the modified Gauss-
Helmert method exhibits the best convergence per-
formance of all, and the effect is more marked as the
noise in the data increases.

Figure 3a shows for various σ the average num-
ber of iterations over independent 1000 trials, each
time with different noise. We can see that the Gauss-
Helmert method converges faster than the Gauss-
Newton method and in most cases the modified
Gauss-Helmert method converges even faster. For
comparison, Fig. 3b shows the result initialized us-
ing the widely used homogeneous and isotropic noise
model which assumes V0[rα] = V0[rα] = I for all α.
In this case, we compute the centroids rc and r′

c of the
data {rα} and {r′

α}, respectively, and the deviations
r̃α = rα − rc and r̃′

α = r′
α − r′

c from their respective
centroids. As is well known, the scale change s can
be estimated by

s =

√√√√∑N
α=1 ‖r̃

′
α‖2∑N

α=1 ‖r̃α‖2
, (58)

and the rotation R is computed from {r̃α} and {r̃′
α}

by the method of singular value decomposition (SVD)
(Appendix C). The translation t is determined from
t = r′

c − sRrc. As we see from Fig. 3b, the Gauss-
Newton method converges faster than the Gauss-
Helmert method for such an accurate initialization
when the noise in the data is small. However, the
Gauss-Helmert method becomes more efficient as the
noise increases. Yet , the modified Gauss-Helmert
method is always the most efficient for all the noise
level.

We next evaluated the accuracy of the computed
rotation R̂, the translation t̂, and the scale change ŝ.
Let R̄, t̄, and s̄ be their true values, respectively. We

computed the rotation angle δΩ (in degree) of the
relative rotation R̂R̄

−1, the translation error δt =
t̂− t̄ and the scale change error δs = ŝ− s̄. Repeating
this 1000 times with σ fixed, each time using different
image noise, we evaluated the RMS errors

ER =

√√√√ 1
1000

1000∑
a=1

(δΩ(a))2,

Et =

√√√√ 1
1000

1000∑
a=1

‖δt(a)‖2,

Es =

√√√√ 1
1000

1000∑
a=1

(δs(a))2, (59)

where the superscript (a) denotes the value of the
ath trial. Figure 4 plots these for various σ. Since, as
far as accuracy is concerned, there are no discernible
differences between the Gauss-Newton, the Gauss-
Helmert, and the modified Gauss-Helmert methods,
we compared their accuracy with the use of the ho-
mogeneous and isotropic noise model. It is clearly
demonstrated that accurate estimation cannot be
done unless the inhomogeneity and anisotropy of the
3-D sensing data.

8. Real Data Example

Turkey is a country with frequent earthquakes, and
researchers monitor the land deformation using GPS
data. Table 2 shows the X, Y , and Z coordinates
(in meters) of five positions selected from a landslide
area near Istanbul in October 1997 and March 1998
[1]. The absolute positions are corrected in reference
to control points in stable areas. The covariance ma-
trices of these values are estimated using statistical
regression analysis. For the 1997 data, their covari-
ance matrices (in the order listed in the table) are

0

@

34 10 17
10 12 7
17 7 33

1

A,

0

@

234 83 136
83 97 58

136 58 245

1

A,

0

@

24 8 12
8 10 6

12 6 25

1

A,

0

@

63 25 36
25 28 16
36 16 53

1

A,

0

@

22 8 12
8 9 5

12 5 23

1

A,

multiplied by 10−8. For the 1998 data,
0

@

51 18 23
18 18 13
23 13 30

1

A,

0

@

323 140 159
140 148 100
159 100 218

1

A,

0

@

41 14 19
14 16 11
19 11 28

1

A,

0

@

141 47 70
47 49 38
70 38 96

1

A,

0

@

59 20 29
20 24 16
29 16 43

1

A

multiplied by 10−8.
Table 3a shows the changes in J of the three meth-

ods initialized by the identity (unchanged digits are

January 2012 Optimal Computation of 3-D Similarity: Gauss-Newton vs. Gauss-Helmert

29



(a) (b)

Figure 3: The average number of iterations for various noise level σ over 1000 independent trials: 1. Gauss-Newton, 2.
Gauss-Helmert, 3. modified Gauss-Helmert. (a) Initialized by the identity. (b) Initialized using the homogeneous and
isotropic noise model.

(a) (b) (c)

Figure 4: The RMS error vs. the standard deviation σ of the noise added to the stereo images: (a) Rotation, (b)
Translation, (c) Scale change. The dotted lines are for the homogeneous and isotropic noise model.

underlined). We see that the values fluctuate in the
digits below the eighth or ninth place. This phe-
nomenon has been known in geodesic science and
has sometimes been regarded as a shortcoming of the
Gauss-Helmert method. However, this is common to
the three methods. We see that although the data
in Table 2 have many digits, the four or five digits
are common to all the five observation points and
that the differences between 1997 and 1998 occur only
in the last two or three digits. As is well known in
numerical analysis, such data are very prone to the
magnification of the finite length computation error.
We conclude that for all the methods the value of

Table 2: The 3-D data of five points near Istanbul in
October 1997 and March 1998 [1].

October 1997
X Y Z

4233187.8344 2308228.6785 4161469.1229
4233190.6059 2308518.3249 4161336.2582
4233429.1004 2307875.2240 4161292.4034
4233259.8205 2307712.3025 4161553.4880
4233770.4580 2308340.5240 4160740.3286

March 1998
X Y Z

4233187.8612 2308228.7042 4161469.1383
4233190.6124 2308518.3166 4161336.2682
4233429.1008 2307875.2239 4161292.4029
4233259.8309 2307712.2990 4161553.5007
4233770.4534 2308340.5219 4160740.3181

J in Table 3a has practically converged at the sec-
ond iteration and that the subsequently fluctuates in
the digits below the eighth or ninth place indicate
the accuracy limit due to finite length computation
(double precision in our case). Accordingly, the sim-
ilarity solutions also converge up to six or seven dig-
its. Table 3b lists the meaningful digits with utmost
attainable accuracy, to which the solution using the
conventional homogeneous and isotropic noise model
agree at most in the first digit. This illustrates that
accurate estimation cannot be done without using the
optimal computation shown here.

9. Conclusions

Because 3-D data are acquired using 3-D sensing
such as stereo vision and laser range finders, they
have inhomogeneous and anisotropic noise. In this
paper, we studied optimal computation of the simi-
larity (rotation, translation, and scale change) of such
3-D data. We compared the two well known methods
that are suitable for this purpose: the Gauss-Newton
method widely regarded as the standard optimization
technique by computer vision and robotics engineers,
and the the Gauss-Helmert method popular among
geodetic scientists. Our observations are summarized
as follows:

1. The Gauss-Helmert method has a very simi-
lar form to the Gauss-Newton method. This
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Table 3: (a) Changes in the residual J (×10−6) for the data in Table 2. Unchanged digits are underlined. (b) The
translation t = (t1, t2, t3)

> (in meters), the scale change s, the rotation axis l = (l1, l2, l3)
> (unit vector), the rotation

angle Ω (in degree), and the residual J (×10−6) estimated from the data in Table 2. The optimal solution lists meaningful
digits with utmost accuracy.

Gauss-Newton Gauss-Helmert modified G-H
0 13.90466081612066 13.90466081612066 13.90466081612066
1 6.891471483617726 6.891561230647212 6.891490551983246
2 6.409224270624541 6.409224054092592 6.409224341043299
3 6.409224500361636 6.409224582261247 6.409224199848933
4 6.409224272986374 6.409224257902020 6.409224110716818
5 6.409224117901836 6.409224682772476 6.409224152869662
6 6.409224095494097 6.409224242530478 6.409224325787738
7 6.409224093119093 6.409223929884663 6.409224417144383
8 6.409224304185821 6.409223999141919 6.409224110716818
9 6.409223917076926 6.409224189433356 6.409224080748898

10 6.409224111129707 6.409224068655141 6.409224155956410

conventional optimal
t1 −199.8604 −274.6708
t2 42.52530 100.2332
t3 143.6579 140.7879
s 1.000004 1.000009
l1 −0.04950650 −0.008546834
l2 0.9328528 0.8213706
l3 −0.3568400 −0.5703308
Ω 0.002242810 0.002887644
J 9.242858 × 10−6 6.409224 × 10−6

(a) (b)

becomes evident if the unknowns are reduced
to the similarity variables alone by eliminating
out the Lagrange multipliers. We can view the
Gauss-Helmert iterations a variant of the Gauss-
Newton iterations with a special approximation
of the Hessian of the residual, which may be
called the “Gauss-Helmert approximation”.

2. In the course of the iterations, the Gauss-
Helmert method sharply drops the residual at
first, but the subsequent convergence is not nec-
essarily fast. In contrast, the Gauss-Newton iter-
ations continuously and steadily reduce the resid-
ual. Overall, the Gauss-Newton method is more
efficient when the initialization is accurate and
the data noise is low, but the Gauss-Helmert
method becomes more efficient when the initial-
ization is poor or the noise level is high.

Then, we combined the merits of the two methods
to define the “modified Gauss-Helmert method”. We
observed that:

3. The initial drop of the residual is not so sharp as
the Gauss-Helmert method, but the convergence
is smooth as the Gauss-Newton method.

4. Irrespective of the accuracy of the initialization
or the noise level of the data, the convergence
is always faster than the Gauss-Newton or the
Gauss-Helmert method.

We also described how to evaluate the covariance ma-
trices of the inhomogeneous and anisotropic noise as-
sociated with stereo vision. Finally, we showed an
application to real GPS geodetic data and found that:

5. The widely used homogeneous and isotropic
noise model is insufficient for accurate estima-
tion.

6. The limited accuracy, for which the Gauss-
Helmert method has sometimes been to blame, is
due to the inherent nature of GPS geodetic data.

It is expected that our proposed modified Gauss-
Helmert will become a standard tool in both com-
puter vision and robotics engineering and geodetic
science.
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Appendix

A. 3-D reconstruction by stereo Vision

If a point (x, y) in the first image of a stereo pair
corresponds to (x′, y′) in the second, they satisfy the

following epipolar constraint [8]:

(

 x/f0

y/f0

1

 , F

 x′/f0

y′/f0

1

) = 0, (60)

Here, the matrix F = (Fij), called the fundamental
matrix , is defined by

F11 =

˛

˛

˛

˛

˛

˛

˛

˛

P21 P22 P23 P24

P31 P32 P33 P34

P ′
21 P ′

22 P ′
23 P ′

24

P ′
31 P ′

32 P ′
33 P ′

34

˛

˛

˛

˛

˛

˛

˛

˛

, F12 =

˛

˛

˛

˛

˛

˛

˛

˛

P21 P22 P23 P24

P31 P32 P33 P34

P ′
31 P ′

32 P ′
33 P ′

34

P ′
11 P ′

12 P ′
13 P ′

14

˛

˛

˛

˛

˛

˛

˛

˛

,

F13 =

˛

˛

˛

˛

˛

˛

˛

˛

P21 P22 P23 P24

P31 P32 P33 P34

P ′
11 P ′

12 P ′
13 P ′

14

P ′
21 P ′

22 P ′
23 P ′

24

˛

˛

˛

˛

˛

˛

˛

˛

, F21 =

˛

˛

˛

˛

˛

˛

˛

˛

P31 P32 P33 P34

P11 P12 P13 P14

P ′
21 P ′

22 P ′
23 P ′

24

P ′
31 P ′

32 P ′
33 P ′

34

˛

˛

˛

˛

˛

˛

˛

˛

,

F22 =

˛

˛

˛

˛

˛

˛

˛

˛

P31 P32 P33 P34

P11 P12 P13 P14

P ′
31 P ′

32 P ′
33 P ′

34

P ′
11 P ′

12 P ′
13 P ′

14

˛

˛

˛

˛

˛

˛

˛

˛

, F23 =

˛

˛

˛

˛

˛

˛

˛

˛

P31 P32 P33 P34

P11 P12 P13 P14

P ′
11 P ′

12 P ′
13 P ′

14

P ′
21 P ′

22 P ′
23 P ′

24

˛

˛

˛

˛

˛

˛

˛

˛

,

F31 =

˛

˛

˛

˛

˛

˛

˛

˛

P11 P12 P13 P14

P21 P22 P23 P24

P ′
21 P ′

22 P ′
23 P ′

24

P ′
31 P ′

32 P ′
33 P ′

34

˛

˛

˛

˛

˛

˛

˛

˛

, F32 =

˛

˛

˛

˛

˛

˛

˛

˛

P11 P12 P13 P14

P21 P22 P23 P24

P ′
31 P ′

32 P ′
33 P ′

34

P ′
11 P ′

12 P ′
13 P ′

14

˛

˛

˛

˛

˛

˛

˛

˛

,

F33 =

˛

˛

˛

˛

˛

˛

˛

˛

P11 P12 P13 P14

P21 P22 P23 P24

P ′
11 P ′

12 P ′
13 P ′

14

P ′
21 P ′

22 P ′
23 P ′

24

˛

˛

˛

˛

˛

˛

˛

˛

, (61)

where Pij and P ′
ij are the (ij) elements of the pro-

jection matrices P and P ′ of the first and the second
camera, respectively, as defined in (46). If we let r
= (X,Y, Z)> be the 3-D point we are looking at, we
obtain from the perspective projection relationship in
(45)

x = f0
P11X + P12X + P13X + P14f0

P31X + P32X + P33X + P34f0
,

y = f0
P21X + P22X + P23X + P24f0

P31X + P32X + P33X + P34f0
,

x′ = f0
P ′

11X + P ′
12X + P ′

13X + P ′
14f0

P ′
31X + P ′

32X + P ′
33X + P ′

34f0
,

y′ = f0
P ′

21X + P ′
22X + P ′

23X + P ′
24f0

P ′
31X + P ′

32X + P ′
33X + P ′

34f0
. (62)

Clearing the fraction, we obtain the following linear
equations:

xP31 − f0P11 xP32 − f0P12 xP33 − f0P13

yP31 − f0P21 yP32 − f0P22 yP33 − f0P23

x′P ′
31 − f0P

′
11 x′P ′

32 − f0P
′
12 x′P ′

33 − f0P
′
13

y′P ′
31 − f0P

′
21 y′P ′

32 − f0P
′
22 y′P ′

33 − f0P
′
23


 X

Y
Z



= −


xP34 − f0P14

yP34 − f0P24

x′P ′
34 − f0P

′
14

y′P ′
34 − f0P

′
24

 . (63)

These are four equations for three unknowns X, Y ,
and Z, but because the epipolar constraint in (60)
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is satisfied, the solution is unique. In fact, (60) is
derived as the necessary and sufficient condition for
(63) to have a unique solution.

B. Optimal Triangulation

Let (x, y) and (x′, y′) be a pair of correspond-
ing points between stereo images. Since correspon-
dence detection by an image processing operations
inevitably entails uncertainty to some degree, they
do not necessarily satisfy the epipolar constraint in
(60). Geometrically, this corresponds to the fact that
the lines of sight starting from the lens center of the
two cameras and passing through (x, y) and (x′, y′) in
the image plane do not necessarily meet in the scene.
For optimal 3-D reconstruction, we need to correct
(x, y) and (x′, y′) optimally to (x̂, ŷ) and (x̂′, ŷ′) so
that their lines of sight intersect, i.e., (60) is satis-
fied. By “optimally”, we mean that the correction
is done in such a way that the reprojection error
(x̂−x)2+(ŷ−y)2+(x̂′−x′)2+(ŷ′−y′)2 is minimized.
This correction procedure goes as follows [15]:

1. Let E0 = ∞ (a sufficiently large number), x̂
= x, ŷ = y, x̂′ = x′, ŷ′ = y′, and x̃ = ỹ
= x̃′ = ỹ′ = 0, and express the fundamen-
tal matrix F = (Fij) as the 9-D vector f =
(F11, F12, F13, F21, F22, F23, F31, F32, F33)>.

2. Compute the following 9×9 matrix V0[ξ̂] and the
9-D vector ξ∗:

V0[ξ̂] =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

x̂2 + x̂′2 x̂′ŷ′ f0x̂
′ x̂ŷ 0

x̂′ŷ′ x̂2 + ŷ′2 f0ŷ
′ 0 x̂ŷ

f0x̂
′ f0ŷ

′ f2
0 0 0

x̂ŷ 0 0 ŷ2 + x̂′2 x̂′ŷ′

0 x̂ŷ 0 x̂′ŷ′ ŷ2 + ŷ′2

0 0 0 f0x̂
′ f0ŷ

′

f0x̂ 0 0 f0ŷ 0
0 f0x̂ 0 0 f0ŷ
0 0 0 0 0

0 f0x̂ 0 0
0 0 f0x̂ 0
0 0 0 0

f0x̂
′ f0ŷ 0 0

f0ŷ
′ 0 f0ŷ 0

f2
0 0 0 0
0 f2

0 0 0
0 0 f2

0 0
0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

,

ξ∗ =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

x̂x̂′ + x̂′x̃ + x̂x̃′

x̂ŷ′ + ŷ′x̃ + x̂ỹ′

x̂ + x̃
ŷx̂′ + x̂′ỹ + ŷx̃′

ŷŷ′ + ŷ′ỹ + ŷỹ′

ŷ + ỹ
x̂′ + x̃′

ŷ′ + ỹ′

1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

. (64)

3. Update x̃, ỹ, x̃′, ỹ′, x̂, ŷ, x̂′, and ŷ′ as follows:

(
x̃
ỹ

)
← (f , ξ∗)

(f , V0[ξ̂]f)

(
F11 F12 F13

F21 F22 F23

) x̂′

ŷ′

1

 ,

(
x̃′

ỹ′

)
← (f , ξ∗)

(f , V0[ξ̂]f)

(
F11 F21 F31

F12 F22 F32

) x̂
ŷ
1

 ,

x̂ ← x−x̃, ŷ ← y−ỹ, x̂′ ← x′−x̃′, ŷ′ ← y′−ỹ′.
(65)

4. Compute the reprojection error E by

E = x̃2 + ỹ2 + x̃′2 + ỹ′2. (66)

If E ≈ E0, return (x̂, ŷ) and (x̂′, ŷ′) and stop.
Else, let E0 ← E and go back to Step 2.

C. Homogeneous isotropic noise model

Various methods are known for optimally comput-
ing the 3-D rotation for homogeneous and isotropic
noise [3, 9, 10, 13, 24], but all are mathematically
equivalent. The simplest is the following method in
terms of the singular value decomposition (SVD) [12]:

1. Compute the following correlation matrix N be-
tween the 3-D positions rα and r′

α before and
after the rotations:

N =
N∑

α=1

r′
αr>

α . (67)

2. Compute the SVD of N in the form

N = Udiag(σ1, σ2, σ3)V >, (68)

where U and V are orthogonal matrices, and σ1

≥ σ2 ≥ σ3 (≥ 0) are the singular values.

3. Return the following rotation matrix:

R = Udiag(1, 1, det(UV >))V >. (69)
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