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Abstract 

Alumina/carbon-black composite ceramics with different percolation thresholds were 

fabricated by changing the size ratio of constituent particles.  The dependence of 

resistivity on pressure was established for each sample.  The compositional 

dependence of resistivity can be explained by percolation theory.  The percolation 

threshold decreases with increasing alumina/carbon-black particle size ratio.  The 

pressure dependence of the resistivity increases as the composition approaches the 

percolation threshold.  When the relative composition at the percolation threshold is 

fixed, the sensitivity increases with increasing matrix/dispersoid initial particle size 

ratio. 
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1. Introduction 

When the volume fraction of electrically conductive particles increases in an 

insulating matrix, the material changes from being an insulator to being a conductor [1, 

2, 3].  This phenomenon is known as the percolation transition.  The composition 

(volume fraction of particles) at the percolation transition is called the percolation 

threshold.  Near the percolation threshold, the electrical conductivity changes 

exponentially [2, 3].  In addition to the basic research reported here, an application to 

sensing devices for environmental changes has also been considered: changes in 

temperature and applied load effect changes in composition [4-14]. 

One of the authors has developed a pressure and temperature sensor based on 

polymer matrix/conductive inorganic filler composites [4, 5, 6].  We have also 

evaluated a pressure sensor utilizing dielectric ceramic matrix/carbon particle 

composites [7, 8].  The former is based on two-dimensional, and the latter is based on 

three-dimensional percolation transitions. 

Pressure sensors for use at high temperatures should be constituted of only inorganic 

components having good heat and corrosion resistance.  In general, inorganic 

insulators have large elastic moduli or experience small volume changes on the 

application of loads.  As a result, any compositional change of insulator 



matrix/conductor dispersoids composite is small and leads to only a small change in 

resistivity per unit load (piezoresistivity effect). 

We have previously reported a sensitivity enhancement in graphite dispersed 

composites based on alumina or magnesia matrix by setting the composition at the 

percolation threshold.  These results provided the basis for making a pressure sensor 

based on the percolation transition phenomenon [7, 8]. 

The percolation threshold is known to depend on the particle size ratio [15] and 

morphology of the electrical conductive dispersoids [16, 17].  The effects of these on 

the sensitivity of a pressure sensor, however, have not been systematically investigated.  

In the present study, composite ceramics having different percolation thresholds were 

fabricated by changing the size ratio of the insulator matrix/conductor dispersoid 

particles.  The pressure dependence of resistivity was measured for each sample.  To 

evaluate the compositional dependency of the sensitivity, the respective compositions 

were normalized by the percolation threshold for each constituent particle size ratio.  

Based on these investigations, the most favorable particle size ratio in the pressure 

sensor based on the percolation transition is discussed from a technological point of 

view. 

 



2. Experimental procedure 

Composite ceramics were fabricated that were composed of electrically 

conductive/insulator phases having different initial powder particle size ratios.  

Electrical resistivity was measured on these various composites under applied loads. 

Two kinds of carbon black and three kinds of alumina were used to make six sets of 

powder mixtures with different D/d ratios, where d and D are the average particle sizes 

of carbon black and alumina, respectively.  Fine carbon-black particles having sizes of 

24 nm and 55 nm (MC100:MC220, Mitsubishi Chemical, Tokyo, Japan) were dispersed 

into the alumina base powder having an average diameter of 300 nm, 500 nm 

(AKP-30:AKP-20, Sumitomo Chemical, Tokyo, Japan), or 1000 nm (Guaranteed grade, 

Koujundo Chemical, Tokyo, Japan).  The resultant D/d values for the six sets of 

powder mixtures were 5.5, 9.5, 12.5, 18.2, 20.8, and 41.7.  The volume fraction of 

carbon black was varied in each group of powder mixtures. 

Both carbon-black and alumina powders were weighed to make the desired weight 

ratios in each group.  The powders were ball milled with ethanol for one hour by a 

planetary ball mill (P-6, Fritsch, Germany) in a polyethylene bottle and then dried.  

The resultant powder mixtures were uniaxially pressed at 20 MPa in a steel die having a 

diameter of 14 mm, followed by cold isostatic pressing (100 MPa) and transfer to a 



graphite die for hot pressing.  The hot pressing was conducted under argon atmosphere 

with a uniaxial pressure of 28 MPa at 1500ºC for 1 h.  Densities were measured by the 

Archimedes method using water as a medium.  Microstructures were observed by 

SEM on fracture surfaces. 

The obtained sintered bodies had relative densities of 90–95% of the theoretical 

value calculated from the composition and constituent densities.  The carbon-black 

volume fraction (x) was calculated from the measured density (Pm) and weight fraction 

of carbon black (wCB) per our previous studies [7,8]. 

Rectangular specimens with dimension of 6 x 5 x 3 mm3 were cut from the pellets 

for resistivity measurement with and without applied loads.  Platinum electrodes were 

sputtered onto each 5 x 3-mm2 face, and the resistance between the two faces was 

measured.  Uniaxial compressive load was applied on a sample sandwiched between 

yttria-stabilized zirconia insulating plates using an autograph (EZ-graph, Shimazu, 

Kyoto, Japan).  As the load was applied between the 6 x 5-mm2 faces, the direction of 

the applied stress was perpendicular to the electrical current. 

 

3. Results and discussion 

Figure 1 illustrates the resistivities of alumina/carbon-black composite ceramics with 



various ratios of matrix/dispersoid particle size as a function of the carbon-black volume 

fraction, x.  In all samples, the resistivity decreased rapidly with increasing x.  Such 

behavior can be explained by percolation theory.  Based on this theory, there is a 

critical concentration or percolation threshold (xc) at which a conductive path is formed, 

causing the composite insulator to conduct.  When x approaches xc, the resistivity ρ 

can be written as, 

  (x > xc),     (1) 

where ρ0 is a prefactor, and t is the critical exponent for the resistivity. 

Through a nonlinear fit of Eq. (1), both xc and t were obtained for the six sets of 

composites having different D/d and xc.  The results are plotted in Fig. 2(a) together 

with t.  The data are classified into two groups as represented by the two straight lines 

in the figure.  In both groups, xc decreases with increasing D/d value.  The values of t 

were almost constant, ranging from 1.7 to 1.9 irrespective of the D/d value. 

Such D/d dependence of xc has already been reported by Kusy [15] and explained 

theoretically.  In the present study D/d values all exceed 5, resulting in smaller xc 

values than theoretical (xc = 0.18) values for composites having equal D and d sizes 

(D/d = 1).  Differences between this research and the work of Kusy [15] could derive 

from the starting powder, i.e., the composites made from larger alumina particles should 



have higher percolation thresholds.  A possible reason is the difference in particle 

parameters; that is, in the present study we used the size ratio of the starting powder, 

whereas Kusy used that of the final product [15].  The size ratio in the final product 

might differ from that for the starting mixture due to the mixing process and sintering 

process. 

The particle size ratios of the final products were obtained from observations of the 

microstructures.  The percolation thresholds are re-plotted against D/d (final) in Fig. 

2(b).  Hereafter, the particle size ratios of the final products D/d (final) is distinguished 

from the previously used one D/d (initial).  Since no compositional dependence can be 

seen in D/d (final), it is determined to be a unique value for a set of alumina/carbon 

black combination.  Unlike Fig. 2(a), where the data are plotted against D/d(initial), 

plots against D/d (final) form a single curve irrespective of the kinds of starting powder.  

In the present case, the percolation thresholds decreased monotonically with D/d (final) 

which accords with that reported by Kusy [15].  He explained such dependency in 

connection with the surface fraction of larger particle. 

  Figure 3 shows the typical pressure dependence of the resistance for the sample after 

several loading and unloading cycles.  For all samples, the resistance decreased 

linearly with increasing applied pressure.  As shown in Fig. 3, there was excellent 



reproducibility of the data between loading and unloading.  The solid line is the linear 

fit to the data.  The normalized pressure coefficients of the resistance, d(ln R)/dP, or 

sensitivity, were obtained from the slope of the linear fits.  The resulting d(ln R)/dP 

values are all negative, - d(ln R)/dP are plotted in Fig. 4(a) as a function of D/d (initial) 

for x = 1.15 xc, 1.5 xc, and 2.0 xc. 

In any samples having different particle size ratios, - d(ln R)/dP are in the order 1.15 

xc > 1.5 xc > 2.0 xc.  For a given xc value, on the other hand, - d(ln R)/dP tends to 

increase with increasing D/d (initial) value.  In other words, the smaller the xc is, the 

larger the - d(ln R)/dP value becomes. 

The particle size ratio dependence of the percolation threshold is closely related to 

D/d (final) rather than D/d (initial).  Then, D/d (final) is taken as the abscissa and 

re-plotted in Fig. 4(b).  Contrary to the percolation threshold, the sensitivity greatly 

depends on D/d (initial) rather than on D/d (final). 

For uniaxial pressure applied perpendicularly to the direction of the current, the 

pressure coefficient of the resistance is expressed as [8] 

 ,   (3) 

where E is Young’s modulus, and γ is Poisson’s ratio. 

The first and last terms in Eq. (3) have no x dependence, and the observed increase in 



|d(ln R)/dP| can be explained by a strong enhancement in the second term as the 

carbon-black content approaches xc [7, 8]. 

When a fixed value relative to xc is substituted for x in Eq. (3), for example x = 1.5 xc, 

the sensitivity d(ln R)/dP becomes independent of xc.  The sensitivity dependence of xc 

on initial D/d cannot be explained by this equation.  Other parameters not included in 

this equation could affect the dependence of sensitivity on particle size ratio.  One such 

factor could be differences in the homogeneity of the dispersions between samples, as 

the sensitivity depends strongly on the initial size ratio and only slightly on the final size 

ratio.  Further studies are needed to explore this concept.  

 

4. Conclusions 

The present study has demonstrated that the sensitivity increases with increased 

matrix/dispersoid initial particle size ratio when the composition relative to the 

percolation threshold is fixed.  Based on our previous work, we conclude that the 

sensitivity would be improved by using insulator/conductor particles having larger size 

ratios and compositions near the percolation thresholds. 

Because sinterability tends to decrease when certain hetero materials are introduced, 

small loadings of electrically conductive materials using larger particle size ratios. 



would be advantageous in fabrication.  On the other hand, electrical resistivity 

becomes too large to measure as the percolation threshold is approached.  The practical 

composition is limited to the measurable range of resistances. 

Acknowledgements 

This work was supported in part by Mitutoyo Association for Science and Technology 

(MAST). 

 

The English in this document has been checked by at least two professional editors, both native 

speakers of English. For a certificate, please see:   

http://www.textcheck.com/certificate/crjxzT 

 

References 

[1]Stauffer DS, Aharony A. Introduction to percolation Theory, 2nd ed. 1994;Taylor 

and Francis, London.  

[2]Webman I, Jortner J, Cohen MH, Phys. Rev. B 1976;14:4737-4740.  

[3]Rajagopal C, Satyam M, J. Appl. Phys. 1978;49:5536-5542.  

[4]Hirano S, Kishimoto A, Miyayama M, Japanese Journal of Applied Physics 

1998;37:1158-1161.  

[5]Hirano S, Kishimoto A, Miyayama M, Journal of the European Ceramic Society 



1999;19:2087-2095.  

[6]Ishida A, Miyayama M, Kishimoto A, Yanagida H, Journal of the Ceramic Society 

of Japan 1995;103:576-581.  

[7]Waku K, Hayashi H, Kishimoto A, Journal of the American Ceramic Society 

2008;91:4168-4170.  

[8]Waku K, Tagaya S, Hayashi H, Kishimoto A, Journal of the Ceramic Society of 

Japan 2009;117:793-796.  

[9]Lundberg B, Sundqvist B, J. Appl. Phys. 1986;60:1074-1079.  

[10]Celzard A, McRae E, Mareche JF, Furdin G, J. Appl. Phys. 1998;83:1410-1419.  

[11]Camona F, Canet R, Delhaes P, J. Appl. Phys. 1987;61:2550-2557.  

[12]Yoshikawa S, Ota T, Newnham R, Amin A, Journal of the American Ceramic 

Society 1990;73:263-267.  

[13]Knite M, Teteris V, Kiploka A, Kaupuzs J, Sens. Actuator A-Phys. 

2004;110:142-149.  

[14]Beruto DT, Capurro M, Marro G, Sens. Actuator A-Phys. 2004;110:142-149.  

[15]Kusy R, J. Appl. Phys. 1977;48:5301-5305.  

[16]Balberg I, Binenbaum N, Phys. Rev. B 1983;28:3799-3812.  

[17]Yang G, Teng R, Xiao P, Polym. Composite 1997;18:477-483.  



 

Figure Captions 

Fig.1 Resistivity of alumina/ carbon black composites with various matrix /dispersoid 

initial particle size ratios ( D/d ) as a function of the carbon black volume fraction 

( x ). 

Fig.2 Percolation threshold ( xc ) and critical exponent for the resistivity ( t ) as a 

function of matirix /dispersoid particle size ratio.  Open symbols are derived 

from the largest alumina powder.   Abscissa:(a)initial size ratio, (b)final size 

ratio. 

Fig.3 Representative pressure dependence of resistance (D/d(initial) =18.2, x = 10.9 

vol%).  Filled triangles and open triangles are for increasing and decreasing 

pressure. 

Fig.4 Pressure Sensitivity as a function of matrix /dispersoid particle size ratio for three 

kinds of composition relative to percolation threshold ( xc ). Triangle: x =1.15xc, 

Square: 1.5 xc and Circle: 1.5 xc.  Open symbols are derived from the largest 

alumina powder.  R2:decision coefficient, Abscissa: (a)initial size ratio, (b)final 

size ratio. 
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