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HOMOGENIZATION OF NON-LINEAR VARIATIONAL

PROBLEMS WITH THIN INCLUSIONS

ABDELAZIZ AÏT MOUSSA and LOUBNA ZLAÏJI

Abstract. We are concerned in this work with the asymptotic behav-
ior of an assemblage whose components are a thin inclusion with higher
rigidity modulus included into an elastic body. We aim at finding the ap-
proximating energy functional of the above structure in a Γ-convergence
framework, and making use also of the subadditive theorem and the
blow-up method.

1. Introduction

This work focuses on a junction problem of two different kind of materials.
The first one is an elastic body divided into two parts and the other is a
material intercalated between them and characterized by its small thickness
equal to 2ε where 0 < ε << 1 and its higher rigidity modulus µ >> 1. The
stored energy of the whole body is then dependent on the double parameter
δ = (ε, µ) and modelized by the family of functionals Fδ : W 1,p

0 (O;RN ) →
[0,∞) defined by

(1.1) Fδ(u) :=

∫

O
fδ(x,Du) dx,

where O is an open bounded subset of R
n, n ≥ 3, which represents the

reference configuration of the assemblage and the stored energy density fδ :
R
n×R

N×n → [0,+∞), N ≥ 1, is a Borel function satisfying an appropriate
growth and p-Lipschitz conditions, with 1 < p < +∞ (we refer to (2.4)).
For instance, we may occur that the structure is clamped on its boundary
and subjected to external forces g, so that the total energy is given by

Gδ(u) := Fδ(u)−

∫

O
g(x).u(x)dx.

Our purpose is to characterize the asymptotic behavior of the family of
problems

mδ = min{Gδ(u), u ∈ W
1,p
0 (O,RN )},

whenever δ → (0,+∞) making use of the Γ−convergence approach.
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As stated by the well known fundamental Theorem of Γ−convergence (see
Theorem 3.2), if the sequence of functionals (Gδ) is equi-coercive and admits
a Γ−limit G, then we have the convergence of minima

lim
δ

inf{Gδ(u) : u ∈ W
1,p
0 (O,RN )} = min{G(u) : u ∈ D},

where D is the domain of definition of G. Moreover, we have also conver-
gence of minimizers, i.e. if (uδ) is such that lim

δ
Gδ(uδ) = lim

δ
infGδ and if

uδ → u0, then u0 is a minimizer for G. The convergence type of the sequence
uδ must be chosen in order to provide the equi-coercivity of the sequence of
functionals (Gδ), and it is often the strong Lp-metric. However, the stability
of Γ-convergence with respect to continuous perturbations leads to looking
for the limit of the sequence (Fδ) (in the sense of Γ-convergence) as the latest
and the most important step in order to apply the fundamental Theorem of
Γ−convergence, and it will be the subject of the present study.

Many works on dimension reduction of thin films have been investigated
through a Γ−convergence analysis, and we can mention here for instance
[5, 6, 8, 20, 12, 14] and the references therein. But, as a particular moti-
vation of this work, Acerbi, Buttazzo and Percivale in [2] have considered
a thin inclusion problem in elasticity by assuming the energy density to be
convex. There is also an other work by Licht and Michaille in [28, 29] who
have been interested in a junction problem of an elastic body constituted of
adherent and adhesive materials with nonconvex bulk energy density both
in the deterministic and the stochastic case; they assume the stiffness of the
adhesive to be too small. The present study will be different of the first
work by making no convexity assumption on the energy density and also
by working with the strain tensor Du instead of the linearized strain tensor
e(u) (the last is considerably more complicated), and of the second one by
supposing the intermediate body to have a higher rigidity.

We aim at finding the Γ-limit F of the sequence of functionals (Fδ), and
the main tools will be, like in [29], the global subadditive theorem of Licht
and Michaille in [28, 29] and the blow-up technique introduced by Fonseca
and Müller in [26] which is especially exploited to prove the so-called liminf
inequality (see Sec. 5.1).

We shall prove that in one hand the Γ-limit depends strongly on the prod-
uct thickness-rigidity of the layer, and in the other hand, the critical case is
whenever the effects of thickness and rigidity are equilibrate (i.e, whenever
0 < lim εµ < ∞). In this particular case, as in [2], a new homogenized
density energy appears on the intermediate face between the two parts of
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the elastic body, and it possesses suitable properties. Namely, we expect
on the quasiconvexity to get existence of the minimization limit-problem
minF (u). Let us also notice that this energy density depends only on the
first derivatives of the displacement u, which means that we have no plate
or shell phenomena. We point out that an other interesting case appears
in the convex case when replacing the strain tensor Du with the linearized
strain tensor e(u), especially if lim εµ = +∞ and lim εp+1µ < +∞ (see [2]).
The limit energy density in this situation depends on the second derivatives
of the displacement u which means that the inclusion behaves like a shell.

The paper is organized as follows: Sec. 2 is devoted to the problem
statement and main result. In Sec. 3, we give some preliminaries which are
necessary in the sequel. In Sec. 4, we establish some properties of the limit
integrand fhom

2 defined in (2.10), and finally, Sec. 5 treats proof of the main
Theorem.

2. Problem statement and main result

2.1. Notations. In the sequel, Ld is the Lebesgue measure in R
d, Ỹ stands

for the unit cube in R
n−1, x = (x̃, xn) is a generic point in R

n, where
x̃ ∈ R

n−1 and xn ∈ R, Qr(x) is the cube of center x and side r, for a given
real 1 < p < ∞ we denote p′ = p

p−1 his conjugate exponent, if O is an open

bounded subset of Rn and u ∈ W 1,p(O;RN ), where N ≥ 1, Du denotes the
Jacobian matrix in R

N×n defined by

Du :=

[
∂ui

∂xj

]
1≤i≤N

1≤j≤n

,

and we shall need also the notation

Dx̃u :=

[
∂ui

∂xj

]
1≤i≤N

1≤j≤n−1

,

for a matrix ξ = (ξ′, ξN ), where ξ′ ∈ R
N×n−1 and ξN ∈ R

N , we denote
ξT = (ξ′, 0), and finally, C is a generic constant which is independent on the
varying parameters ε and µ, and may be different from line to line.

2.2. Problem statement. Let n ≥ 2 andN ≥ 1, let O be an open bounded
subset of R

n with Lipschitz boundary denoted by ∂O and S be an open
bounded convex subset of R

n−1 with Lipschitz boundary ∂S. For every
ε > 0, we suppose that there exists a part Bε of O which takes the form:

(2.1) Bε = S×]− ε, ε[,

and we set

(2.2) Oε = O \Bε.
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Let us define a function fδ : O × R
N×n → [0,+∞) so that:

(2.3) fδ(x, .) =

{
f1(x, .) a.e. x ∈ Oε,

µf2(
x̃
ε
, .) a.e. x ∈ Bε,

where for each i ∈ {1, 2}, fi is a Carathéodory function and there exist
constants αi, βi, ci > 0 such that:

αi|ξ|
p ≤ fi(z, ξ) ≤ βi(1 + |ξ|p) (growth condition),(2.4)

|fi(z, ξ)− fi(z, ξ
′)| ≤ ci|ξ − ξ′|(1 + |ξ|p−1 + |ξ′|p−1) (p-Lipschitz condition)

for every z ∈ R
n for i=1 and z ∈ R

n−1 for i=2 and every ξ, ξ′ in R
N×n; in

particular, we assume that

(2.5) f2 is Ỹ -periodic with respect to the variable x̃.

2.3. Main result. Let us recall that the subject of our study is the as-
ymptotic behavior of the family of functionals Fδ : W 1,p

0 (O;RN ) → [0,∞)
defined by:

(2.6) Fδ(u) =

∫

O
fδ(x,Du) dx.

In particular, we look for the corresponding limit in the sense of Γ-
convergence (definition in Sec. 3.1) with respect to the Lp(O;RN )-metric,
whenever ε and µ tend simultaneously to zero and +∞. To this aim, as
usual we extend Fδ in the whole space Lp(O;RN ) as follows:

(2.7) Fδ(u) =

{ ∫
O fδ(x,Du) dx if u ∈ W

1,p
0 (O;RN ),

+∞ if u ∈ Lp(O;RN ) \W 1,p
0 (O;RN ).

Now, we are in measure to state the main result. To do so, assume that

(2.8) lim
δ→(0,∞)

εµ = η ∈ [0,+∞],

and define the effective domain of Γ-limit as:

(2.9) dom(Γ- lim inf Fδ) := {u ∈ Lp(O;RN ) : (Γ- lim inf
δ

Fδ)(u) < ∞}.

Let f2
hom be the function defined for every ξ ∈ R

N×n by:

f2
hom(ξ) := inf

k
inf

{
1

kn−1

∫

keY×]−1,1[
f2(ỹ, ξT +Du(y)) dy :

u ∈ W
1,p
0 (kỸ ×]− 1, 1[;RN )

}
.(2.10)

Then, the principal result is given through the following Γ-limit theorem:
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Theorem 2.1. Assume that the functions fi satisfy conditions (2.4) and
(2.5). Then

dom(Γ− lim inf
δ

Fδ) = D

:=





D1 = W
1,p
0 (O;RN ), if η = 0,

D2 = {u ∈ D1 : u|S ∈ W 1,p(S;RN×n)}, if 0 < η < ∞,

D3 = {u ∈ D1 : u|S = 0}, if η = ∞,

(2.11)

where by notation, u|S(x̃) = u(x̃, 0), and the sequence of functionals Fδ

defined in (2.7) Γ-converges for the Lp(O;RN )-metric to the functional F
defined in Lp(O;RN ) by:

(1) If η = 0 , then

F (u) :=

{ ∫
O Qf1(x,Du) dx if u ∈ D1,

+∞ if u ∈ Lp(O;RN ) \D1.

(2) If 0 < η < +∞ , then

F (u) :=

{ ∫
O
Qf1(x,Du) dx+ η

∫
S
f2

hom(Dx̃(u|S))dx̃ if u ∈ D2,

+∞ if u ∈ Lp(O;RN ) \D2.

(3) If η = ∞ and f2 is p-homogeneous with respect to ξ, then

F (u) :=

{ ∫
O Qf1(x,Du) dx+ if u ∈ D3,

+∞ if u ∈ Lp(O;RN ) \D3.

In all cases, Qf1 is the quasiconvex envelope of f1 (defined in (3.1)).

Lemma 2.1. D2 endowed with the following norm

(2.12) ‖u‖2 = ‖u‖W 1,p(O,RN ) + ‖u|S‖W 1,p(S,RN ),

is a reflexive Banach space. Moreover, C1(O) is dense in D2.

Proof. It’s easy to check that D2 is a reflexive Banach space. The proof of
density relies on the density in D2 of functions which are almost everywhere
independent of xn in an interval [−α,α] where α depends on the function
(this density is the nonlinear version of the one in [27], p:299). To prove it,
let u ∈ D2 and α > 0. Define the function uα on O by:

uα(x̃, xn) =





u(x̃, xn + α) if xn ≤ −α,

u(x̃, 0) if −α ≤ xn ≤ α,

u(x̃, xn − α) if xn ≥ α.

Then, uα ∈ D2. Indeed, we have

uα|O∩{xn≤−α} = u|O∩{xn≤0},

uα|O∩{xn≥α} = u|O∩{xn≥0},

uα|O∩{−α≤xn≤α} = u|S,
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which implies that uα ∈ W 1,p(O;RN ). Since u = 0 on ∂O, it is the same for
uα. Moreover, uα|S = u|S, so uα ∈ D2. Now, we prove that ‖uα−u‖D2 → 0.
Since uα|S = u|S, ‖uα − u‖D2 = ‖uα − u‖W 1,p(O;RN ). We have

∫

O
|uα − u|pdx =

∫

O∩{xn≤−α}
|u(x̃, xn + α)− u(x̃, xn)|

pdx

+

∫

O∩{−α≤xn≤α}
|u(x̃, 0)− u(x̃, xn)|

pdx

+

∫

O∩{xn≥α}
|u(x̃, xn − α)− u(x̃, xn)|

pdx.

With the change of variable yn = xn+α in O∩{xn ≤ −α} and yn = xn−α

in O ∩ {xn ≥ α} and by applying Theorem 1.1 in [32] (page:57) on the first
and third integral terms in the right hand side, it follows that

∫

O
|uα − u|pdx → 0.

To prove that
∫
O |Duα−Du|pdx → 0, it suffices to apply the same argument

now with Du instead of u noticing that we can apply theorem 1.1 in [32]
since u ∈ W 1,p(O;RN ). To conclude, it remains to approximate uα by
convolutions. �

3. Preliminaries

Through this section, we recall some definitions and useful results. We
begin by the concept of Γ-convergence.

3.1. Γ-convergence. Let (X, τ) be a topological space. The set of all open
neighborhoods of x in X will be denoted by N (x). Let (Fk) be a sequence
of functions from X into R. For every x ∈ X, we call Γ(τ)-lower limit and
Γ(τ)-upper limit of (Fk) the functions Γ(τ)-lim inf

k→∞
Fk and Γ(τ)-lim sup

k→∞
Fk

defined as

Γ(τ)- lim inf
k→∞

Fk(x) = sup
U∈N (x)

lim inf
k→∞

inf
y∈U

Fk(y),

Γ(τ)- lim sup
k→∞

Fk(x) = sup
U∈N (x)

lim sup
k→∞

inf
y∈U

Fk(y).

If the two functions are equal to a function F : X → R, then we say that
the sequence (Fk) Γ(τ)-converges to F (in X) or that F is the Γ-limit of
(Fk) and we write F = Γ(τ)- lim

k→∞
Fk. In particular (see e.g.Theorem 2.1 in

Braides [16]).
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Theorem 3.1. Let X be a metric space and Fk, F : X → R. Then, the
Γ-convergence of the sequence (Fk) to F at a point x is equivalent to each of
the following assertions:

(a) we have

F (x) = Γ(τ)- lim inf
k→∞

Fk(x) = inf{lim inf Fk(xk) : xk → x}

= Γ(τ)- lim sup
k→∞

Fk(x) = inf{lim supFk(xk) : xk → x};

(b) ( sequential Γ-convergence ) we have:
(i) ( inequality lim inf) for every sequence (xk) converging to x

lim inf
k→+∞

Fk(xk) ≥ F (x).

(ii) ( inequality lim sup) there exists a sequence (x0,k) converging to
x such that

lim sup
k→+∞

Fk(x0,k) ≤ F (x).

From now on, (X, τ) is a metric space. Hereafter are some known and
useful properties of the concept of Γ-convergence.

Proposition 3.1. (1) (Stability under continuous perturbations). If Fk Γ-
converges to F and if G : X → Ris a continuous function for the
metric τ , then (Fk +G) Γ-converges to F +G.

(2) (Lower semicontinuity of Γ-limits). The functions Γ-liminf and Γ-
limsup of (Fk) are lower semicontinuous for the metric τ .

We say that a sequence Fk : X → [0,+∞] is τ−equicoercive if there exists
a τ−compact set K (independent of k) such that

inf{Fk(x) : x ∈ X} = inf{Fk(x) : x ∈ K}.

Theorem 3.2. (The Fundamental Theorem of Γ−convergence) Let (Fk) be
a τ−equicoercive sequence Γ(τ)−converging on X to the function F. Then
we have the convergence of minima

min{F (x) : x ∈ X} = lim
k

inf{Fk(x) : x ∈ X},

moreover we have also convergence of minimizers: if xk → x and

lim
k

Fk(xk) = lim
k

inf Fk,

then x is a minimizer for F.

For more about Γ-convergence, we refer the reader to [7, 17, 22].
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3.2. Quasiconvex functions. Let f be a Borel measurable function de-
fined on R

N×n, and p ∈ [1,+∞]. We say that f is W 1,p-quasiconvex at
ξ ∈ R

N×n if for every (or only for one) open bounded set A ⊂ R
n with

Ln(∂A) = 0 (if f takes infinite values) and for every ϕ ∈ W
1, p
0 (A,RN ),

f(ξ) ≤
1

Ln(A)

∫

A

f(ξ +∇ϕ)dx.

f is W 1,p-quasiconvex if it is W 1,p-quasiconvex at every ξ ∈ R
N×n. We say

that f is quasiconvex (in Morrey’s sence) if it is W 1,∞-quasiconvex.

We give here some relations between different notions of W 1,p-
quasiconvexity (we refer to the original paper[10]).

Remark 3.1. (1) If 1 ≤ p, q ≤ +∞, then W 1,p-quasiconvexity implies
W 1,q-quasiconvexity.

(2) If 1 ≤ p < +∞, f is continuous and

0 ≤ f(ξ) ≤ c(1 + |ξ|p)

for every ξ ∈ R
N×n, then f is W 1,p-quasiconvex if and only if it is

W 1,∞-quasiconvex.
(3) If 1 ≤ p < +∞ and f satisfies

|ξ|p ≤ f(ξ)

for every ξ ∈ R
N×n, then f is W 1,p-quasiconvex if and only if it is

W 1,1-quasiconvex.

In general, a function f can be a nonquasiconvex function. However, it is
always possible to work with his quasiconvex envelope given by

(3.1) Qf := sup{g ≤ f : g is quasiconvex }.

If f is locally bounded, then the definition of Qf can be expressed for every
ξ ∈ R

N×n as [21, Page 201]

Qf(ξ) = inf

{
1

Ln(A)

∫

A

f(ξ +∇ϕ)dx : ϕ ∈ W
1,∞
0 (A,RN )

}
,

and this definition does not depend on the set D.

As it is well known, a quasiconvex function f (more generally convex in
each variable) which verifies the following growth condition: there exist
C > 0 such that

0 ≤ f(ξ) ≤ C(1 + |ξ|r)

for all ξ ∈ R
N×n, where 1 ≤ r < +∞, then the r-Lipschitz property

(3.2) |f(ξ)− f(ξ′)| ≤ β(1 + |ξ|r−1 + |ξ′|r−1)|ξ − ξ′|
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holds for all ξ, ξ′ ∈ R
N×n, and some β > 0 (see [21] or [30]).

Let O be a bounded open subset of R
n. We say that a function f :

O×R
N×n → R is quasiconvex if for a.e. x ∈ O we have ξ 7→ f(ξ,A) is qua-

siconvex. The following proposition establishes sufficiency of quasiconvexity
to obtain weak lower semicontinuity in W 1,p.

Proposition 3.2. Let 0 ≤ p < +∞ and let f : O × R
N×n → R be a

Carathéodory quasiconvex function such that there exists a constant C > 0
with

0 ≤ f(x, ξ) ≤ C(1 + |ξ|p), ∀(x, ξ) ∈ O × R
N×n.

Then, the functional F : u →
∫
O f(x,∇u(x)) dx is weakly lower semicontin-

uous on W 1,p(O,RN ).

The proof of the above proposition can be found in [21, Theorem 2.4 and
Remark iv].

3.3. A global subadditive theorem. For m ≥ 1, let Bb(R
m) be the fam-

ily of Borel bounded subsets of Rm and d the Euclidean distance in R
m.

For every A ∈ Bb(R
m), set ρ(A) = sup{r ≥ 0 : ∃Br(x) ⊂ A}, where

Br(x) = {y ∈ R
m : d(x, y) ≤ r}. A sequence (Bk)k∈N ⊂ Bb(R

m) is called
regular if there exist an increasing sequence of intervals (Ik)k ⊂ Z

m and a
constant C independent of k such that Bk ⊂ Ik and Ln(Ik) ≤ CLn(Bk), ∀k.

The global subadditive theorem is mainly based on subadditive Z
m-

periodic functions. A function Υ : A ∈ Bb(R
m) → ΥA ∈ R is called subaddi-

tive Z
m-periodic if it satisfies the following conditions:

(i) For all A,B ∈ Bb(R
m) such that A ∩B = ∅, ΥA∪B ≤ ΥA +ΥB.

(ii) For all A ∈ Bb(R
m), all z ∈ Z

m, ΥA+z = ΥA.

The following global subadditive theorem is contained in [29] (see Theo-
rem 2.1).

Theorem 3.3. Let Υ be a subadditive Z
m-periodic function such that

ϕ(Υ) = inf

{
ΥI

|I|
: I = [a, b[, a, b ∈ Z

m and ai < bi ∀1 ≤ i ≤ m

}
> −∞.

In addition, we suppose that Υ satisfies the dominant property: there exists
C(Υ) such that for every Borel convex subset A ⊂ [0, 1[m, |ΥA| ≤ C(Υ). Let
(Ak)k be a regular sequence of convex subsets of Bb(R

m) with lim
k→+∞

ρ(Ak) =

+∞. Then lim
k→+∞

ΥAk

Ln(Ak)
exists and is equal to

lim
k→+∞

ΥAk

Ln(Ak)
= inf

k∈N∗

{
Υ[0,k[m

km

}
= ϕ(Υ).
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3.4. Positive Radon measures. To identify the Γ-limit inf of the function-
als Fδ, we use the blow-up method which rests on positive Radon measures.
We give here some properties of such measures, which are needed precisely
in Sec. 5.2.

Definition 3.1. (1) If λ is a Radon measure with values in R
N×n, the

total variation |λ| is defined for every Borel subset B ⊂ O by:

|λ(B)| = sup
∑

i∈I

|λ(Bi)|

where the supremum is taking over all finite or quantable fami-
lies (Bi)i∈I of subsets of B relatively compact in O and such that
Bi ∩ Bj = ∅ for i 6= j. It is evident to see that |λ| is a positive
σ-additive measure in O. We denote by M(O;RN×n) the space
of Radon measures λ with finite total variation, i.e. for which we
have |λ|(O) < +∞. We say that a sequence (λh)h in M(O;RN×n)
converges weakly to λ ∈ M(O;RN×n) if

lim
h→+∞

∫

O
λhφ =

∫

O
λφ, ∀φ ∈ D(O;RN ).

(2) Let λ : B(O) → [0,+∞[ and µ : B(O) → R
N be two measures in

M(O;RN×n).
• We say that µ is absolutely continuous with respect to λ, and
we write µ << λ if the following condition is satisfied :

λ(B) = 0 ⇒ µ(B) = 0 ∀B ∈ B(O).

• We say that µ is singular with respect to λ, and we write µ ⊥ λ

if there exist B ∈ B(O) such that

λ(B) = 0 and |µ|(O \B) = 0.

According to Radon-Nikodym, there exist an unique measure µλ such
that µλ << µ and (µ− µλ) ⊥ λ. The Besicovitch theorem of differentiation
measures give the following relation:

(3.3) µλ =
dµ

dλ
λ

where
dµ

dλ
is defined by the limit:

(3.4)
dµ

dλ
(x) = lim

r→0

µ(Br(x))

λ(Br(x))

which exists λ-a.e. x ∈ O. Here, Br(x) which is the usual ball of center x

and radius r can be as well replaced by Qr(x). Such points, i.e. for which
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(3.4) holds are called Lebesgue points for µ with respect to λ.

In literature, it is also common to work with Lebesgue points with respect
to a function.

Definition 3.2. Let u ∈ L1(O,RN ). We say that x ∈ O is a Lebesgue point
with respect to u if there exist ũ(x) ∈ R

N such that:

lim
r→0

1

rn

∫

Br(x)
|u(y)− ũ(x)|dy = 0.

By notation, Ou stands for the set of Lebesgue points for a given function
u, and Su the discontinuity set of u, i.e. Su := Ou \ O.

By Lebesgue differentiation theorem, Su is Ln−negligible, and the func-
tion ũ equal to u a.e. in Ou is called the Lebesgue representative of u.

Remark 3.2. Later on in Sec. 5, Lebesgue points are needed with Qr(x)
instead of Br(x), and it seems that it is a line of a number of works (e.g.
[11, 19]).

3.5. The Decomposition Lemma. We recall that a sequence of functions
(um)m ⊂ L1(O) is said to be equi-integrable if for all ε > 0 there exist δ > 0
such that

sup
m∈N

∫

A

|um|dx < ε

whenever A ⊂ O with |A| < δ.

As a consequence of the next theorem (found e.g. in Baia and Fonseca
[9] and the references therein), each sequence with bounded gradients in Lp,
for 1 < p < ∞, admits a subsequence that can be decomposed as a sum of
a sequence with p-equi-integrable gradients and a remainder that converges
to zero in measure.

Theorem 3.4. (Decomposition Lemma) Let 1 < p < +∞ and assume that
∂O is Lipschitz and that um ⇀ v0 in W 1,p(O;RN ). Then, there exists a
subsequence (umk

)k of (um)m and a sequence (vk)k ⊂ W 1,∞(Rn;RN ) such
that
i) vk ⇀ v0 in W 1,p(O;RN ),
ii) vk = v0 in a neighborhood of ∂O,
iii)(Dvk)k is p-equi-integrable,
iv) lim

k→+∞
|{x ∈ O : vk(x) 6= umk

(x)}| = 0.
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4. Properties of f2
hom

The present section is devoted to check some properties of the function
f2

hom defined by (2.10). Namely, that is a quasiconvex function which sat-
isfies growth and p-Lipschitz conditions like in (2.4).

Firstly, by an argument analogous to that used in [9][Lemma 3.1], [13],

[18][Proposition 14.4] and [19][Proposition 2.3], we show that f2
hom is well

defined by the following lemma:

Lemma 4.1. Let f : Rn−1 × R
N×n → R be a Carathéodory function Ỹ -

periodic with respect to the variable x̃ and there exist β > 0 such that

0 ≤ f(x̃, ξ) ≤ β(1 + |ξ|p)

for every (x̃, ξ) ∈ R
n−1×R

N×n. Let k ∈ N, x̃k ∈ R
n−1 and denote by Qk(x̃k)

the open cube in R
n−1 with center x̃k and side L.k with L > 0. Then for all

ξ ∈ R
N×(n−1) the limit

lim
k→+∞

inf

{
1

kn−1

∫

Qk(x̃k)×]−1,1[
f(x̃, ξT +Du(x)) dx :

u ∈ W
1,p
0 (Qk(x̃k)×]− 1, 1[;RN )

}

exists and is equal to

fhom(ξ) := inf
k
inf

{
1

kn−1

∫

keY×]−1,1[
f(x̃, ξT +Du)dx :

u ∈ W
1,p
0 (kỸ×]− 1, 1[;RN )

}
.

Proof. Let ξ ∈ R
N×(n−1), and define for every subset A of Bb(R

n−1) the
following map

ΥA(ξ) := inf

{ ∫
o

A×]−1,1[
f(x̃, ξT +Du(x)) dx :

u ∈ W
1,p
0 (

o

A ×]− 1, 1[;RN )
}
,(4.1)

where
o

A stands for the interior of A. Then, the assumptions on the function
f imply that Υ(.)(ξ) : A ∈ Bb(R

n−1) → ΥA(ξ) ∈ R satisfies all hypotheses
of Theorem 3.3. Moreover,

lim
k→+∞

ρ(Qk(x̃k)) = lim
k→+∞

L.k = +∞.
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Hence lim
k→+∞

ΥQk(x̃k)(ξ)

kn−1
exists and

lim
k→+∞

ΥQk(x̃k)(ξ)

kn−1
= inf

k∈N∗

Υ
keY

(ξ)

kn−1

= fhom(ξ),

which proves lemma. �

Remark 4.1. In the definition of fhom we may take as well any open convex
subset of Rn−1 as shown in Theorem 3.3.

In addition, f2
hom possess the following properties:

Proposition 4.1. f2
hom satisfies:

1.(Growth condition): there exist α′
2 and β′

2 depending on α2, β2 and p such
that

(4.2) α′
2|ξ|

p ≤ f2
hom(ξ) ≤ β′

2(1 + |ξ|p),

2.(p-Lipschitz condition): there exist a constant c′2 > 0 depending on c2, α2,
β2, and p such that

(4.3) |f2
hom(ξ)− f2

hom(ξ′)| ≤ c′2|ξ − ξ′|(1 + |ξ|p−1 + |ξ′|p−1),

for every ξ, ξ′ ∈ R
N×(n−1).

The p-Lipschitz condition is ensured as soon as we have the following:

Lemma 4.2. Let A be a subset of Bb(R
n−1) and Υ be the map defined as

in (4.1). Then, there exist a positive constant C depending on c2, α2, β2,

and p such that for every ξ and ξ′ in R
N×(n−1)

∣∣∣∣
ΥA(ξ)

Ln−1(A)
−

ΥA(ξ
′)

Ln−1(A)

∣∣∣∣ ≤ C(1 + |ξ|p−1 + |ξ′|p−1)|ξ − ξ′|.

Proof. It is an adaptation of the proof of Proposition 2.1 in [31]. Let A

be a subset of Bb(R
n−1) and ξ, ξ′ in R

N×(n−1). For a fixed m > 0, let

um ∈ W
1,p
0 (A×]− 1, 1[;RN ) so that

(4.4) ΥA(ξ
′) ≥

∫

A×]−1,1[
f2(ỹ, ξ

′
T +Dum) dy −

1

m
.

From the p-Lipchitz condition in (2.4) and by Holder inequality, it follows
that

1

Ln−1(A)

[
ΥA(ξ)−ΥA(ξ

′)−
1

m

]
(4.5)

≤
1

Ln−1(A)

∫

A×]−1,1[
[f2(ỹ, ξT +Dum)− f2(ỹ, ξ

′
T +Dum)] dy
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≤ C|ξ − ξ′|

(
1

Ln−1(A)

∫

A×]−1,1[
(1 + |ξT +Dum(y)|p−1

+|ξ′T +Dum(y)|p−1)
p

p−1 dy
) p−1

p

≤ C|ξ − ξ′|

(
1

Ln−1(A)

∫

A×]−1,1[
1 + |ξ|p + |ξ′|p

+|ξ′T +Dum(y)|pdy
)p−1

p ,

where C is a constant depending on c2 and p. On the other hand, by (2.4)
and (4.4)

1

Ln−1(A)

∫

A×]−1,1[
|ξ′T +Dum(y)|p)dy

≤
1

α2Ln−1(A)

∫

A×]−1,1[
f2(ỹ, ξ

′
T +Dum) dy

≤
1

α2Ln−1(A)

(∫

A×]−1,1[
f2(ỹ, ξ

′
T ) dy +

1

m

)

≤ C(1 + |ξ′|p) +
1

α2mLn−1(A)
,

where C depends on α2 and β2. Applying this in (4.5), taking the limit as
m → +∞ and exchanging roles between ξ and ξ′, we deduce that

∣∣∣∣
ΥA(ξ)

Ln−1(A)
−

ΥA(ξ
′)

Ln−1(A)

∣∣∣∣ ≤ C|ξ − ξ′|(1 + |ξ|p + |ξ′|p)
p−1
p ,

≤ C|ξ − ξ′|(1 + |ξ|p−1 + |ξ′|p−1).

�

Proof of Proposition 4.1. 1. The upper bound is easily deduced from
(2.4). For the lower bound, let ξ ∈ R

N×(n−1). Making use of (2.4), we get

2γm|ξ|p ≤
1

kn−1

∫

keY ×]−1,1[

|ξ|pdx =
1

kn−1

∫

keY ×]−1,1[

|ξT |
pdx

≤
2p−1

kn−1

{∫

keY ×]−1,1[

|ξT +Du|pdx+

∫

keY ×]−1,1[

|Du|pdx

}
,

≤
2p−1

kn−1

{
1

α2

∫

keY ×]−1,1[

f2(x̃, ξT +Du(x))dx +

∫

keY ×]−1,1[

|Du|pdx

}
,
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for any u ∈ W
1,p
0 (kỸ×] − 1, 1[);RN ). If we take the infimum over u, we

obtain

α′
2|ξ|

p ≤
Υ

keY

kn−1
,

where α′
2 =

α2

2p−2
. We have result after going to the limit in k.

2. It is immediately seen from Lemma 4.2. �

To end this section, it remains to establish the quasiconvexity property
of f2

hom. Arguing as in [9], we use the decomposition lemma to check that

f2
hom = (Qf2)

hom, where Qf2 is the quasiconvex envelope of f2.

Lemma 4.3. Assume f2 to be a Carathdory function for which the growth
condition in (2.4) holds. Then, we have that:
i). Qf2 is a Carathéodory function,

ii). f2
hom(ξ) = (Qf2)

hom(ξ) for all ξ ∈ R
N×(n−1).

Proof. We follow the same lines of lemma 3.2 in [9].
i). Let (x̃, ξ) ∈ R

n−1 × R
N×n. We can write

Qf2(x̃, ξ) = inf
φ∈Dk

gφ(x̃)

where

gφ(x̃) :=
1

Ln(kỸ×]− 1, 1[)

∫

keY×]−1,1[
f2(x̃, ξ +Dφ(y))dy

and Dk is a countable subset of D(kỸ×]−1, 1[);RN ) dense in W
1,p
0 (kỸ ×]−

1, 1[;RN ). By Tonelli’s Theorem the functions gφ are measurable, and so is
Qf2(., ξ) as the infimum of a countable family of measurable functions. For
the continuity of Qf2(x̃, .), it is a consequence of its p-Lipschitz property
(3.2), since it is a quasiconvex function which by (2.4) satisfies

(4.6) 0 ≤ Qf2(x̃, ξ) ≤ f2(x̃, ξ) ≤ C(1 + |ξ|p).

ii). Since by identity i) and (4.6) Qf2 satisfies all the conditions of Lemma
4.1, we can write for every ξ ∈ R

N×n

(Qf2)
hom(ξ) = lim

k
inf

{
1

kn−1

∫

keY×]−1,1[
Qf2(ỹ, ξT +Du)dy :

u ∈ W
1,p
0 (kỸ ×]− 1, 1[;RN )

}
.

Obviously fhom
2 (ξ) ≥ (Qf2)

hom(ξ). For the converse inequality, let m ∈ N

and let km ∈ N and um ∈ W
1,p
0 (kmỸ×]− 1, 1[);RN ) be such that

(Qf2)
hom(ξ) +

1

m
≥

1

kn−1
m

∫

km eY×]−1,1[
Qf2(ỹ, ξT +Dum(y)) dy.
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Thus

(4.7) (Qf2)
hom(ξ) ≥ lim sup

m→∞

1

kn−1
m

∫

km eY×]−1,1[
Qf2(ỹ, ξT +Dum(y)) dy.

By Acerbi and Fusco Relaxation Theorem ([3, Statement III.7]) and as a
consequence of assertion i) and (4.6), for every m fixed there exists a sequence

(um,r)r ⊂ W 1,p(kmỸ×]− 1, 1[;RN ) such that um,r ⇀ um in W 1,p(kmỸ×]−
1, 1[;RN ) and

1

kn−1
m

∫

km eY×]−1,1[
Qf2(ỹ, ξT +Dum)dy(4.8)

= lim
r→∞

1

kn−1
m

∫

km eY×]−1,1[
f2(ỹ, ξT +Dum,r)dy.

By Theorem 3.4, there exists a subsequence (still denoted by (um,r)r) and a

sequence (vm,r)r ⊂ W
1,∞
0 (Rn;RN ) such that vm,r ⇀ um in W 1,p(kmỸ×] −

1, 1[;RN ) with

(4.9) (|Dvm,r|
p)r equi-integrable

and

(4.10) Ln({x ∈ kmỸ×]− 1, 1[ : vm,r(x) 6= um,r(x)})
r
→ 0.

As f2 is nonnegative, by (2.4), (4.9) and (4.10)

lim
r→∞

1

kn−1
m

∫

km eY×]−1,1[
f2(ỹ, ξT +Dum,r(y)) dy(4.11)

≥ lim sup
r→∞

1

kn−1
m

∫

{x∈km eY×]−1,1[ vm,r(x)=um,r(x)}
f2(ỹ, ξT +Dvm,r(y)) dy

= lim sup
r→∞

1

kn−1
m

∫

km eY×]−1,1[
f2(ỹ, ξT +Dvm,r(y)) dy.

From (4.7), (4.8) and (4.11), we deduce that

(Qf2)
hom(ξ) ≥ lim sup

m→∞
lim sup
r→∞

1

kn−1
m

∫

km eY×]−1,1[
f2(ỹ, ξT +Dvm,r(y)) dy

≥ f2
hom(ξ).

�

Finally, we have the following proposition.

Proposition 4.2. Under the same assumptions of Lemma 4.3, the function
fhom
2 is quasiconvex.
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Proof. In view of assertion ii). of Lemma 4.3, it is sufficient to prove it for

(Qf2)
hom. So, let ξ ∈ R

N×(n−1) and B be a bounded open set of Rn−1. The
quasiconvex envelope of (Qf2)

hom reads as follows
(4.12)

Q(Qf2)
hom(ξ) = inf

{
1

Ln−1(B)

∫

B

(Qf2)
hom(ξ +Dϕ(ỹ))dỹ : ϕ ∈ Aff0(B;RN )

}
,

where Aff0(B;RN ) := {ϕ ∈ W
1,∞
0 (B;RN );ϕ piecewise affine} (see [21],

page 207). We have to show that

Q(Qf2)
hom(ξ) = (Qf2)

hom(ξ).

Firstly, it is clear that Q(Qf2)
hom(ξ) ≤ (Qf2)

hom(ξ). Let us now prove
the converse inequality. Let ϕ ∈ Aff0(B;RN ) and m > 0. By definition of

(Qf2)
hom, there exists km > 0 and um,x ∈ W

1,p
0 (kmỸ×]− 1, 1[) (depending

on x) such that

(Qf2)
hom(ξ +Dϕ(x̃)) +

1

m
(4.13)

≥
1

kn−1
m

∫

km eY×]−1,1[
Qf2(ỹ, (ξ +Dϕ(x̃))T +Dum,x(y)) dy

≥ inf

{
1

kn−1
m

∫

km eY×]−1,1[
Qf2(ỹ, (ξ +Dϕ(x̃))T +Du(y)) dy :

u ∈ W
1,p
0 (kmỸ×]− 1, 1[)

}
.

Since ϕ ∈ Aff0(B;RN ), there exist Bi ⊂ B with ∪i∈IBi = B and ξi ∈
R
N×(n−1), i ∈ I finite subset of N, such that

(4.14)

∫

B

(Qf2)
hom(ξ +Dϕ(x̃))dx̃ =

∑

i∈I

(Qf2)
hom(ξ + ξi)L

n−1(Bi).

Averaging on B in (4.13) and using (4.14) together with the quasiconvexity
of Qf2, it follows that

1

Ln−1(B)

∫

B

(Qf2)
hom(ξ +Dϕ(x̃))dx̃+

1

m
(4.15)

≥
1

Ln−1(B)
inf

{
1

kn−1
m

∫

B

(∫

km eY×]−1,1[
Qf2(ỹ, (ξ +Dϕ(x̃))T+

+Du(y))dy

)
dx̃ : u ∈ W

1,p
0 (kmỸ×]− 1, 1[)

}

=
1

Ln−1(B)
inf

{
1

kn−1
m

∫

km eY×]−1,1[

∑

i∈I

Qf2(ỹ, (ξ + ξi)T+
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+Du(y))Ln−1(Bi) dy : u ∈ W
1,p
0 (kmỸ×]− 1, 1[)

}

=
1

Ln−1(B)
inf

{
1

kn−1
m

∫

km eY×]−1,1[

∑

i∈I

∫

Bi

Qf2(ỹ, (ξ + ξi)T+

+Du(y))dx dy : u ∈ W
1,p
0 (kmỸ×]− 1, 1[)

}

= inf

{
1

kn−1
m

∫

km eY×]−1,1[

1

Ln−1(B)

∫

B

Qf2(ỹ, ξT + (Dϕ(x̃))T+

+Du(y))dx̃ dy : u ∈ W
1,p
0 (kmỸ×]− 1, 1[)

}

≥ inf

{
1

kn−1
m

∫

km eY×]−1,1[
Qf2(ỹ, ξT +Du(y)) dy :

u ∈ W
1,p
0 (kmỸ×]− 1, 1[)

}
.

The desired result is deduced after letting m to +∞. �

5. Proof of Theorem 2.1

5.1. Effective domain. This paragraph aims at justifying (2.11), and to
do so we need the following proposition:

Proposition 5.1. Let (uδ) be a sequence in W
1,p
0 (O;RN ) so that Fδ(uδ) ≤ C.

Then, for a subsequence not relabeled, (uδ) converges weakly inW 1,p(O;RN )

to a function u ∈ W
1,p
0 (O;RN ). Moreover, u|S ∈ W 1,p(S;RN ) if 0 < η < ∞,

and u|S = 0 if η = ∞.

Proof. Let (uδ) be a sequence in W
1,p
0 (O;RN ) so that Fδ(uδ) ≤ C. By the

growth condition in (2.4) we have the estimations

µ

∫

Bε

|Duδ|
pdx ≤ C,(5.1)

∫

Oε

|Duδ|
pdx ≤ C,(5.2)

which imply that the sequence (uδ) is bounded in W 1,p(O;RN ), and so,
there exists a function u such that for a subsequence

(5.3) uδ ⇀ u weakly in W 1,p(O;RN ),

which entails by the compactness of the trace mapping that u = 0 on ∂O
and u|S ∈ Lp(S;RN ). Now, we proceed with the two cases, and we begin
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by treating the one where 0 < η < +∞. To this purpose we need to rescale
the function uδ on the fixed domain S×]− 1, 1[ by introducing the function
Uδ defined on S×]− 1, 1[ by

(5.4) Uδ(x̃, xn) := uδ(x̃, εxn).

Then, we have

Dx̃Uδ(x̃, xn) = Dx̃uδ(x̃, εxn),(5.5)

∂Uδ

∂xn
(x̃, xn) = ε

∂uδ

∂xn
(x̃, εxn).(5.6)

The computations above together with estimates (5.1) and (5.2) lead to
∫

S×]−1,1[
|Dx̃Uδ|

pdx ≤
C

εµ
,(5.7)

∫

S×]−1,1[

∣∣∣∣
∂Uδ

∂xn

∣∣∣∣
p

dx ≤
Cεp

εµ
.(5.8)

Hence, making use of (5.7) and (5.8) and applying the Poincaré inequality,
since Uδ = 0 on ∂S×] − 1, 1[ (because uδ = 0 on ∂S×] − ε, ε[), we deduce
that the sequence ‖Uδ‖W 1,p(S×]−1,1[,RN ) is bounded, which implies that for

a subsequence, there exists a function U ∈ W 1,p(S×]− 1, 1[,RN ) such that

(5.9) Uδ ⇀ U weakly in W 1,p(S×]− 1, 1[,RN ).

The estimate (5.8) provides in particular that

(5.10)
∂Uδ

∂xn
→ 0 strongly in Lp(S×]− 1, 1[,RN ),

and consequently, the function U is independent of xn and we can write
U(x̃, xn) = U(x̃) for every (x̃, xn) ∈ S×] − 1, 1[. By (5.3), (5.4), (5.9) and
the compactness of the trace mapping, we deduce that

(5.11) u|S(x̃) = U(x̃, 0) = U(x̃) ∈ W 1,p(S,RN ).

For the case η = +∞, thanks to the estimates (5.1) and (5.2) and the
Poincaré inequality, we get that

Uδ → 0 strongly in W 1,p(S×]− 1, 1[,RN ),

and so, by (5.11) it follows that u|S(x̃) = 0, and the proof is then accom-
plished. �

This Proposition allows naturally to the following inclusion

(5.12) dom(Γ− lim inf
δ

Fδ) ⊂ D.
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For the converse one and according to (5.41) later in this work, for every
u ∈ D there exist a sequence (uδ) such that uδ → u strongly in Lp(O;RN )
and

Γ− lim inf
δ

Fδ(u) ≤ lim supFδ(uδ) ≤ F (u) < +∞,

and consequently u ∈ dom(Γ − lim infδ Fδ), which makes true the converse
inclusion and so (2.11) holds.

5.2. Proof of the Γ-limit inf. We show that for any sequence (uδ) and u

in Lp(O;RN ) such that uδ → u strongly in Lp(O;RN ), we have

(5.13) F (u) ≤ lim inf
δ→(0,∞)

Fδ(uδ).

5.2.1. Cases η = 0 and η = +∞. We refer the reader to assertion (1) of
Lemma 5.1 below and the fact that F 1

δ (u) ≤ Fδ(u), since the function f2 is
non negative.

5.2.2. Case 0 < η < ∞. Suppose that we have a sequence (uδ) and a func-
tion u so that uδ → u strongly in Lp(O;RN ). We may suppose also that
lim inf
δ→(0,∞)

Fδ(uδ) < +∞, which implies by Proposition 5.1 that u ∈ D2 defined

in (2.11). Set

(5.14) Fδ(u) = F 1
δ (u) + F 2

δ (u),

where

F 1
δ (u) =

∫

Oε

f1(x,Du)dx, F 2
δ (u) = µ

∫

Bε

f2

(
x̃

ε
, Du

)
dx.

Then, (5.13) is obtained from the following lemma:

Lemma 5.1. For every u ∈ D2 and every sequence (uδ) ∈ Lp(O;RN ) such
that uδ → u strongly in Lp(O;RN ), we have

(1) lim infδ→(0,+∞) F
1
δ (uδ) ≥

∫
O Qf1(x,Du(x))dx.

(2) lim infδ→(0,+∞) F
2
δ (uδ) ≥ η

∫
S
f2

hom(Dx̃(u|S)(x̃))dx̃.

Proof. We shall use the Blow-up method as described in [1, 4, 19, 29].
(1). The proof of this assertion will be performed through 4 steps. For every
δ, define the positive measure

νδ(A) :=

∫

A\Bε

f1(x,Duδ)dx, ∀A ∈ B(Rn).

Step 1: The limit measure. Since supδ |νδ|(O) ≤ C, by the weak*
compactness of measures, there exists a subsequence of (νδ) (with the same
notation), and a positive measure ν on O such that

(5.15) νδ ⇀ ν in M(O),
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where M(O) is the space of Radon Measures in O. The Radon-Nikodym
decomposition of the limit measure ν with respect to the n-dimensional
Lebesgue measure Ln takes the following form

(5.16) ν =
dν

dx
Ln + νs,

where νs ⊥ Ln.
Step 2: Local analysis. Let x0 ∈ O \ S be a Lebesgue point for ν with
respect to Ln, i.e.

(5.17)
dν

dx
(x0) = lim

r→0

ν(Qr(x0))

Ln(Qr(x0))
= lim

r→0

ν(Qr(x0))

rn
,

where Qr(x0) is the open cube centered at x0 and of side r. Moreover,
suppose that

(5.18) lim
r→0

1

rn

∫

Qr(x0)
|Qf1(x,Du)−Qf1(x0,Du(x0))|dx = 0,

(cf. Remark 3.2). By Alexandroff theorem, if r is such that ν(∂Qr(x0)) = 0,
we have

(5.19) ν(Qr(x0)) = lim
δ→(0,+∞)

νδ(Qr(x0)).

Since ν(O) < +∞, for all r ∈]0, r0[\R, where R is a countable set, we have
ν(∂Qr(x0)) = 0. So, we choose r in ]0, r0[\R, and in addition, we assume
that r is such that r < dist(x0, S) (thus, for a very small ε, Qr(x0)∩Bε = ∅).
Hence, using (5.17) and (5.19) we get

dν

dx
(x0) = lim

r→0
lim

δ→(0,+∞)

νδ(Qr(x0))

rn

= lim
r→0

lim
δ→(0,+∞)

1

rn

∫

Qr(x0)\Bε

f1 (x, Duδ) dx.(5.20)

Step 3: Local estimates. At this step, we prove that

(5.21)
dν

dx
(x0) ≥ Qf1(x0 , Du(x0)).

By (5.20), the fact that Qr(x0) \ Bε = Qr(x0) for ε small enough and that
Qf1(x, ξ) ≤ f1(x, ξ), we have

dν

dx
(x0) = lim

r→0
lim

δ→(0,+∞)

1

rn

∫

Qr(x0)\Bε

f1 (x, Duδ(x)) dx

≥ lim inf
r→0

lim inf
δ→(0,∞)

1

rn

∫

Qr(x0)
Qf1(x,Duδ(x))dx.(5.22)
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By Proposition 3.2, the function u 7→
∫
Qr(x0)

Qf1(x,Du(x))dx is weakly

lower semicontinuous in W 1,p(Qr(x0)). So, making use of (5.18) the limit in
the last line of (5.22) is superior or equal to

(5.23) lim inf
r→0

1

rn

∫

Qr(x0)
Qf1(x,Du)dx = Qf1(x0,Du(x0)).

Hence, (5.21) is given in view of (5.22) and (5.23).
Step 4: Global estimates. (5.16) together with (5.21) allow to get

ν(O) ≥

∫

O

dν

dx
(x)dx ≥

∫

O
Qf1(x,Du(x))dx.

Since by (5.15) νδ ⇀ ν, we have

lim inf
δ

F 1
δ (uδ) = lim inf

δ
νδ(O) ≥ ν(O) ≥

∫

O
Qf1(x,Du)dx,

which end the proof of assertion (1).
(2). The proof of this assertion will be accomplished after 5 steps. For every
δ, let us define the positive measure

λδ(A) := µ

∫

A×]−ε,ε[
f2

(
x̃

ε
, Duδ

)
dx, ∀A ∈ B(Rn−1).

Step 1: The limit measure. Since supδ |λδ|(S) ≤ C, by the weak*
compactness of measures, there exists a subsequence of (λδ) (with the same
notation), and a positive measure λ on S such that

λδ ⇀ λ in M(S),

where M(S) is the space of Radon Measures in S. According to the Radon-
Nikodym decomposition of the limit measure λ with respect to the (n-1)-
dimensional Lebesgue measure Ln−1, we have

(5.24) λ =
dλ

dx̃
Ln−1 + λs,

where λs ⊥ Ln−1.
Step 2: Local analysis. Let x̃0 ∈ S be a Lebesgue point for λ with respect
to Ln−1, i.e.

dλ

dx̃
(x̃0) = lim

r→0

λ(Qr(x̃0))

Ln−1(Qr(x̃0))
= lim

r→0

λ(Qr(x̃0))

rn−1
,

where Qr(x̃0) is the open cube centered at x̃0 and of side r. Since u|S ∈

W 1,p(S;RN×n), up to a set of zero Lebesgue measure, we can assume also
that x̃0 satisfies the following condition:

(5.25) lim
r→0

1

rp+n−1

∫

Qr(x̃0)
|u|S(x̃)− u|S(x̃0)− 〈Dx̃u|S(x̃0), x̃− x̃0〉|

p = 0
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(see e.g. [33][Theorem 3.4.2]). By Alexandroff theorem and since λ(S) <

+∞, as before we choose r ∈]0, r0[\R where R is a countable set. Thus

dλ

dx̃
(x̃0) = lim

r→0
lim

δ→(0,+∞)

λδ(Qr(x̃0))

rn−1

= lim
r→0

lim
δ→(0,+∞)

µ

rn−1

∫

Qr(x̃0)×]−ε,ε[
f2

(
x̃

ε
, Duδ

)
dx.(5.26)

Step 3: Cut-off and slicing method of De Giorgi. We use an argument
of De Giorgi [24] (see also Dal Maso and Modica [23]) in which we subdivide
Qr(x̃0) in the following way:
Let m ∈ N

∗, 0 < ς < 1 and

(5.27) Q0 := Qςr(x̃0); Qi := Q
ςr+i

r(1−ς)
m

(x̃0) for i = 1, 2, ...,m.

so that

Q0 = Qςr(x̃0) ⊂ Q1 ⊂ .. ⊂ Qi ⊂ Qi+1 ⊂ .. ⊂ Qm = Qr(x̃0).

Before introducing the cut-off functions, let us recall firstly their definition.

Definition 5.1. Let Ω an open subset of Rd and A, A′ two open subsets of
Ω such that A ⊂⊂ A′ (i.e., Ā is compact and included into A′). We say that
a function ϕ : Rd → R is a cut-off function between A and A′ if ϕ ∈ D(A′),
0 ≤ ϕ ≤ 1 in R

d, ϕ = 1 in a neighborhood of Ā.

Now, let us consider for every i = 1, 2, ...,m a cut-off function Φi(x̃) ∈
C∞
0 (Qr(x̃0)) so that 0 ≤ Φi ≤ 1, and

(5.28)





Φi = 1 in Qi−1

Φi = 0 outside of Qi

|DΦi|L∞(Qi) ≤ C m
r(1−ς) .

Let uδ,i ∈ W 1,p(Qr(x̃0)×]− ε, ε[;RN ) be the function defined as follows

uδ,i(x) := u0(x̃) + Φi(x̃)(uδ(x)− u0(x̃)),

where u0(x̃) := u|S(x̃0)+ < Dx̃u|S(x̃0), x̃− x̃0 >. Let us now fixe the integer
i ∈ {1, 2, ...,m}. By the growth condition in (2.4)

inf

{
µ

rn−1

∫

Qr(x̃0)×]−ε,ε[
f2(

x̃

ε
, (Dx̃u|S(x̃0))T +Dw(x))dx(5.29)

: w ∈ W
1,p
0 (Qr(x̃0)×]− ε, ε[;RN )

}

≤
µ

rn−1

∫

Qr(x̃0)×]−ε,ε[
f2(

x̃

ε
,Duδ,i(x))dx
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=
µ

rn−1

∫

Qi−1×]−ε,ε[
f2(

x̃

ε
,Duδ)dx+

µ

rn−1

∫

(Qi\Qi−1)×]−ε,ε[
f2(

x̃

ε
,Duδ,i)

+
µ

rn−1

∫

(Qr(x̃0)\Qi)×]−ε,ε[
f2(

x̃

ε
, (Dx̃u|S(x̃0))T )dx

≤
µ

rn−1

∫

Qr(x̃0)×]−ε,ε[
f2(

x̃

ε
,Duδ(x))dx

+
µ

rn−1

∫

(Qi\Qi−1)×]−ε,ε[
f2(

x̃

ε
,Duδ,i(x))dx+

CLn−1(Qr(x̃0) \Q0)(εµ)

rn−1

=
µ

rn−1

∫

Qr(x̃0)×]−ε,ε[
f2(

x̃

ε
,Duδ(x))dx +

µ

rn−1

∫

(Qi\Qi−1)×]−ε,ε[
f2(

x̃

ε
,Duδ,i(x))dx+ C(1− ς)n−1(εµ),

Let us estimate the first term of the last line of (5.29). The growth condition
in (2.4), (5.28), the well known inequality (a + b + c)p ≤ 3p−1(ap + bp +
cp) for any positive numbers a,b,c and the fact that Ln−1(Qi \ Qi−1) ≤
Ln−1(Qr(x̃0) \Q0) yield

µ

rn−1

∫

(Qi\Qi−1)×]−ε,ε[
f2(

x̃

ε
,Duδ,i(x))dx(5.30)

=
µ

rn−1

∫

(Qi\Qi−1)×]−ε,ε[
f2(

x̃

ε
, (Dx̃u|S(x̃0))T +DΦi ⊗ (uδ − u0) +

+ΦiD(uδ − u0))dx

≤ Cu(1− ς)n−1(εµ) +
Cµ

rn−1

∫

(Qi\Qi−1)×]−ε,ε[
|D(uδ − u0)|

pdx

+
Cmpµ

(1− ς)prn+p−1

∫

(Qi\Qi−1)×]−ε,ε[
|uδ − u0|

pdx.

We take the sum over i = 1, 2, ...,m and we divide by m in the two sides
of (5.29), we use (5.1), (5.30), the fact that (a + b)p ≤ 2p−1(ap + bp) and
m⋃

i=1

(Qi \Qi−1) = Qr(x̃0) \Q0 to get

inf

{
µ

rn−1

∫

Qr(x̃0)×]−ε,ε[
f2(

x̃

ε
, (Dx̃u|S(x̃0))T +Dw(x))dx :(5.31)

w ∈ W
1,p
0 (Qr(x̃0)×]− ε, ε[;RN )}

≤
µ

rn−1

∫

Qr(x̃0)×]−ε,ε[
f2(

x̃

ε
,Duδ(x))dx + C(1− ς)n−1(εµ)
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+
Cµ

mrn−1

∫

(Qr(x̃0)\Q0)×]−ε,ε[
|D(uδ − u0)|

pdx+

Cmp−1µ

(1− ς)prn+p−1

∫

Qr(x̃0)×]−ε,ε[
|uδ(x)− u(x0)− < Dx̃u(x0), x̃− x̃0 > |pdx.

Let us estimate the third term in the right-hand side of inequality (5.31).
Since x̃0 is a Lebesgue point for λ with respect to Ln−1 and by (5.26) and
the growth condition in (2.4), we have

lim sup
r→0

lim sup
δ→(0,+∞)

Cµ

mrn−1

∫

(Qr(x̃0)\Q0)×]−ε,ε[
|D(uδ − u0)|

pdx(5.32)

≤ lim sup
r→0

lim sup
δ→(0,+∞)

Cµ

mrn−1

∫

(Qr(x̃0)\Q0)×]−ε,ε[
|Duδ|

p + |Du0|
pdx

≤ lim sup
r→0

lim sup
δ→(0,+∞)

{
Cµ

mrn−1

∫

Qr(x̃0)×]−ε,ε[
f2(

x

ε
,Duδ(x))dx+

+
Cu(1− ς)n−1εµ

m

}

=
C

m

dλ

dx̃
(x̃0) +

Cu(1− ς)n−1η

m
= O(m),

where limm→+∞O(m) = 0. In what concerns the last term in the right-hand
side of (5.31), at first we claim that

(5.33) lim
δ→(0,+∞)

µ

∫

Bε

|uδ(x)− u|S(x̃)|
pdx = 0.

Indeed, recalling the scaled function

Uδ(x̃, xn) := uδ(x̃, εxn),

by (5.9) and (5.11), we have

(5.34) lim
δ→(0,+∞)

(εµ)

∫

Bε

|Uδ(x)− u|S(x̃)|
pdx = 0.

With the change of scale y = (ỹ, yn) = (x̃, xn

ε
) in the above equation, (5.33)

then follows. Hence, thanks to (5.33) and (5.25), we get

lim sup
r→0

lim sup
δ→(0,+∞)

µ

rn+p−1

∫

Qr(x̃0)×]−ε,ε[
|uδ(x)− u|S(x̃)−(5.35)

< Dx̃u|S(x̃), x̃− x̃0 > |pdx

≤ C lim sup
r→0

lim sup
δ→(0,+∞)

{
µ

rn+p−1

∫

Qr(x̃0)×]−ε,ε[
|uδ(x)− u|S(x̃)|

pdx
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+
C(εµ)

rn+p−1

∫

Qr(x̃0)
|u|S(x̃)− u|S(x̃0)− < Dx̃u|S(x̃0), x̃− x̃0 > |pdx

}

= 0.

Therefore, if we tend successively δ → (0,∞), r → 0, m → +∞ and ς → 1
in (5.31) and we take into account (5.32) and (5.35), we obtain

lim sup
r→0

lim sup
δ→(0,∞)

inf

{
µ

rn−1

∫

Qr(x̃0)×]−ε,ε[

f2(
x̃

ε
, (Dx̃u|S(x̃0))T +Dw)dx(5.36)

: w ∈ W
1,p
0 (Qr(x̃0)×]− ε, ε[)

}

≤ lim sup
r→0

lim sup
δ→(0,∞)

µ

rn−1

∫

Qr(x̃0)×]−ε,ε[

f2(
x̃

ε
,Duδ(x))dx.

Coming back to (5.26) and making us of (5.36) give us

dλ

dx̃
(x̃0) ≥ lim sup

r→0
lim sup
δ→(0,∞)

inf

{
µ

rn−1

∫

Qr(x̃0)×]−ε,ε[

f2(
x̃

ε
,(5.37)

(Dx̃u|S(x̃0))T +Dw(x))dx : w ∈ W
1,p
0 (Qr(x̃0)×]− ε, ε[)

}
.

Now, giving a function w ∈ W
1,p
0 (Qr(x̃0)×]− ε, ε[) and if we set

w′(y) =
1

ε
w(εy),

then it is immediate that w ∈ W
1,p
0 (Q r

ε
( x̃0
ε
)×]−1, 1[) andDw′(y) = Dw(εy).

So, by the change of scale y = x
ε
in inequality (5.37), it follows that his right

member is superior or equal to

lim sup
r→0

lim sup
δ→(0,∞)

inf

{
εµ

( r
ε
)n−1

∫

Q r

ε

(
x̃0

ε
)×]−1,1[

f2(ỹ, (Dx̃u|S(x̃0))T +Dw(y))dy :

w ∈ W
1,p
0 (Q r

ε

(
x̃0

ε
)×]− 1, 1[)

}
.(5.38)

Consequently, applying a diagonalization argument to (5.38) (see e.g. [7],
page: 32) and taking into account (5.37) gives as result of this step that

dλ

dx̃
(x̃0) ≥ lim sup

δ→(0,∞)
inf





εµ

( rδ
ε
)n−1

∫

Q rδ
ε
(
x̃0
ε
)×]−1,1[

f2(ỹ,(5.39)

(Dx̃u|S(x̃0))T +Dw(y))dy : w ∈ W
1,p
0 (Q rδ

ε
(
x̃0

ε
)×]− 1, 1[)

}
.
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Step 4: Local estimates. By assuming that limδ
rδ
ε
= +∞ and in view of

Lemma 4.1, we have then

ηf2
hom(Dx̃(u|S)(x̃0)) = lim sup

δ→(0,∞)
inf





εµ

( rδ
ε
)n−1

∫

Q rδ
ε
(
x̃0
ε
)×]−1,1[

f2(ỹ,

(Dx̃u|S(x̃0))T +Dw(y))dy : w ∈ W
1,p
0 (Q rδ

ε
(
x̃0

ε
)×]− 1, 1[)

}
,

and so, according to (5.39) we deduce that

(5.40)
dλ

dx̃
(x̃0) ≥ ηf2

hom(Dx̃(u|S)(x̃0)).

Step 5: Global estimates. (5.24) together with (5.40) allow to get

λ(S) ≥

∫

S

dλ

dx̃
(x̃)dx̃ ≥ η

∫

S

f2
hom(Dx̃(u|S)(x̃))dx̃,

which gives assertion (2) and end the proof of this lemma. �

5.3. Proof of the Γ-limit sup. To close the proof of theorem 2.1, it re-
mains to check the Γ-limit sup. In other terms we have to show that for
every u ∈ Lp(O;RN ) there exist a sequence (uδ)δ ⊂ Lp(O;RN ) such that

(5.41) lim sup
δ→(0,∞)

Fδ(uδ) ≤ F (u).

Let us begin with the most simple case.

5.3.1. Case η = 0. Let u ∈ Lp(O;RN ). If u 6∈ D1, the result is obvious (we
take for instance uδ = u). Otherwise, let us remark that under the growth

condition in (2.4), for each u ∈ D1 we have µ
∫
Bε

f2(x,Du)
δ
→ 0. So, by

taking uδ = u for every δ > 0, we get

lim sup
δ→(0,∞)

Fδ(uδ) ≤

∫

O
f1(x,Du)dx,

and then, it is sufficient to take the lower semicontinuous envelope with
respect to the weak topology in W 1,p(O;RN ) as for (5.59)-(5.61).

5.3.2. Case 0 < η < +∞. Consider a function u ∈ Lp(O;RN ). If u 6∈ D2,
the result is obvious (we take for instance uδ = u). Otherwise, we lead the
proof in two steps:
Step 1. We begin by proving (5.41) whenever u ∈ C1(O). To this purpose,
we follow in one hand Licht and Michaille in [28]: by a Riemann approach,
we subdivide S into a finite family of subsets, we thus get result under a
small error which disappears when we integrate in the whole S. In other
hand, as in Acerbi and al [2], we construct a test function equal to u far
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from S. Consider a parameter m > 0, and I(m) a finite subset of N. Let
(Ri)i∈I(m) be the family of open bounded disconnected cubes of Rn−1 with

side
1

m
so that Ln−1(RN−1 \ ∪i∈I(m)Ri) = 0. Let us take Si := Ri ∩ S,

x̃i ∈ Si (x̃i may be taken to be the center of the cube Si). Let Φε,i be an
ε-minimizer of

Υ 1
ε
Si
(Dx̃u(xi))

Ln−1(1
ε
Si)

=
1

Ln−1(1
ε
Si)

inf

{∫

1
ε
Si×]−1,1[

f2(ỹ,DTu(xi) +DΦ(y))dy :

Φ ∈ W
1,p
0 (

1

ε
Si×]− 1, 1[)

}
,

i.e.,
∫

1
ε
Si×]−1,1[

f2(ỹ, (Dx̃u|S(x̃i))T +DΦε,i(y))dy ≤ Υ 1
ε
Si
(Dx̃u|S(x̃i)) +(5.42)

+h(ε)Ln−1(
1

ε
Si),

with h(ε) → 0 whenever ε → 0, and we extend Φε,i by 0 in the whole R
n.

Define the following function

Φε,m(x) :=
∑

i∈I(m)

εΦε,i(
x

ε
),

so that Φε,m ∈ W 1,p(Rn;RN ) and vanishes outside of Bε. Next, we consider
as a test-function

(5.43) uδ,m(x) := [u|S(x̃) + Φε,m(x)]θε(x) + u(x)[1 − θε(x)],

where for a given x ∈ R
n,

(5.44) θε(x) := θ(
xN

ε
),

and θ being a smooth function which fulfils

θ(t) = 1 if |t| ≤ 1, θ(t) = 0 if |t| ≥ 2, |θ′(t)| ≤ 2.

Firstly, let us prove that

(5.45)

∫

O
|uδ,m − u|p dx → 0.

Since uδ,m = u in O \B2ε, we have
∫

O
|uδ,m − u|p dx =

∫

O\B2ε

|uδ,m − u|p dx+(5.46)

∫

B2ε\Bε

|uδ,m − u|p dx+

∫

Bε

|uδ,m − u|p dx
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=

∫

B2ε\Bε

|uδ,m − u|p dx+

∫

Bε

|uδ,m − u|p dx.

In one hand, the fact that Φε,m vanishes outside of Bε, that |θε| ≤ 1 and the
regularity of the function u provide together that

∫

B2ε\Bε

|uδ,m − u|p dx =

∫

B2ε\Bε

|[u(x̃)− u(x)].θε(x)|
p dx(5.47)

≤

∫

B2ε\Bε

|u(x̃)− u(x)|p dx

≤ CLn(B2ε \Bε)
δ

−→ 0.

In other hand, θε = 1 on Bε. Thus
∫

Bε

|uδ,m − u|p dx =

∫

Bε

|u(x̃) + Φε,m(x)− u(x)|p dx

≤ C

{∫

Bε

|u(x̃)− u(x)|p dx+

∫

Bε

|Φε,m|p dx

}
.(5.48)

By a change of scale and use of Poincaré inequality, it is immediate that
∫

Bε

|Φε,m(x)|p dx =
∑

i∈I(m)

∫

Si×]−ε,ε[
|Φε,m(x)|

p dx(5.49)

= εp
∑

i∈I(m)

∫

Si×]−ε,ε[
|Φε,i(

x

ε
)|p dx

= εp+n
∑

i∈I(m)

∫

1
ε
Si×]−1,1[

|Φε,i(y)|
p dy

≤ εp+n
∑

i∈I(m)

∫

1
ε
Si×]−1,1[

|DΦε,i(y)|
p dy.

By the growth condition (2.4) and (5.42), we see that
∫

1
ε
Si×]−1,1[

|DΦε,i(y)|
p dy

=

∫

1
ε
Si×]−1,1[

|(Dx̃u|S(x̃i))T +DΦε,i(y)− (Dx̃u|S(x̃i))T |
p dy

≤ C

∫

1
ε
Si×]−1,1[

|(Dx̃u|S(x̃i))T +DΦε,i(y)|
p dy +CLn−1(

1

ε
Si)

≤ C

∫

1
ε
Si×]−1,1[

f2(y, (Dx̃u|S(x̃i))T +DΦε,i(y)) dy + CLn−1(
1

ε
Si)
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≤ CΥ 1
ε
Si
(Dx̃u|S(x̃i)) + CLn−1(

1

ε
Si)(1 + h(ε))

≤ C

∫

1
ε
Si×]−1,1[

f2(y, (Dx̃u|S(x̃i))T ) dy + CLn−1(
1

ε
Si)(1 + h(ε))

≤ C

∫

1
ε
Si×]−1,1[

(
1 + |(Dx̃u|S(x̃i))T |

p
)
dy + CLn−1(

1

ε
Si)(1 + h(ε)),

and so

(5.50)

∫

1
ε
Si×]−1,1[

|DΦε,i(y)|
p dy ≤

CLn−1(Si)(1 + h(ε))

εn−1
.

(5.50) together with (5.49) provide that
∫

Bε

|Φε,m(x)|p dx
δ

−→ 0.(5.51)

Hence, coming back to (5.48) and taking into account this last result, we
find

∫

Bε

|uδ,m − u|pdx → 0,(5.52)

consequently, (5.45) is easily deduced from (5.46), (5.47) and (5.52). Fur-
thermore, we may write

Fδ(uδ,m) =

∫

O\B2ε

f1(x,Du(x)dx +

∫

B2ε\Bε

f1(x,Duδ,m)dx+

µ

∫

Bε

f2(
x̃

ε
,Du|S(x̃) +DΦε,m(x))dx.(5.53)

Let us now focus on the second term of the right-hand side of (5.53). By
condition (2.4) and since Φε,m vanishes outside of Bε, we have

∫

B2ε\Bε

f1(x,Duδ,m)dx ≤ β1

∫

B2ε\Bε

1 + |Duδ,m|pdx

= β1

∫

B2ε\Bε

1 + |Du|S(x̃)θε(x) +Du(x)(1 − θε(x))+

+ (u|S(x̃)− u(x))Dθε(x)|
pdx

≤ β12
p−1

{∫

B2ε

1 + |Du|S(x̃)|
p + |Du(x)|pdx+

+
C

εp

∫

B2ε

|u|S(x̃)− u(x)|pdx

}
.(5.54)
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By means of Hölder inequality, it is not difficult to show that

1

εp

∫

B2ε

|u(x̃)− u(x)|pdx =
1

εp

∫

B2ε

∣∣∣∣
∫ xn

0

∂u

∂t
dt

∣∣∣∣
p

dx(5.55)

≤ C

∫

B2ε

|Du(x)|pdx.

Hence, giving the regularity of u and as a direct consequence of (5.54) and
(5.55), it follows that

(5.56)

∫

B2ε\Bε

f1(x,Duδ,m)dx
δ
→ 0.

Moreover, we claim that

lim
δ→(0,∞)

µ

∫

Bε

f2(
x̃

ε
,Du|S(x̃) +DΦε,m(x))dx(5.57)

≤
∑

i∈I(m)

Ln−1(Si) ηf2
hom(Dx̃u|S(x̃i)) +O(m),

where limm→∞O(m) = 0. Indeed, Lemma 4.1 applied to f2
hom and a change

of scale lead to

ηLn−1(Si)f2
hom(Dx̃u(xi))(5.58)

= lim
δ→(0,∞)

εnµ

∫

1
ε
Si×]−1,1[

f2(ỹ, (Dx̃u|S(x̃i))T +DΦε,i(y))dy

= lim
δ→(0,∞)

µ

∫

Si×]−ε,ε[
f2(

x̃

ε
, (Dx̃u|S(x̃i))T +DΦε,i(

x

ε
))dx

≥ lim
δ→(0,∞)

µ

∫

Si×]−ε,ε[
f2(

x̃

ε
, (Dx̃u|S(x̃))T +DΦε,i(

x

ε
))dx−O(m)

≥ lim
δ→(0,∞)

µ

∫

Si×]−ε,ε[
f2(

x̃

ε
,Du|S(x̃) +DΦε,i(

x

ε
))dx−O(m).

The two last inequalities in (5.58) are deduced from the Lipschitz condition
in (2.4) satisfied by f2 and the following estimate

µ

∫

Si×]−ε,ε[
|DΦε,i(

x

ε
)|pdx ≤ C(ε µ)Ln−1(Si)(1 + h(ε)),

which is derived from (5.50) by means of a change of scale. Hence, (5.57)
follows by Summing over I(m) in (5.58). Thus, applying (5.56) and (5.57)
in (5.53), it follows that

lim sup
m→+∞

lim sup
δ

Fδ(uδ,m) ≤

∫

O
f1(x,Du)dx+ η

∫

S

f2
hom(Dx̃(u|S)(x̃))dx̃.
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According to a diagonalization argument, there exist a map δ 7→ m(δ) so
that the sequence (uδ)δ defined by uδ := uδ,m(δ) converges strongly to u in

Lp(O;RN) and

lim
δ→(0,∞)

Fδ(uδ) ≤ lim sup
m→+∞

lim sup
δ→(0,∞)

Fδ(uδ,m)(5.59)

≤

∫

O
f1(x,Du)dx+ η

∫

S

f2
hom(Dx̃(u|S))dx̃.

Hence

G(u) = inf{lim supδ Fδ(vδ) : vδ → u in Lp(O;RN)}(5.60)

≤
∫
O f1(x,Du)dx + η

∫
S
f2

hom(Dx̃(u|S))dx̃.

For a given topology τ , let us denote by Lτ his lower semicontinuous en-
velope, and denote by τ2 the weak topology of (D2, ‖.‖2) (see Lemma 2.1).
Then we take the lower semicontinuous envelope with respect to τ2 in the
above inequality. Accordingly

(5.61) Lτ2G(u) ≤

∫

O
Qf1(x,Du)dx+ η

∫

S

f2
hom(Dx̃(u|S))dx̃.

Here,we use the integral representation of quasiconvex envelopes for the
first integral term in the right hand side of the above inequality (see for

instance [3, 21]) and the quasiconvexity of f2
hom by Proposition 4.2 for the

second term. Since G is the Γ-limsup of Fδ (Theorem 3.1), it will be lower
semicontinuous in Lp(O;RN ) (Proposition 3.1). Hence

G(u) = LLp(O;RN )G(u) ≤ Lweak−W 1,p(O;RN )G(u) ≤ Lτ2G(u).

We conclude noticing that the infimum in the definition of G is attained.
Step 2. We take now any u ∈ D2. By density as in Lemma 2.1, there exist
a sequence (uk)k ∈ C1(O) such that ‖u − uk‖D2 → 0 . By the first step,
there exist a sequence (uk,δ)δ such that

(5.62)

{
uk,δ → uk in Lp(O;RN )
lim supδ→(0,∞) Fδ(uk,δ) ≤ F (uk).

On the other hand, since Qf1 is quasiconvex and satisfies the growth con-
dition

0 ≤ Qf1(x, ξ) ≤ f1(x, ξ) ≤ β1(1 + |ξ|p),

it also satisfies the p-Lipschitz property (3.2) with constant independent of
x (see proof of Lemma 2.2 [21], page:156). If combined with Proposition
4.1, we deduce that F is continuous on D2 with respect to the norm defined
in (2.12). Thus, taking the limit k → +∞ in (5.62), we get

lim sup
k→+∞

lim sup
δ→(0,∞)

Fδ(uk,δ) ≤ F (u).
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Using a diagonalization argument, there exists a map δ 7→ k(δ) such that
the sequence (uδ)δ defined by uδ := uk(δ),δ satisfies

{
uδ → u in Lp(O;RN )
lim supδ Fδ(uδ) ≤ F (u),

which end the proof of this case.

5.3.3. Case η = +∞. As a particular case of the preceding one, it is suf-
ficient to make a few remarks, otherwise the reminding follows the same
lines. Firstly, given a regular function u ∈ D3, uδ,m, the function defined as
in (5.43) is reduced to

uδ,m = u(x)(1− θε(x)),

because u|S = Φδ,m = 0. However, the fact that f2 is p−homogeneous
provides f2(x̃, 0) = 0, and so the third term in the right of (5.53) is simplified
to zero. The proof is accomplished by a density argument.
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