Calibration of Ultra-Wide Fisheye Lens Cameras by Eigenvalue Minimization

Kenichi KANATANI*
Department of Computer Science, Okayama University
Okayama 700-8530 Japan

(Received November 21, 2011)

Abstract

We present a new technique for calibrating ultra-wide fisheye lens cameras by imposing the constraint that collinear points be rectified to be collinear, parallel lines to be parallel, and orthogonal lines to be orthogonal. Exploiting the fact that line fitting reduces to an eigenvalue problem, we do a rigorous perturbation analysis to obtain a Levenberg-Marquardt procedure for the optimization. Doing experiments, we point out that spurious solutions exist if collinearity and parallelism alone are imposed. Our technique has many desirable properties. For example, no metric information is required about the reference pattern or the camera position, and separate stripe patterns can be displayed on a video screen to generate a virtual grid, eliminating the grid point extraction processing.

1. Introduction

Fisheye lens cameras are widely used for surveillance purposes because of their wide angles of view. They are also mounted on vehicles for various purposes including obstacle detection, self-localization, and bird's eye view generation [10, 13]. However, fisheye lens images have a large distortion, so that in order to apply the computer vision techniques accumulated for the past decades, one first needs to rectify the image into a perspective view. Already, there is a lot of literature for this $[3,5,7,8,11,12$, $13,14,17,18]$.

The standard approach is to place a reference grid plane and match the image with the reference, whose precise geometry is assumed to be known $[3,4,5,7,18]$. However, this approach is not very practical for recently popularized ultra-wide fisheye lenses, because they cover more than 180° angles of view and hence any (even infinite) reference plane cannot cover the entire field of view. This difficulty can be circumvented by using the collinearity constraint pointed out repeatedly, first by Onodera and Kanatani [15] in 1992, later by Swaminathan and Nayar [17] in 2000, and by Devernay and Faugeras [1] in 2001. They pointed out that camera calibration can be done by imposing the constraint that straight lines should be rectified to be straight. This principle was applied to fisheye lenses by Nakano, et al. [12], Kase

[^0]et al. [8], and Okutsu et al. [13]. Komagata et al. [9] further introduced the parallelism constraint and the orthogonality constraint, requiring that parallel lines be rectified to be parallel and orthogonal lines to be orthogonal. However, the cost function has been directly minimized by brute force means such as the Brent method and the Powell method [16].

In this paper, we adopt the collinearity-parallelism-orthogonality constraint of Komagata et al. [9] and optimize it by eigenvalue minimization. The fact that imposing collinearity implies eigenvalue minimization and that the optimization can be done by invoking the perturbation theorem was pointed out by Onodera and Kanatani [15]. Using this principle, they rectified perspective images by gradient decent. Here, we consider ultra-wide fisheye lenses and do a more detailed perturbation analysis to derive the Levenberg-Marquardt procedure, currently regarded as the standard tool for efficient and accurate optimization.

The eigenvalue minimization principle has not been known in the past collinearity-based work [1, $8,12,13,17]$. Demonstrating its usefulness for ultrawide fisheye lens calibration is the first contribution of this paper. We also show by experiments that the orthogonality constraint plays an essential role, pointing out that a spurious solution exists if only collinearity and parallelism are imposed. This fact has not been known in the past collinearity-based work $[1,8,12,13,15,17]$. Pointing this out is the
second contribution of this paper.
For data acquisition, we take images of stripes of different orientations on a large-screen display by placing the camera in various positions. Like the past collinearity-based methods $[1,8,12,13,15,17]$, our method is non-metric in the sense that no metric information is required about the camera position or the reference pattern. Yet, many researchers pointed out the necessity of some auxiliary information. For example, Nakano et al. [11, 12] proposed vanishing point estimation using conic fitting to straight line images (recently, Hughes et al. [5] proposed this same technique again). Okutsu et al. [14] picked out the images of antipodal points by hand. Such auxiliary information may be useful to suppress spurious solutions. However, we show that accurate calibration is possible without any auxiliary information by our eigenvalue minimization for the collinearity-parallelism-orthogonality constraint.

This paper is organized as follows. In Sec. 2, we describe our imaging geometry model. Section 3 gives derivative expressions of the fundamental quantities, followed by a detailed perturbation analysis of the collinearity constraint in Sec. 4, of the parallelism constraint in Sec. 5, and of the orthogonality constraint in Sec. 6. Section 7 describes our LevenbergMarquardt procedure for eigenvalue minimization. In Sec. 8, we experiment our non-metric technique, using stripe images on a video display. We point out that a spurious solution arises if only collinearity and parallelism are imposed and that it can be eliminated without using any auxiliary information if orthogonality is introduced. We also show some examples of real scene applications. In Sec. 9, we conclude.

2. Geometry of Fisheye Lens Imaging

We consider recently popularized ultra-wide fisheye lenses with the imaging geometry modeled by the stereographic projection

$$
\begin{equation*}
r=2 f \tan \frac{\theta}{2}, \tag{1}
\end{equation*}
$$

where θ is the incidence angle (the angle of the incident ray of light from the optical axis) and r (in pixels) is the distance of the corresponding image point from the principal point (Fig. 1). The constant f is called the focal length. We consider (1) merely because our camera is as such, but the following calibration procedure is identical whatever model is used.

For a manufactured lens, the value of f is unknown or may not be exact if provided by the manufacturer. Also, the principal point may not be at the center of the image frame. Moreover, (1) is an idealization, and a real lens may not exactly satisfy it. So, we generalize (1) into the form

$$
\begin{equation*}
\frac{r}{f_{0}}+a_{1}\left(\frac{r}{f_{0}}\right)^{3}+a_{2}\left(\frac{r}{f_{0}}\right)^{5}+\cdots=\frac{2 f}{f_{0}} \tan \frac{\theta}{2}, \tag{2}
\end{equation*}
$$

Figure 1: The imaging geometry of a fisheye lens and the incident ray vector \boldsymbol{m}.
and determine the values of f, a_{1}, a_{2}, \ldots along with the principal point position. Here, f_{0} is a scale constant to keep the powers r^{k} within a reasonable numerical range (in our experiment, we used the value $f_{0}=150$ pixels). The linear term r / f_{0} has no coefficient because f on the right-hand side is an unknown parameter; $a_{1}=a_{2}=\cdots=0$ corresponds to the stereographic projection. Since a sufficient number of correction terms could approximate any function, the right-hand side of (2) could be any function of θ, e.g., the perspective projection model $\left(f / f_{0}\right) \tan \theta$ or the equidistance projection model $\left(f / f_{0}\right) \theta$. We adopt the stereographic projection model merely for the ease of initialization.

In (2), even power terms do not exist, because the lens has circular symmetry; r is an odd function of θ. We assume that the azimuthal angle of the projection is equal to that of the incident ray. In the past, these two were often assumed to be slightly different, and geometric correction of the resulting "tangential distortion" was studied. Currently, the lens manufacturing technology is highly advanced so that the tangential distortion can be safely ignored. If not, we can simply include the tangential distortion terms in (2), and the subsequent calibration procedure remains unchanged.

In the literature, the model of the form $r=c_{1} \theta+$ $c_{2} \theta^{3}+c_{3} \theta^{5}+\cdots$ is frequently assumed $[7,8,13,12]$. As we see shortly, however, the value of θ for a specified r is necessary in each step of the optimization iterations. So, many authors computed θ by solving a polynomial equation using a numerical means $[7,8,13,12]$, but this causes loss of accuracy and efficiency. It is more convenient to express θ in terms of r from the beginning. From (2), the expression of θ is given by

$$
\begin{equation*}
\theta=2 \tan ^{-1}\left(\frac{f_{0}}{2 f}\left(\frac{r}{f_{0}}+a_{1}\left(\frac{r}{f_{0}}\right)^{3}+a_{2}\left(\frac{r}{f_{0}}\right)^{5}+\cdots\right)\right) . \tag{3}
\end{equation*}
$$

3. Incident Ray Vector

Let \boldsymbol{m} be the unit vector in the direction of the incident ray of light (Fig. 1); we call \boldsymbol{m} the incident
ray vector. In polar coordinates, it has the expression

$$
\boldsymbol{m}=\left(\begin{array}{c}
\sin \theta \cos \phi \tag{4}\\
\sin \theta \sin \phi \\
\cos \theta
\end{array}\right)
$$

where θ is the incidence angle from the Z-axis and ϕ is the azimuthal angle from the X-axis. Since ϕ, by our assumption, equals the azimuthal angle on the image plane, the point (x, y) on which the incident light focuses is specified by

$$
\begin{align*}
x-u_{0} & =r \cos \phi, \quad y-v_{0}=r \sin \phi, \\
r & =\sqrt{\left(x-u_{0}\right)^{2}+\left(y-v_{0}\right)^{2}} \tag{5}
\end{align*}
$$

where $\left(u_{0}, v_{0}\right)$ is the principal point. Hence, (4) is rewritten as

$$
\boldsymbol{m}=\left(\begin{array}{c}
\left(\left(x-u_{0}\right) / r\right) \sin \theta \tag{6}\\
\left(\left(y-v_{0}\right) / r\right) \sin \theta \\
\cos \theta
\end{array}\right)
$$

Differentiating (5) with respect to u_{0} and v_{0}, we obtain

$$
\begin{equation*}
\frac{\partial r}{\partial u_{0}}=-\frac{x-u_{0}}{r}, \quad \frac{\partial r}{\partial v_{0}}=-\frac{y-v_{0}}{r} . \tag{7}
\end{equation*}
$$

Hence, the derivatives of (6) with respect to u_{0} and v_{0} become

$$
\begin{align*}
\frac{\partial \boldsymbol{m}}{\partial u_{0}}= & \left(\begin{array}{c}
-1 / r+\left(x-u_{0}\right)^{2} / r^{3} \\
\left(x-u_{0}\right)\left(y-v_{0}\right) / r^{3} \\
0
\end{array}\right) \sin \theta \\
& +\left(\begin{array}{c}
\left.\left(x-u_{0}\right) / r\right) \cos \theta \\
\left(\left(y-v_{0}\right) / r\right) \cos \theta \\
-\sin \theta
\end{array}\right) \frac{\partial \theta}{\partial u_{0}} \\
\frac{\partial \boldsymbol{m}}{\partial v_{0}}= & \left(\begin{array}{c}
\left(x-u_{0}\right)\left(y-v_{0}\right) / r^{3} \\
-1 / r+\left(y-v_{0}\right)^{2} / r^{3} \\
0
\end{array}\right) \sin \theta \\
& +\left(\begin{array}{c}
\left(\left(x-u_{0}\right) / r\right) \cos \theta \\
\left(\left(y-v_{0}\right) / r\right) \cos \theta \\
-\sin \theta
\end{array}\right) \frac{\partial \theta}{\partial v_{0}} \tag{8}
\end{align*}
$$

Differentiating (3) with respect to u_{0} and v_{0} on both sides, we obtain

$$
\begin{align*}
& \left(\frac{1}{f_{0}}+\frac{3 a_{1}}{f_{0}}\left(\frac{r}{f_{0}}\right)^{2}+\frac{5 a_{2}}{f_{0}}\left(\frac{r}{f_{0}}\right)^{4}+\frac{7 a_{3}}{f_{0}}\left(\frac{r}{f_{0}}\right)^{6}+\cdots\right) \frac{\partial r}{\partial u_{0}} \\
& =\frac{2 f}{f_{0}} \frac{1}{2 \cos ^{2}(\theta / 2)} \frac{\partial \theta}{\partial u_{0}}, \\
& \left(\frac{1}{f_{0}}+\frac{3 a_{1}}{f_{0}}\left(\frac{r}{f_{0}}\right)^{2}+\frac{5 a_{2}}{f_{0}}\left(\frac{r}{f_{0}}\right)^{4}+\frac{7 a_{3}}{f_{0}}\left(\frac{r}{f_{0}}\right)^{6}+\cdots\right) \frac{\partial r}{\partial v_{0}} \\
& =\frac{2 f}{f_{0}} \frac{1}{2 \cos ^{2}(\theta / 2)} \frac{\partial \theta}{\partial v_{0}} . \tag{9}
\end{align*}
$$

Hence, $\partial \theta / \partial u_{0}$ and $\partial \theta / \partial v_{0}$ can be written as

$$
\frac{\partial \theta}{\partial u_{0}}=-\frac{1}{f} \cos ^{2} \frac{\theta}{2}\left(1+\sum_{k=1}^{\infty}(2 k-1) a_{k}\left(\frac{r}{f_{0}}\right)^{2 k}\right) \frac{x-u_{0}}{r}
$$

$$
\begin{equation*}
\frac{\partial \theta}{\partial v_{0}}=-\frac{1}{f} \cos ^{2} \frac{\theta}{2}\left(1+\sum_{k=1}^{\infty}(2 k-1) a_{k}\left(\frac{r}{f_{0}}\right)^{2 k}\right) \frac{y-v_{0}}{r} \tag{10}
\end{equation*}
$$

Substituting these into (9), we can evaluate $\partial \boldsymbol{m} / \partial u_{0}$ and $\partial \boldsymbol{m} / \partial v_{0}$.

Next, we consider derivation with respect to f. Differentiating (2) with respect to f on both sides, we have

$$
\begin{equation*}
0=\frac{2}{f_{0}} \tan \frac{\theta}{2}+\frac{2 f}{f_{0}} \frac{1}{2 \cos ^{2}(\theta / 2)} \frac{\partial \theta}{\partial f} \tag{11}
\end{equation*}
$$

Hence, we obtain

$$
\begin{equation*}
\frac{\partial \theta}{\partial f}=-\frac{2}{f} \sin \frac{\theta}{2} \cos \frac{\theta}{2}=-\frac{1}{f} \sin \theta \tag{12}
\end{equation*}
$$

It follows that the derivative of (6) with respect to f is

$$
\frac{\partial \boldsymbol{m}}{\partial f}=-\frac{1}{f} \sin \theta\left(\begin{array}{c}
\left(\left(x-u_{0}\right) / r\right) \cos \theta \tag{13}\\
\left(\left(y-v_{0}\right) / r\right) \cos \theta \\
-\sin \theta
\end{array}\right)
$$

Finally, we consider derivation with respect to a_{k}. Differentiating (2) with respect to a_{k} on both sides, we have

$$
\begin{equation*}
\left(\frac{r}{f_{0}}\right)^{2 k+1}=\frac{2 f}{f_{0}} \frac{1}{2 \cos ^{2}(\theta / 2)} \frac{\partial \theta}{\partial a_{k}} \tag{14}
\end{equation*}
$$

Hence, we obtain

$$
\begin{equation*}
\frac{\partial \theta}{\partial a_{k}}=\frac{f_{0}}{f}\left(\frac{r}{f_{0}}\right)^{2 k+1} \cos ^{2} \frac{\theta}{2} \tag{15}
\end{equation*}
$$

It follows that the derivation of (6) with respect to a_{k} is

$$
\frac{\partial \boldsymbol{m}}{\partial a_{k}}=\frac{f_{0}}{f}\left(\frac{r}{f_{0}}\right)^{2 k+1} \cos ^{2} \frac{\theta}{2}\left(\begin{array}{c}
\left(\left(x-u_{0}\right) / r\right) \cos \theta \tag{16}\\
\left(\left(y-v_{0}\right) / r\right) \cos \theta \\
-\sin \theta
\end{array}\right)
$$

All the cost functions in the subsequent optimization are expressed in terms of the incident ray vector \boldsymbol{m}. Hence, we can compute derivatives of any cost function with respect to any parameter simply by combining the above derivative expressions.

4. Collinearity Constraint

Suppose we observe a collinear point sequence \mathcal{S}_{κ} (the subscript κ enumerates all existing sequences) consisting of N points p_{1}, \ldots, p_{N}, and let $\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{N}$ be their incident ray vectors. If the camera is precisely calibrated, the computed incident ray vectors should be coplanar. Hence, if \boldsymbol{n}_{κ} is the unit normal to the plane passing through the origin O (lens center) and \mathcal{S}_{κ}, we should have $\left(\boldsymbol{n}_{\kappa}, \boldsymbol{m}_{\alpha}\right)=0, \alpha=1, \ldots, N$ (Fig. 2). In the following, we denote the inner product of vectors \boldsymbol{a} and \boldsymbol{b} by $(\boldsymbol{a}, \boldsymbol{b})$. If the calibration

Figure 2: The incident ray vectors \boldsymbol{m}_{α} of collinear points p_{1}, \ldots, p_{N} are coplanar.
is incomplete, however, $\left(\boldsymbol{n}_{\kappa}, \boldsymbol{m}_{\alpha}\right)$ may not be strictly zero. So, we adjust the parameters by minimizing

$$
\begin{align*}
& \sum_{\alpha \in \mathcal{S}_{\kappa}}\left(\boldsymbol{n}_{\kappa}, \boldsymbol{m}_{\alpha}\right)^{2}=\sum_{\alpha \in \mathcal{S}_{\kappa}} \boldsymbol{n}_{\kappa}^{\top} \boldsymbol{m}_{\alpha} \boldsymbol{m}_{\alpha}^{\top} \boldsymbol{n}_{\kappa} \\
= & \left(\boldsymbol{n}_{\kappa}, \sum_{\alpha \in \mathcal{S}_{\kappa}} \boldsymbol{m}_{\alpha} \boldsymbol{m}_{\alpha}^{\top} \boldsymbol{n}_{\kappa}\right)=\left(\boldsymbol{n}_{\kappa}, \boldsymbol{M}^{(\kappa)} \boldsymbol{n}_{\kappa}\right), \tag{17}
\end{align*}
$$

where we define

$$
\begin{equation*}
\boldsymbol{M}^{(\kappa)}=\sum_{\alpha \in \mathcal{S}_{\kappa}} \boldsymbol{m}_{\alpha} \boldsymbol{m}_{\alpha}^{\top} \tag{18}
\end{equation*}
$$

Since (17) is a quadratic form of $\boldsymbol{M}^{(\kappa)}$, its minimum equals the smallest eigenvalue $\lambda_{\text {min }}^{(\kappa)}$ of $\boldsymbol{M}^{(\kappa)}$, \boldsymbol{n}_{κ} being the corresponding unit eigenvector. To enforce the collinearity constraint for all collinear point sequences \mathcal{S}_{κ}, we determine the parameters so as to minimize

$$
\begin{equation*}
J_{1}=\sum_{\text {all } \kappa} \lambda_{\min }^{(\kappa)} \tag{19}
\end{equation*}
$$

Because we minimize the sum of eigenvalues, we call our approach eigenvalue minimization, which was first proposed by Onodera and Kanatani [15] in 1992. The reason that this technique has not been widely used may be that at first sight it appears that one cannot "differentiate" eigenvalues. However, differentiating eigenvalue is very easy, as we now show in the following, if one uses the perturbation theorem well known in physics.

4.1 First derivatives

Consider the first derivatives of $\lambda_{\text {min }}^{(\kappa)}$ with respect to c, which represents the parameters u_{0}, v_{0}, f, a_{1}, a_{2}, \ldots Differentiating the defining equation

$$
\begin{equation*}
\boldsymbol{M}^{(\kappa)} \boldsymbol{n}_{\kappa}=\lambda_{\min }^{(\kappa)} \boldsymbol{n}_{\kappa} \tag{20}
\end{equation*}
$$

with respect to c on both sides, we have

$$
\begin{equation*}
\frac{\partial \boldsymbol{M}^{(\kappa)}}{\partial c} \boldsymbol{n}_{\kappa}+\boldsymbol{M}^{(\kappa)} \frac{\partial \boldsymbol{n}_{\kappa}}{\partial c}=\frac{\partial \lambda_{\min }^{(\kappa)}}{\partial c} \boldsymbol{n}_{\kappa}+\lambda_{\min }^{(\kappa)} \frac{\partial \boldsymbol{n}_{\kappa}}{\partial c} \tag{21}
\end{equation*}
$$

Computing the inner product with \boldsymbol{n}_{κ} on both sides, we obtain

$$
\begin{align*}
& \left(\boldsymbol{n}_{\kappa}, \frac{\partial \boldsymbol{M}^{(\kappa)}}{\partial c} \boldsymbol{n}_{\kappa}\right)+\left(\boldsymbol{n}_{\kappa}, \boldsymbol{M}^{(\kappa)} \frac{\partial \boldsymbol{n}_{\kappa}}{\partial c}\right) \\
= & \frac{\partial \lambda_{\min }^{(\kappa)}}{\partial c}\left(\boldsymbol{n}_{\kappa}, \boldsymbol{n}_{\kappa}\right)+\lambda_{\min }^{(\kappa)}\left(\boldsymbol{n}_{\kappa}, \frac{\partial \boldsymbol{n}_{\kappa}}{\partial c}\right) \tag{22}
\end{align*}
$$

Since \boldsymbol{n}_{κ} is a unit vector, we have $\left(\boldsymbol{n}_{\kappa}, \boldsymbol{n}_{\kappa}\right)=\left\|\boldsymbol{n}_{\kappa}\right\|^{2}$ $=1$. Variations of a unit vector should be orthogonal to itself, so $\left(\boldsymbol{n}_{\kappa}, \partial \boldsymbol{n}_{\kappa} / \partial c\right)=0$. Since $\boldsymbol{M}^{(\kappa)}$ is a symmetric matrix, we have $\left(\boldsymbol{n}_{\kappa}, \boldsymbol{M}^{(\kappa)} \partial \boldsymbol{n}_{\kappa} / \partial c\right)=$ $\left(\boldsymbol{M}^{(\kappa)} \boldsymbol{n}_{\kappa}, \partial \boldsymbol{n}_{\kappa} / \partial c\right)=\lambda_{\min }^{(\kappa)}\left(\boldsymbol{n}_{\kappa}, \partial \boldsymbol{n}_{\kappa} / \partial c\right)=0$. Thus, (22) implies

$$
\begin{equation*}
\frac{\partial \lambda_{\min }^{(\kappa)}}{\partial c}=\left(\boldsymbol{n}_{\kappa}, \frac{\partial \boldsymbol{M}^{(\kappa)}}{\partial c} \boldsymbol{n}_{\kappa}\right) . \tag{23}
\end{equation*}
$$

This result is well known as the perturbation theorem of eigenvalue problems [6]. From the definition of $\boldsymbol{M}^{(\kappa)}$ in (49), we see that

$$
\begin{align*}
\frac{\partial \boldsymbol{M}^{(\kappa)}}{\partial c} & =\sum_{\alpha=1}^{N}\left(\frac{\partial \boldsymbol{m}_{\alpha}}{\partial c} \boldsymbol{m}_{\alpha}^{\top}+\boldsymbol{m}_{\alpha}\left(\frac{\partial \boldsymbol{m}_{\alpha}}{\partial c}\right)^{\top}\right) \\
& =2 \mathcal{S}\left[\sum_{\alpha=1}^{N} \frac{\partial \boldsymbol{m}_{\alpha}}{\partial c} \boldsymbol{m}_{\alpha}^{\top}\right] \equiv \boldsymbol{M}_{c}^{(\kappa)} \tag{24}
\end{align*}
$$

where $\mathcal{S}[\cdot]$ denotes symmetrization $(\mathcal{S}[\boldsymbol{A}]=(\boldsymbol{A}+$ $\left.\boldsymbol{A}^{\top}\right) / 2$). Thus, the first derivatives of the function J_{1} with respect to $c=u_{0}, v_{0}, f, a_{1}, a_{2}, \ldots$ are given as follows:

$$
\begin{equation*}
\frac{\partial J_{1}}{\partial c}=\sum_{\text {all } \kappa}\left(\boldsymbol{n}_{\kappa}, \boldsymbol{M}_{c}^{(\kappa)} \boldsymbol{n}_{\kappa}\right) \tag{25}
\end{equation*}
$$

4.2 Second derivatives

Differentiating (23) with respect to $c^{\prime}\left(=u_{0}, v_{0}, f\right.$, a_{1}, a_{2}, \ldots), we obtain

$$
\begin{align*}
\frac{\partial^{2} \lambda_{\min }^{(\kappa)}}{\partial c \partial c^{\prime}}= & \left(\frac{\partial \boldsymbol{n}_{\kappa}}{\partial c^{\prime}}, \boldsymbol{M}_{c}^{(\kappa)} \boldsymbol{n}_{\kappa}\right)+\left(\boldsymbol{n}_{\kappa}, \frac{\partial^{2} \boldsymbol{M}^{(\kappa)}}{\partial c \partial c^{\prime}} \boldsymbol{n}_{\kappa}\right) \\
& +\left(\boldsymbol{n}_{\kappa}, \boldsymbol{M}_{c}^{(\kappa)} \frac{\partial \boldsymbol{n}_{\kappa}}{\partial c^{\prime}}\right) \\
= & \left(\boldsymbol{n}_{\kappa}, \frac{\partial^{2} \boldsymbol{M}^{(\kappa)}}{\partial c \partial c^{\prime}} \boldsymbol{n}_{\kappa}\right)+2\left(\frac{\partial \boldsymbol{n}_{\kappa}}{\partial c^{\prime}}, \boldsymbol{M}_{c}^{(\kappa)} \boldsymbol{n}_{\kappa}\right) \tag{26}
\end{align*}
$$

First, consider the first term. Differentiation of (24) with respect to c^{\prime} is

$$
\begin{equation*}
\frac{\partial^{2} \boldsymbol{M}^{(\kappa)}}{\partial c \partial c^{\prime}}=2 \mathcal{S}\left[\sum_{\alpha=1}^{N}\left(\frac{\partial^{2} \boldsymbol{m}_{\alpha}}{\partial c \partial c^{\prime}} \boldsymbol{m}_{\alpha}^{\top}+\frac{\partial \boldsymbol{m}_{\alpha}}{\partial c}\left(\frac{\partial \boldsymbol{m}_{\alpha}}{\partial c^{\prime}}\right)^{\top}\right)\right] \tag{27}
\end{equation*}
$$

and hence we have

$$
\begin{align*}
\left(\boldsymbol{n}_{\kappa}, \frac{\partial^{2} \boldsymbol{M}^{(\kappa)}}{\partial c \partial c^{\prime}} \boldsymbol{n}_{\kappa}\right)= & 2 \sum_{\alpha=1}^{N}\left(\left(\boldsymbol{n}_{\kappa}, \frac{\partial^{2} \boldsymbol{m}_{\alpha}}{\partial c \partial c^{\prime}}\right)\left(\boldsymbol{m}_{\alpha}, \boldsymbol{n}_{\kappa}\right)\right. \\
& \left.+\left(\boldsymbol{n}_{\kappa}, \frac{\partial \boldsymbol{m}_{\alpha}}{\partial c}\right)\left(\frac{\partial \boldsymbol{m}_{\alpha}}{\partial c^{\prime}}, \boldsymbol{n}_{\kappa}\right)\right) \cdot(2 \tag{28}
\end{align*}
$$

If the calibration is complete, we should have $\left(\boldsymbol{m}_{\alpha}, \boldsymbol{n}_{\kappa}\right)=0$. In the course of the optimization, we can expect that $\left(\boldsymbol{m}_{\alpha}, \boldsymbol{n}_{\kappa}\right) \approx 0$. Hence, (28) can be approximated by

$$
\begin{align*}
\left(\boldsymbol{n}_{\kappa}, \frac{\partial^{2} \boldsymbol{M}^{(\kappa)}}{\partial c \partial c^{\prime}} \boldsymbol{n}_{\kappa}\right) & \approx 2 \sum_{\alpha=1}^{N}\left(\boldsymbol{n}_{\kappa}, \frac{\partial \boldsymbol{m}_{\alpha}}{\partial c}\right)\left(\frac{\partial \boldsymbol{m}_{\alpha}}{\partial c^{\prime}}, \boldsymbol{n}_{\kappa}\right) \\
& =2\left(\boldsymbol{n}_{\kappa}, \boldsymbol{M}_{c c^{\prime}}^{(\kappa)} \boldsymbol{n}_{\kappa}\right), \tag{29}\\
\boldsymbol{M}_{c c^{\prime}}^{(\kappa)} \equiv & \sum_{\alpha=1}^{N}\left(\frac{\partial \boldsymbol{m}_{\alpha}}{\partial c}\right)\left(\frac{\partial \boldsymbol{m}_{\alpha}}{\partial c^{\prime}}\right)^{\top} \tag{30}
\end{align*}
$$

This is a sort of the Gauss-Newton approximation.
Next, consider the second term of (26). Because \boldsymbol{n}_{κ} is a unit vector, its variations are orthogonal to itself. Let $\lambda_{1}^{(\kappa)} \geq \lambda_{2}^{(\kappa)} \geq \lambda_{\text {min }}^{(\kappa)}$ be the eigenvalues of $\boldsymbol{M}^{(\kappa)}$ with $\boldsymbol{n}_{\kappa 1}, \boldsymbol{n}_{\kappa 2}$, and \boldsymbol{n}_{κ} the corresponding unit eigenvectors. Since the eigenvectors of a symmetric matrix are mutually orthogonal, any vector orthogonal to \boldsymbol{n}_{κ} is expressed as a linear combination of $\boldsymbol{n}_{\kappa 1}$ and $\boldsymbol{n}_{\kappa 2}$. Hence, we can write

$$
\begin{equation*}
\frac{\partial \boldsymbol{n}_{\kappa}}{\partial c}=\beta_{1} \boldsymbol{n}_{\kappa 1}+\beta_{2} \boldsymbol{n}_{\kappa 2}, \tag{31}
\end{equation*}
$$

for some β_{1} and β_{2}. Substitution of (23) and (31) into (21) results in

$$
\begin{align*}
& \boldsymbol{M}_{c}^{(\kappa)} \boldsymbol{n}_{\kappa}+\boldsymbol{M}^{(\kappa)}\left(\beta_{1} \boldsymbol{n}_{\kappa 1}+\beta_{2} \boldsymbol{n}_{\kappa 2}\right) \\
= & \left(\boldsymbol{n}_{\kappa}, \boldsymbol{M}_{c}^{(\kappa)} \boldsymbol{n}_{\kappa}\right) \boldsymbol{n}_{\kappa}+\lambda_{\min }^{(\kappa)}\left(\beta_{1} \boldsymbol{n}_{\kappa 1}+\beta_{2} \boldsymbol{n}_{\kappa 2}\right) . \tag{32}
\end{align*}
$$

Noting that $\boldsymbol{M}^{(\kappa)} \boldsymbol{n}_{\kappa 1}=\lambda_{1}^{(\kappa)} \boldsymbol{n}_{\kappa 1}$ and $\boldsymbol{M}^{(\kappa)} \boldsymbol{n}_{\kappa 2}=$ $\lambda_{2}^{(\kappa)} \boldsymbol{n}_{\kappa 2}$, we have

$$
\begin{align*}
& \beta_{1}\left(\lambda_{1}^{(\kappa)}-\lambda_{\min }^{(\kappa)}\right) \boldsymbol{n}_{\kappa 1}+\beta_{2}\left(\lambda_{2}^{(\kappa)}-\lambda_{\min }^{(\kappa)}\right) \boldsymbol{n}_{\kappa 2} \\
= & \left(\boldsymbol{n}_{\kappa}, \boldsymbol{M}_{c}^{(\kappa)} \boldsymbol{n}_{\kappa}\right) \boldsymbol{n}_{\kappa}-\boldsymbol{M}_{c}^{(\kappa)} \boldsymbol{n}_{\kappa} . \tag{33}
\end{align*}
$$

Computing the inner product with $\boldsymbol{n}_{\kappa 1}$ and $\boldsymbol{n}_{\kappa 2}$ on both sides, we obtain

$$
\begin{align*}
& \beta_{1}\left(\lambda_{1}^{(\kappa)}-\lambda_{\min }^{(\kappa)}\right)=-\left(\boldsymbol{n}_{\kappa 1}, \boldsymbol{M}_{c}^{(\kappa)} \boldsymbol{n}_{\kappa}\right), \\
& \beta_{2}\left(\lambda_{2}^{(\kappa)}-\lambda_{\min }^{(\kappa)}\right)=-\left(\boldsymbol{n}_{\kappa 2}, \boldsymbol{M}_{c}^{(\kappa)} \boldsymbol{n}_{\kappa}\right) . \tag{34}
\end{align*}
$$

Thus, (31) is written as follows:

$$
\begin{equation*}
\frac{\partial \boldsymbol{n}_{\kappa}}{\partial c}=-\frac{\left(\boldsymbol{n}_{\kappa 1}, \boldsymbol{M}_{c}^{(\kappa)} \boldsymbol{n}_{\kappa}\right) \boldsymbol{n}_{\kappa 1}}{\lambda_{1}^{(\kappa)}-\lambda_{\min }^{(\kappa)}}-\frac{\left(\boldsymbol{n}_{\kappa 2}, \boldsymbol{M}_{c}^{(\kappa)} \boldsymbol{n}_{\kappa}\right) \boldsymbol{n}_{\kappa 2}}{\lambda_{2}^{(\kappa)}-\lambda_{\min }^{(\kappa)}} . \tag{35}
\end{equation*}
$$

This is also a well known result of the perturbation theorem of eigenvalue problems [6]. Thus, the second term of (26) can be written as

$$
\begin{align*}
2\left(\frac{\partial \boldsymbol{n}_{\kappa}}{\partial c^{\prime}}, \boldsymbol{M}_{c}^{(\kappa)} \boldsymbol{n}_{\kappa}\right)= & -\frac{2\left(\boldsymbol{n}_{\kappa 1}, \boldsymbol{M}_{c}^{(\kappa)} \boldsymbol{n}_{\kappa}\right)\left(\boldsymbol{n}_{\kappa 1}, \boldsymbol{M}_{c^{\prime}}^{(\kappa)} \boldsymbol{n}_{\kappa}\right)}{\lambda_{1}^{(\kappa)}-\lambda_{\min }^{(\kappa)}} \\
& -\frac{2\left(\boldsymbol{n}_{\kappa 2}, \boldsymbol{M}_{c}^{(\kappa)} \boldsymbol{n}_{\kappa}\right)\left(\boldsymbol{n}_{\kappa 2}, \boldsymbol{M}_{c^{\prime}}^{(\kappa)} \boldsymbol{n}_{\kappa}\right)}{\lambda_{2}^{(\kappa)}-\lambda_{\min }^{(\kappa)}} . \tag{36}
\end{align*}
$$

Figure 3: The surface normals \boldsymbol{n}_{κ} to the planes defined by parallel lines are orthogonal to the common direction l_{g} of the lines.

Combining (29) and (36), we can approximate (26) in the form

$$
\begin{align*}
\frac{\partial^{2} \lambda_{\min }^{(\kappa)}}{\partial c \partial c^{\prime}} \approx & 2\left(\left(\boldsymbol{n}_{\kappa}, \boldsymbol{M}_{c c^{\prime}}^{(\kappa)} \boldsymbol{n}_{\kappa}\right)\right. \\
& \left.-\sum_{i=1}^{2} \frac{\left(\boldsymbol{n}_{\kappa i}, \boldsymbol{M}_{c}^{(\kappa)} \boldsymbol{n}_{\kappa}\right)\left(\boldsymbol{n}_{\kappa i}, \boldsymbol{M}_{c^{\prime}}^{(\kappa)} \boldsymbol{n}_{\kappa}\right)}{\lambda_{i}^{(\kappa)}-\lambda_{\min }^{(\kappa)}}\right) . \tag{37}
\end{align*}
$$

Thus, the second derivatives of the function J_{1} with respect to c and c^{\prime} are given by

$$
\begin{align*}
\frac{\partial^{2} J_{1}}{\partial c \partial c^{\prime}}= & 2 \sum_{\text {all } \kappa}\left(\left(\boldsymbol{n}_{\kappa}, \boldsymbol{M}_{c c^{\prime}}^{(\kappa)} \boldsymbol{n}_{\kappa}\right)\right. \\
& \left.-\sum_{i=1}^{2} \frac{\left(\boldsymbol{n}_{\kappa i}, \boldsymbol{M}_{c}^{(\kappa)} \boldsymbol{n}_{\kappa}\right)\left(\boldsymbol{n}_{\kappa i}, \boldsymbol{M}_{c^{\prime}}^{(\kappa)} \boldsymbol{n}_{\kappa}\right)}{\lambda_{i}^{(\kappa)}-\lambda_{\min }^{(\kappa)}}\right) . \tag{38}
\end{align*}
$$

5. Parallelism Constraint

Let \mathcal{G}_{g} be a group of parallel collinear point sequences (the subscript g enumerates all existing groups) with a common orientation \boldsymbol{l}_{g} (unit vector). The normals \boldsymbol{n}_{κ} to the planes passing through the origin O (lens center) and lines of \mathcal{G}_{g} are all orthogonal to \boldsymbol{l}_{g} (Fig. 3). Hence, we should have ($\boldsymbol{l}_{g}, \boldsymbol{n}_{\kappa}$) $=0, \kappa \in \mathcal{G}_{g}$, if the calibration is complete. So, we adjust the parameters by minimizing

$$
\begin{align*}
& \sum_{\kappa \in \mathcal{G}_{g}}\left(\boldsymbol{l}_{g}, \boldsymbol{n}_{\kappa}\right)^{2}=\sum_{\kappa \in \mathcal{G}_{g}} \boldsymbol{l}_{g}^{\top} \boldsymbol{n}_{\kappa} \boldsymbol{n}_{\kappa}^{\top} \boldsymbol{l}_{g} \\
= & \left(\boldsymbol{l}_{g}, \sum_{\kappa \in \mathcal{G}_{g}} \boldsymbol{n}_{\kappa} \boldsymbol{n}_{\kappa}^{\top} \boldsymbol{l}_{g}\right)=\left(\boldsymbol{l}_{g}, \boldsymbol{N}^{(g)} \boldsymbol{l}_{g}\right), \tag{39}
\end{align*}
$$

where we define

$$
\begin{equation*}
\boldsymbol{N}^{(g)}=\sum_{\kappa \in \mathcal{G}_{g}} \boldsymbol{n}_{\kappa} \boldsymbol{n}_{\kappa}^{\top} . \tag{40}
\end{equation*}
$$

Since (39) is a quadratic form of $\boldsymbol{N}^{(g)}$, its minimum equals the smallest eigenvalue $\mu_{\min }^{(g)}$ of $\boldsymbol{N}^{(g)}, \boldsymbol{l}_{g}$ being the corresponding unit eigenvector. To enforce the parallelism constraint for all groups of parallel collinear sequences, we determine the parameters so as to minimize

$$
\begin{equation*}
J_{2}=\sum_{\text {all } g} \mu_{\min }^{(g)} . \tag{41}
\end{equation*}
$$

Figure 4: If two sets of parallel lines make right angles, their directions \boldsymbol{l}_{g} and $\boldsymbol{l}_{g^{\prime}}$ are orthogonal to each other.

5.1 First derivatives

Doing the same perturbation analysis as in Sec. 4, we obtain the first derivatives of the function J_{2} with respect to parameters c in the form

$$
\begin{align*}
\frac{\partial J_{2}}{\partial c} & =\sum_{\text {all } g}\left(\boldsymbol{l}_{g}, \boldsymbol{N}_{c}^{(g)} \boldsymbol{l}_{g}\right), \tag{42}\\
\boldsymbol{N}_{c}^{(g)} & =2 \mathcal{S}\left[\sum_{\kappa \in \mathcal{G}_{g}} \frac{\partial \boldsymbol{n}_{\kappa}}{\partial c} \boldsymbol{n}_{\kappa}^{\top}\right], \tag{43}
\end{align*}
$$

where $\partial \boldsymbol{n}_{\kappa} / \partial c$ is given by (35).

5.2 Second derivatives

Doing the same perturbation analysis as in Sec. 4, we obtain the second derivatives of the function J_{2} with respect to parameters c and c^{\prime} in the form

$$
\begin{align*}
& \frac{\partial^{2} J_{2}}{\partial c \partial c^{\prime}}= 2 \sum_{\text {all } g}\left(\left(\boldsymbol{l}_{g}, \boldsymbol{N}_{c c^{\prime}}^{(g)} \boldsymbol{l}_{g}\right)\right. \\
&\left.-\sum_{i=1}^{2} \frac{\left(\boldsymbol{l}_{g i}, \boldsymbol{N}_{c}^{(g)} \boldsymbol{l}_{g}\right)\left(\boldsymbol{l}_{g i}, \boldsymbol{N}_{c^{\prime}}^{(g)} \boldsymbol{l}_{g}\right)}{\mu_{i}^{(g)}-\mu_{\min }^{(g)}}\right), \tag{44}\\
& \boldsymbol{N}_{c c^{\prime}}^{(g)} \equiv \sum_{\kappa \in \mathcal{G}_{g}}\left(\frac{\partial \boldsymbol{n}_{\kappa}}{\partial c}\right)\left(\frac{\partial \boldsymbol{n}_{\kappa}}{\partial c^{\prime}}\right)^{\top} \tag{45}
\end{align*}
$$

where $\mu_{i}^{(g)}, i=1,2$, are the first and the second largest eigenvalues of the matrix $\boldsymbol{N}^{(g)}$ and $\boldsymbol{l}_{g i}$ are the corresponding unit eigenvectors.

6. Orthogonality Constraint

Suppose we observe two groups \mathcal{G}_{g} and $\mathcal{G}_{g^{\prime}}$ of parallel line sequences with mutually orthogonal directions \boldsymbol{l}_{g} and $\boldsymbol{l}_{g^{\prime}}$ (Fig. 4). The orientation \boldsymbol{l}_{g} of the sequences in the group \mathcal{G}_{g} is the unit eigenvector of the matrix $\boldsymbol{N}^{(g)}$ in (40) for the smallest eigenvalue. If the calibration is complete, we should have $\left(\boldsymbol{l}_{g}, \boldsymbol{l}_{g^{\prime}}\right)$ $=0$, so we adjust the parameters by minimizing

$$
\begin{equation*}
J_{3}=\sum_{\substack{\text { all orthogonal } \\ \text { pairs }\left\{\mathcal{G}_{g}, \mathcal{G}_{g}^{\prime}\right\}}}\left(\boldsymbol{l}_{g}, \boldsymbol{l}_{g^{\prime}}\right)^{2} . \tag{46}
\end{equation*}
$$

2. Compute the incidence angle $\theta_{\kappa \alpha}$ of the α th point p_{α} in the κ th sequence \mathcal{S}_{κ} by (3), and compute its incidence ray vector $\boldsymbol{m}_{\kappa \alpha}$ by (6). Then, compute the derivatives $\partial \boldsymbol{m}_{\kappa \alpha} / \partial c$ by (8), (13), and (16) for $c=u_{0}, v_{0}, f, a_{1}, a_{2}, \ldots$.
3. Compute the first derivatives J_{c} and the second derivatives $J_{c c^{\prime}}$ of the function J for $c, c^{\prime}=u_{0}$, $v_{0}, f, a_{1}, a_{2}, \ldots$.
4. Determine the increments $\Delta u_{0}, \Delta v_{0}, \Delta f, \Delta a_{1}$, ... by solving the linear equation

$$
\left(\begin{array}{c}
\Delta u_{0} \tag{51}\\
\Delta v_{0} \\
\Delta f \\
\Delta a_{1} \\
\vdots
\end{array}\right)=-\left(\begin{array}{c}
J_{u_{0}} \\
J_{v_{0}} \\
J_{f} \\
J_{a_{1}} \\
\vdots
\end{array}\right) .
$$

5. Tentatively update the parameter values in the form

$$
\begin{gather*}
\tilde{u}_{0}=u_{0}+\Delta u_{0}, \quad \tilde{v}=v_{0}+\Delta v_{0}, \quad \tilde{f}=f+\Delta f, \\
\tilde{a}_{1}=a_{1}+\Delta a_{1}, \quad \tilde{a}_{2}=a_{2}+\Delta a_{2}, \quad \ldots \tag{52}
\end{gather*}
$$

and evaluate the resulting value \tilde{J} of the function J.
6. If $\tilde{J}<J_{0}$, proceed. Else, let $C \leftarrow 10 C$ and go back to Step 4.
7. Let $u_{0} \leftarrow \tilde{u}_{0}, v_{0} \leftarrow \tilde{v}_{0}, f \leftarrow \tilde{f}, a_{1} \leftarrow \tilde{a}_{1}, a_{2} \leftarrow$ \tilde{a}_{2}, \ldots. If $\left|\Delta u_{0}\right|<\epsilon_{0},\left|\Delta v_{0}\right|<\epsilon_{0},|\Delta f|<\epsilon_{f}$, $\left|\Delta a_{1}\right|<\epsilon_{1},\left|\Delta a_{2}\right|<\epsilon_{2}, \ldots$, return J, u_{0}, v_{0}, f, a_{1}, a_{2}, \ldots, and stop. Else, let $J_{0} \leftarrow J$ and $C \leftarrow$ $C / 10$, and go back to Step 2.

8. Experiments

The four stripe patterns shown in Fig. 5 (above) were displayed on a large video screen (Fig. 5 below). We took images by placing the camera in various positions so that the stripe pattern appears in various parts of the view (recall that the view cannot be covered by a single planar pattern image). The four patterns were cyclically displayed with blank frames in-between, and the camera is fixed in each position for at least one cycle to capture the four patterns; Fig. 6(a) shows one shot. The image size is 640×480 pixels. From each image, we detected edges; Fig. 6(b) shows the edges detected from the image in Fig. 6(a). We manually removed those edges outside the display area. We also removed too small clusters of edge points. Then, we ran an edge segmentation algorithm

Figure 5: Stripe patterns in four directions are displayed on a large video screen.

Figure 6: (a) Fisheye lens image of a stripe pattern. (b) Detected edges.
to create connected edge segments. On each segment was imposed the collinearity constraint; on the segments in one frame were imposed the parallelism constraint; on the segments in one frame and the frame after the next with the same camera position were imposed the orthogonality constraint. In all, we obtained 220 segments, consisting of 20 groups of parallel segments and 10 orthogonal pairs, to which the LM procedure was applied.

The conventional approach using a reference grid board $[3,5,7,17,18]$ would require precise localization of grid points in the image, which is a rather difficult task. Here, all we need to do is detect "continuous edges." We can use a video display instead of a specially designed grid board, because our method is non-metric: we need no metric information about
the pattern or the camera positions. We do not even know where each edge point corresponds to in the reference pattern.

Let us call the number K of the terms on the left hand side of (2) the correction degree, meaning that the left-hand side of (2) is approximated by a $(2 K+$ $1)$ th degree polynomial. The results up to the fifth correction degree are shown in Table 1. We set the frame center to be $(0,0)$ to specify the principal point $\left(u_{0}, v_{0}\right)$. For the convergence thresholds in Step 7 of the LM iterations, we let $\epsilon_{0}=\epsilon_{f}=10^{-3}, \epsilon_{1}=10^{-5}$, $\epsilon_{2}=10^{-6}, \epsilon_{3}=10^{-7}, \epsilon_{4}=10^{-8}$, and $\epsilon_{5}=10^{-9}$. Using various different initial values, we confirmed that the LM always converges to the same solution after around 10 to 20 iterations.

Figure 7(a) plots the graph of (3) for different correction degrees. For the convenience of the subsequent applications, we numerically converted (3) to express the angle θ in terms of the distance r. As we see, the stereographic projection model in (1) holds fairly well even without any correction terms (degree 0). The result is almost unchanged for the degrees 3,4 , and 5 , i.e., including powers up to r^{7}, r^{9}, and r^{11}. Thus, there is no need to increase the correction terms any further.

For comparison, Fig. 7(b) shows the same result using collinearity alone, i.e., $J=J_{1} / \gamma_{1}$ instead of (50); Fig. 7(c) shows the result using collinearity and parallelism, i.e., $J=J_{1} / \gamma_{1}+J_{2} / \gamma_{2}$ instead of (50). In both cases, the graph approaches, as the degree increases, some $r-\theta$ relationship quite different from the stereographic projection. In order to see what this means, we did a rectification experiment. Figure 8 (a) shows a fisheye lens image viewing a square grid pattern in approximately 30 degree direction, and Fig. 8(b) is the rectified perspective image, using the parameters of correction degree 5 in Table 1. The image is converted to a view as if observed by rotating the camera by 60 degrees to face the pattern (see Appendix for this computation). The black area near the left boundary corresponds to 95 degrees or more from the optical axis. Thus, we can obtain a correct perspective image to the very boundary of the view.

For comparison, Fig. 8(c) shows the result obtained by the same procedure using the spurious solution. We can see that collinear points are certainly rectified to be collinear and parallel lines to be (a skewed view of) parallel lines. We have confirmed that this spurious solution is not the result of a local minimum. Let us call the parameter values obtained by imposing collinearity, parallelism, and orthogonality the "correct solution". The cost functions $J=$ J_{1} / γ_{1} and $J=J_{1} / \gamma_{1}+J_{2} / \gamma_{2}$ are certainly smaller at the spurious solution than at the correct solution, meaning that the spurious solution is not attributed to the minimization algorithm but is inherent in the formulation of the problem itself.

The fact that spurious solution should exist is eas-
ily understandable if one considers perspective cameras. If no image distortion exists, the 3-D interpretation of images using wrong camera parameters, such as the focal length, the principal point, the aspect ratio, and the skew angle, is a projective transformation of the real scene, called projective reconstruction [2]. Projective transformations preserve collinearity but not parallelism or orthogonality. Imposing parallelism, we obtain affine reconstruction. Further imposing orthogonality, we obtain so called Euclidean reconstruction. Thus, orthogonality is essential for camera calibration; collinearity and parallelism alone are insufficient. This fact has been overlooked in the past collinearity-based work $[1,8,12,13,15,17]$, partly because image distortion is so dominant for fisheye lens cameras, partly because spurious solutions can be prevented by using auxiliary information such as vanishing point estimation $[3,5,11,12]$ or antipodal point extraction [14], and partly because usually a small number, typically three, of collection terms are retained $[1,8,12,13,15,17]$, providing insufficient degrees of freedom to fall into spurious solution.

The top-left of Fig. 9 is an image of a street scene taken from a moving vehicle with a fisheye lens camera mounted below the bumper at the car front. The top-right of Fig. 9 is the rectified perspective image. The second and third rows show the rectified perspective images to be observed if the camera is rotated by 90° left, right, up and down, confirming that we are really seeing more than 180° angles of view. Using a fisheye lens camera like this, we can detect vehicles approaching from left and/or right or create an image as if viewing the road from above the car.

9. Concluding Remarks

We have presented a new technique for calibrating ultra-wide fisheye lens cameras. Our method can be contrasted to the conventional approach of using a grid board as follows:

1. For ultra-wide fisheye lens cameras with more than 180° degrees of view, the image of any large (even infinite) plane cannot cover the image frame. Our method allows us take multiple partial images of the reference by freely moving the camera so that every part of the frame is covered by some reference images.
2. The grid-based approach requires detection of "grid points" in the image, but accurate processing of a grid image is rather difficult. In our method, we only need to detect "continuous edges" of a stripe pattern.
3. The grid-based approach requires the correspondence of each detected grid point to the location on the reference. This is often difficult due to the

Table 1: Computed parameters for each correction degree.

degree	0	1	2	3	4	5
u_{0}	-1.56761	-1.56968	-1.57134	-1.59349	-1.59385	-1.60081
v_{0}	0.517809	0.488646	0.430145	0.423562	0.422805	0.426097
f	146.647	149.572	148.112	146.727	146.796	146.501
$a_{1} / 10^{-2}$	-	0.646891	-0.305581	-1.41589	-1.68775	-1.80506
$a_{2} / 10^{-3}$	-	-	2.39013	7.57212	11.1001	9.34256
$a_{3} / 10^{-4}$	-	-	-	8.05471	22.2419	0.387907
$a_{4} / 10^{-5}$	-	-	-	-	18.0654	61.6627
$a_{5} / 10^{-6}$	-	-	-	-	0.935994	

Figure 7: The dependence of the distance r (pixels) from the focal point on the incidence angle θ (degree) obtained by (a) using the collinearity, parallelism, and orthogonality constraints; (b) using only the collinearity constraints; (c) using the collinearity and parallelism constraints.
periodicity of the grid. In our method, we need not know where the detected edge points correspond to in the reference.
4. In the grid-based approach, one needs to measure the camera position relative to the reference board by a mechanical means or by computing the homography from image-reference matching $[3,18]$. Our method does not require any information about the camera position.
5. In the grid-based approach, one needs to create a reference pattern. This is not a trivial task. If a pattern is printed out on a sheet of paper and pasted to a planar surface, wrinkles and creases may arise and the glue may cause uneven deformations of the paper. In our method, no metric information is required about the pattern, so we can display it on any video screen.
6. In the grid-based approach, one can usually obtain only one image of the reference pattern from one camera position. In our method, we can fix the camera anywhere and freely change the reference pattern on the video screen.
7. The difficulty of processing a grid image with crossings and branches is circumvented by generating a "virtual grid" from separate stripe images of different orientations; each image has no crossings or branches.

The basic principle of our calibration is the imposition of the constraint that collinear points be rectified to collinear, parallel lines to parallel, and orthogonal lines to be orthogonal. Exploiting the fact that line fitting reduces to eigenvalue problems, we optimized the constraint by invoking the perturbation theorem, as suggested by Onodera and Kanatani [15]. Then, we derived a Levenberg-Marquardt procedure for eigenvalue minimization. By experiments, we have found that a spurious solution exists if the collinearity constraint alone is used or even combined with the parallelism constraint. This fact has not been noticed in existing collinearity-based work $[1,8,12,13,15,17]$. However, we have shown that incorporating the orthogonality constraint allows an accurate calibration without using any auxiliary information such as vanishing point estimation $[3,5,11,12]$. We have also shown a real image example using a vehicle-mounted fisheye lens camera. It is expected that our procedure is going to be a standard tool for fisheye lens camera calibration.

Define a world $X Y Z$ coordinate system with the origin O at the lens center and the Z-axis along the optical axis (Fig. 1). As far as the camera imaging is concerned, the outside scene can be regarded as if painted inside a sphere of a specified radius R surrounding the lens. The angle θ of the incident ray from point (X, Y, Z) on the sphere is

$$
\begin{equation*}
\theta=\tan ^{-1} \frac{\sqrt{X^{2}+Y^{2}}}{Z}=\tan ^{-1} \frac{\sqrt{R^{2}-Z^{2}}}{Z} \tag{53}
\end{equation*}
$$

Figure 8: (a) Fisheye lens image viewing a square grid pattern in approximately 30 degree direction. (b) Rectified perspective image to be observed if the camera is rotated by 60 degrees to face the pattern. (c) Similarly rectified image using a spurious solution.

Figure 9: Fisheye lens image of an outdoor scene taken from a moving vehicle, rectified front images, and rectified images after virtually rotating the camera to left, right, up, and down.

Let $r(\theta)$ be the expression of r in terms of θ described in Fig. 7. The point (X, Y, Z) is projected to an image point (x, y) such that

$$
\begin{equation*}
\binom{x}{y}=\binom{u_{0}}{v_{0}}+\frac{r(\theta)}{\sqrt{R^{2}-Z^{2}}}\binom{X}{Y} . \tag{54}
\end{equation*}
$$

Suppose we want to obtain a rectified perspective image with focal length \bar{f}. Then, the pixel (\bar{x}, \bar{y}) of the rectified image should be the projection of the 3-D

Figure 10: To the pixel (\bar{x}, \bar{y}) of the rectified perspective image of focal length \bar{f} should be an image of the 3-D point (X, Y, Z), which is actually projected to (x, y) on the fisheye lens image of focal length f.
point (X, Y, Z) given by

$$
\begin{equation*}
\bar{x}=\bar{f} \frac{X}{Z}, \quad \bar{y}=\bar{f} \frac{Y}{Z} . \tag{55}
\end{equation*}
$$

From

$$
\begin{equation*}
\bar{x}^{2}+\bar{y}^{2}+\bar{f}^{2}=\bar{f}^{2} \frac{X^{2}}{Z^{2}}+\bar{f}^{2} \frac{Y^{2}}{Z^{2}}+\bar{f}^{2}=\frac{\bar{f}^{2} R^{2}}{Z^{2}} \tag{56}
\end{equation*}
$$

we see that

$$
\begin{equation*}
Z=\frac{\bar{f} R}{\sqrt{\bar{x}^{2}+\bar{y}^{2}+\bar{f}^{2}}} \tag{57}
\end{equation*}
$$

and hence

$$
\left(\begin{array}{c}
X \tag{58}\\
Y \\
Z
\end{array}\right)=\frac{R}{\sqrt{\bar{x}^{2}+\bar{y}^{2}+\bar{f}^{2}}}\left(\begin{array}{c}
\bar{x} \\
\bar{y} \\
\bar{f}
\end{array}\right) .
$$

Thus, the rectification can be done as follows (Fig. 10):

1. For each pixel (\bar{x}, \bar{y}), compute the 3 -D coordinates (X, Y, Z) in (58), where the radius R is arbitrary (we may let $R=1$).
2. Compute the corresponding pixel position (x, y) by (54) and copy its pixel value to (\bar{x}, \bar{y}). If (x, y) are not integers, interpolate its value from surrounding pixels.

We can also obtain the perspective image to be observed if the camera is rotated by \boldsymbol{R}. Since rotation of the camera by \boldsymbol{R} is equivalent to the rotation of the scene sphere by \boldsymbol{R}^{-1}, the 3-D point (X, Y, Z) given by (58) on the rotated sphere corresponds to the 3-D point

$$
\left(\begin{array}{c}
X \tag{59}\\
Y \\
Z
\end{array}\right)=\frac{R}{\sqrt{\bar{x}^{2}+\bar{y}^{2}+\bar{f}^{2}}} \boldsymbol{R}\left(\begin{array}{c}
\bar{x} \\
\bar{y} \\
\bar{f}
\end{array}\right) .
$$

on the original sphere. Its fisheye lens image should be held at the pixel (x, y) given by (54). Thus, the mapping procedure goes as follows:

1. For each pixel (\bar{x}, \bar{y}), compute the 3 -D coordinates (X, Y, Z) in (59).
2. Compute the corresponding pixel position (x, y) by (54) and copy its pixel value to (\bar{x}, \bar{y}).

Acknowledgments. The author thank Ryota Moriyasu of ERD Corporation for helping the experiments. This work was supported in part by the Ministry of Education, Culture, Sports, Science, and Technology, Japan, under a Grant in Aid for Scientific Research (C 21500172).

References

[1] F. Devernay and O. Faugeras, "Straight lines have to be straight: Automatic calibration and removal of distortion from scenes of structured environments," Machine Vision Applications, vol. 13, no. 1, pp. 14-24, Aug. 2001.
[2] R. Hartley and O. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed., Cambridge Univ. Press, 2004.
[3] R. Hartley and S. B. Kang, "Parameter-free radial distortion correction with center of distortion estimation," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 8, 1309 1321, Aug. 2007.
[4] J. Heikkilä, "Geometric camera calibration using circular control points," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 10, Oct. 2000.
[5] C. Hughes, P. Denny, M. Glavin and E. Jones, "Equidistant fish-eye calibration and rectification by vanishing point extraction," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 12, 2289-2296, Dec. 2010.
[6] K. Kanatani, Statistical Optimization for Geometric Computation: Theory and Practice, Elsevier, 1996; reprinted Dover, 2005.
[7] J. Kannala and S. S. Brandt, "A general camera model and calibration method for conventional, wide angle, and fisheye-lenses," IEEE Trans. Pattern Analysis and Machine Intelligence., vol. 28, no. 8, 1335-1340, Aug. 2006.
[8] S. Kase, H. Mitsumoto, Y. Aragaki, N. Shimomura and K. Umeda, "A method to construct overhead view images using multiple fisheye cameras" (in Japanese), , J. JSPE , vol. 75, no. 2, pp. 251-255, Feb. 2009.
[9] H. Komagata, I. Ishii, A. Takahashi, D. Wakabayashi and H. Imai, "A geometric calibration method of internal camera parameters for fisheye lenses" (in Japanese), IEICE Trans. Information and Systems, vol. J89-D, no. 1 (2006-1), 64-73, Jan. 2006.
[10] Y.-C. Liu, K.-Y. Lin, and Y.-S. Chen, "Bird's eye view vision system for vehicle surrounding monitoring," Proc. 2nd Int'l Workshop, Robvis2008, pp. 207-218, Feb. 2008.
[11] M. Nakano, S. Li and N. Chiba, "Calibration of fish-eye camera for acquisition of spherical image" (in Japanese), IEICE Trans. Information and Systems, vol. J89-D-II, no. 9, 1847-1856, Sept. 2005.
[12] M. Nakano, S. Li and N. Chiba, "Calibrating fisheye camera by stripe pattern based upon spherical model" (in Japanese), IEICE Trans. Information and Systems, vol. J89-D, no. 1, 7382, Jan. 2007.
[13] R. Okutsu, K. Terabayashi, Y. Aragaki, N. Shimomura, and K. Umeda, "Generation of overhead view images by estimating intrinsic and extrinsic camera parameters of multiple fish-eye cameras," Proc. IAPR Conf. Machine Vision Applications, pp. 447-450, May 2009.
[14] R. Okutsu, K. Terabayashi and K. Umeda, "Calibration of intrinsic parameters of a fish-eye camera using a sphere" (in Japanese), IEICE Trans. Information and Systems, vol. J89-D, no. 12 (2010-12), 2645-2653, Dec. 2010
[15] Y. Onodera and K. Kanatani, "Geometric correction of images without camera registration" (in Japanese), IEICE Trans. Information and Systems, vol. J75-D-II, no. 5, 1009-1013, May 1992.
[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, second ed., Cambridge Univ. Press, 1992.
[17] F. Swaminathan and S. K. Nayar, "Nonmetric calibration of wide-angle lenses and polycameras," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 10, 1172-1178, Oct. 2000.
[18] Z. Zhang, "Flexible new technique for camera calibration," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 11, 1330-1334, Nov. 2000.

[^0]: *E-mail kanatani@suri.cs.okayama-u.ac.jp

