
 1 

2-Diphenylphosphanyl-4-pyridyl(dimethyl)amine as an Effective 

Ligand for the Ruthenium(II) Complex Catalyzed Homogeneous 

Hydration of Nitriles under Neutral Conditions 

 

Makoto Muranaka, Isao Hyodo, Wataru Okumura, Toshiyuki Oshiki* 

 

Division of Chemistry and Biochemistry, 

Graduate School of Natural Science and Technology, 

Okayama University, Okayama 700-8530, Japan 

 

 

*Corresponding author. Tel.:+81-86-286-8035; fax: +81-86-286-8035. 

  E-mail address: oshiki@cc.okayama-u.ac.jp (T. Oshiki) 

 

 

Abstract 

New homogeneous catalyst comprised of [Ru(methallyl)2(cod)] (cod = 

1,5-cyclooctadiene) (1) and 2-diphenylphosphanyl-4-pyridyl(dimethyl)amine (2) is 

shown to efficiently catalyze the hydration of various nitriles under neutral conditions.  

The hydration proceeds in the presence of 0.5 mol% of the ruthenium catalyst at 80 °C 

in 1,2-dimethoxyethane solution and the corresponding amide is obtained within few 

hours without the formation of byproducts.  Comparison of some phosphine ligands 

for the hydration reveals that the dimethylamino moiety of 2 improves the catalytic 

performance dramatically.   
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1. Introduction 

 

  The catalytic hydration of nitriles to amides is an ideal atom-economical reaction and 

important reaction in commercial production of amides [1] (Scheme 1).  The reaction 

is catalyzed by metalloenzymes [2], heterogeneous transition-metals [3] and 

homogeneous transition-metals [4].  Some of metalloenzymes and heterogeneous 

catalysts have been employed in the industrial production of amides.  For example, 5

105 tons of acrylamide per year has been produced from acrylonitrile.  In a 

laboratory, a variety of homogeneous catalysts composed of transition-metal complexes 

such as chromium [5], molybdenum [6], ruthenium [7], cobalt [8], rhodium [9], iridium 

[10], nickel [11], palladium [12], platinum [13], gold [14] and zinc [15] have been 

investigated. 

 

–––––––––––– 

Scheme 1 

–––––––––––– 

 

  A bifunctional catalysis is one of the recent trends in a homogeneous catalytic 

hydration of an unsaturated bond [7c-f 16].  A nitrogen-containing organophosphorus 

ligand (P,N ligand) have been used in the hydrations.  We have reported that the 

ruthenium(II) complexes, [cis-Ru(acac)2(PPh2py)2] (acac = acetylacetonate; PPh2py = 

diphenyl-2-pyridilphosphine (3)) was an excellent bifunctional catalysts for hydration of 

nitriles to amides under neutral conditions [17].  The high turnover frequency of up to 

20900 (mol of amide)/((mol of catalyst) h) probably caused by the promotion of 

nucleophilic addition of water by the PPh2py ligand.  The bifunctional ruthenium(II) 

catalyst affords various nitriles in almost quantitative yields.  However, the reactions 

required high temperature (180 °C), and the yields of amides were reduced significantly 
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by decreasing the reaction temperature.  In the catalyst system, it is difficult to 

generate a vacant coordination site for coordination of nitriles, because the site would be 

generated by the dissociation of an oxygen atom of the anionic bidentate acac ligand.  

  To achieve the catalytic hydration under more mild conditions, we turned our 

attention to [Ru(methallyl)2(cod)] (cod = 1,5-cyclooctadiene) (1) [18].  Complex 1 is a 

ruthenium(II) complex and a fluxionality of the methallyl fragment forms �3- and 

�1-methallyl species under mild conditions [19].  The generated �1-species is a 

coordinatively unsaturated ruthenium(II) complexes and would exhibit a high 

performance as a catalyst. [20] 

 

–––––––––––– 

Scheme 2 

–––––––––––– 

 

  Here we describe a new ruthenium(II) catalyst comprised of 1 and 

2-diphenylphosphanyl-4-pyridyl(dimethyl)amine (2).  Preparation of pyridylphosphine 

2 was first reported by Fort and coworkers in 2002 [21].  They mentioned that 

electron-rich 2 is a potentially interesting ligand for a transition-metal complex.  

However, there are no reports using 2 as a ligand in fields of coordination and catalytic 

chemistry.  Thus, here is a first example of that 2 acts as an effective ligand for a 

homogeneous catalytic reaction.  The hydration of various nitriles proceeded at 80 °C 

under neutral conditions. 
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2. Results and discussion 

 

  Initially catalytic hydration of nitriles was investigated using benzonitrile as a 

substrate.  Catalytic performances of the combination of 1 and pyridylphosphine 

derivatives 2–4 and 5 were summarized in Table 1.   

 

–––––––––––– 

Scheme 3 

–––––––––––– 

 

  Quantitative formation of benzamide was observed when using a mixture of 1 and 3 

at 180 °C for 10 min (entry 1).  The effect of ligand 3 was demonstrated by 

comparison with the hydration catalyzed by 1 and PPh3.  When using PPh3 as a ligand, 

no benzamide was detected in the reaction.  These preliminary results provide the 

evidence that 1 is suitable ruthenium(II) complex and ligand 3 enhances the catalytic 

hydration.  Thus, 3 behaves a effective P,N ligand like our previously reported 

ruthenium(II) complexes for the hydration.[17a]  Interestingly, sole complex 1 

afforded benzamide in 8% yield. 

  At 80 °C for 3.5 h, the yield of benzamide was very low using 3 as a ligand (entry 2).  

The combination of 1 and 2 dramatically improved the rate of the reaction and 

benzamide was obtained in 61% yield (entry 3).  On the contrary, 4 [16b] and 5 were 

slightly effective (entries 4 and 5).  Theses results suggested that the electron-donating 

dimethylamino group of 2 increased the electron density of a nitrogen atom in the 

pyridine ring and water was more activated via a hydrogen bond [17a] than in the case 

of using 3 as a catalyst component.  The rate of the reaction was accelerated with an 

increasing the amount of 2 (entries 6–8).  It was estimated that the ratio of 1 to 2 was 

three for the catalytic preparation of benzamide.  Attempts to indentify the ruthenium 
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species generated by the reaction of 1 and 2 failed.  The 31P{1H} NMR spectrum of the 

mixture of 1 and 2 showed complex signals from –22 to 17 ppm under various 

conditions.   

 

–––––––––––– 

Table 1 

–––––––––––– 

 

  Table 2 shows the results obtained for the hydration of benzonitrile under different 

conditions.  1,2-Dimethoxyethane is the best solvent for the hydration catalyzed by the 

mixture of 1 and 2.  The hydration in 1,2-dimethoxyethane proceeded at 60 °C.  After 

48 h, benzamide was obtained in 99% isolated yield (Scheme 4).  THF and 

1,4-dioxane were suitable solvent for the hydrations.  No reactions proceeded in highly 

polar ionic liquids (entries 14 and 15).  The hydration under solvent-free conditions 

also examined.  Benzamide was only obtained in 9% yield (entry 10).   

 

–––––––––––– 

Table 2 

–––––––––––– 

 

–––––––––––– 

Scheme 4 

–––––––––––– 

 

  The results of the catalytic hydration of various kinds of nitriles are summarized in 

Table 3.  The para substituted aromatic nitriles, 4-tolunitrile, 4-methoxybenzonitrile 

and 4-chlorobenzonitrile were smoothly converted to the corresponding amides in high 
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yields (entries 1, 3 and 4).  The electron withdrawing Cl group did not interrupt the 

hydration.  The reaction of 2-tolunitrile is sluggish compare to that of 4-tolunitrile due 

to the sterically crowded nitrile group (entry 2).  The low reactivity of 2-tolunitrile is 

quite different from those observed using our reported catalysts [17a].  The catalytic 

hydration proved to be affected by the presence of carbonyl groups.  For example, the 

hydration of 4-cyanobenzaldehyde gave the corresponding amide only 1% yield (entry 

5).  In spite of longer reaction time (12 h), the yield of 4-cyanobenzoic acid methyl 

ester was very low (10%) (entry 6).  These carbonyl moieties of the starting materials 

did not hydrolyzed in the reactions.  Commercially useful nicotinamide could be 

obtained from 3-cyanopyridine (entry 7).  The catalyst also hydrolyzed less reactive 

aliphatic nitriles.  Phenylacetonitrile was smoothly hydrated to give the desired amide 

in excellent yield (entry 9).  The catalytic hydration of phenoxyacetonitrile and 

trans-cinnamonitrile afforded the corresponding amides in moderate yields (entries 10 

and 11).  Nonanamide was obtained from nonanonitrile in almost quantitative yield 

under conditions similar to those for aromatic nitriles as a substrate (entry 12).  In this 

type of aliphatic nitrile, the nitrile group is less electrophilic than that of an aromatic 

nitrile.  Contrary to the reported hydration catalysts,[3a, 17a] the catalyst comprised of 

1 and 2 is suitable for the hydration of less reactive aliphatic nitriles.  In all catalytic 

hydrations examined, no byproduct was observed.   

 

–––––––––––– 

Table 3 

–––––––––––– 

 

3. Conclusion 
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  In summary, we have presented new ruthenium(II) catalysts for the hydration of 

nitriles.  The combination of 1 and 2 exhibited the best catalytic efficiency.  Complex 

1 is accessible and 2 can be prepared from readily available organic reagents.  In 

addition, 2 is robust tertially phosphine ligand and can be stored under ambient 

conditions.  Owing to the strongly electron-donating dimethylamino group of 2, the 

catalyst acted under 80 °C to give various amides in high yield.  The protocol using 2 

as a ligand would promises the broad application for a homogeneous catalytic reaction 

in organic synthesis.  Continuing studies on the effect of the structure-efficiency 

relationships of ruthenium catalysts will allow us to further the usefulness of 

homogeneous hydration catalyst under neutral conditions.   

 

4. Experimental 

 

  All manipulations involving air- and moisture-sensitive compounds were carried out 

using standard Schlenk techniques under argon.  Anhydrous hexane, THF, and toluene 

were purchased from Wako Pure Chemical Industries, Ltd. and stored on 4Å molecular 

sieves under argon.  Anhydrous 1,2-Dimethoxyethane was purchased from Kanto 

Chemicals and stored on 4A molecular sieves under argon.  [Ru(methallyl)2(cod)] and 

4 were purchased from Strem and used as received.  Diphenyl-2-pyridylphosphine (3) 

and 4-(Dimethylamino)-phenyldiphenylphosphine (5) were purchased from Aldrich and 

used as received.  1H, and 31P{1H} NMR spectra were recorded at 399.65 and 161.70 

MHz, respectively, on a JEOL JNM-LA400 spectrometer.  The 1H NMR chemical shift 

is relative to tetramethylsilane; the resonance of the residual protons of CDCl3 was used 

as an internal standard (� 7.26 ppm chloroform for 1H).  31P{1H} NMR chemical shifts 

were relative to 85% H3PO4 at � 0.00 (external reference).  Melting point was 

measured in a sealed tube on a Yanaco MP-S3 apparatus and was uncorrected.   
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4.1.  Preparation of 2 

 

Phosphine Ligand 2 was prepared according to the previously described procedure 

[21]. with some modifications as follows. A solution of 2-(dimethylamino)ethanol (5 

mL, 40 mmol) in hexane (50 mL) was cooled to 0 °C, and n-BuLi (2 M hexane solution, 

50 mL, 80 mmol) was added as a droplet under argon-atmosphere. After 1.5 h of 

stirring at 0 °C, 4-dimethylaminopyridine (2.4 g, 20 mmol) was added as a solid. After 1 

h of stirring at 0 °C, the reaction mixture was cooled to –78 °C, and a hexane (100 mL) 

solution of chlorodiphenylphosphine (9.0 mL, 50 mmol) was slowly added as a droplet.  

After 1.5 h for stirring at –78 °C, the resulting reaction mixture was filtered.  Obtained 

solid was dried in desiccator overnight.  Ethyl acetate and water were added to the 

dried solid, and then organic materials were extracted with ethyl acetate.  Combined 

organic solution was dried over anhydrous NaSO4.  The crude solid was recrystallized 

from ethyl acetate and hexane to give 2 in 53% yield as a pale yellow powder. The 

product was identified spectroscopically by comparison to the reported data.  Mp 

89–91 °C.  1H NMR (CDCl3): � 2.84 (s, 6H), 6.33—6.38 (m, 2H), 7.32—7.42(m, 10H), 

8.32(d, J=5.8 Hz, 1H); 31P{1H} NMR(CDCl3): � –2.3(s). 

 

4.2.  A typical procedure is described for the hydration of benzonitrile catalyzed by the 

combination of 1 and 2. 

 

  Complex 1 and ligand 2 were placed in a 5 mL test tube equipped with a screw cap.  

1,2-Dimethoxyethane (0.5 mL), benzonitrile (102 �l, 1.0 mmol), and water (72 �L, 4.0 

mmol) were added, and then, the tube was sealed by the screw cap.  The tube was 

heated in an oil bath.  After the reaction, the reaction mixture was subjected to gas 

chromatography (Shimadzu GC-14A, column: RESTEK RTX-1 (15 m x 0.32 mm)).  

In Tables 1 and 2, the yields of benzamide were calculated from response factors 
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relative to an internal naphthalene standard.  In Table 3, amides were isolated by a 

silica-gel short column using ethyl acetate as an eluent.  The amides were identified 

spectroscopically by comparison to authentic samples.   
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Table 1. Catalytic hydration of benzonitrile using 2–5 as a liganda 
entry ligand amt of ligandb temp (°C) time (h) yield (%) 

1 3 2 180 0.17 >99 
2 3 2 80 3.5   3 
3 2 2 80 3.5  61 
4 4 2 80 3.5   7 
5 5 2 80 3.5   1 
6 2 3 80 3.5 >99 
7 2 4 80 3.5  91 
8 2 0.5 80 3.5  10 

a Experimental conditions: benzonitrile (1.0 mmol), water (4.0 mmol), 1 (0.005 mmol, 
0.5 mol% per benzonitrile), 1,2-dimethoxyethane (0.5 mL), 80 °C, 3.5 h. b Molar ratio 
between ligand and 1.   
 

Table1



Table 2. Catalytic hydration of benzonitrile under various conditionsa 
entry solvent temp (°C) time (h) yield (%) 

1 1,2-dimethoxyethane 80   3.5 >99 
2 1,2-dimethoxyethane 60   3.5  30 
3 THF 80   3.5  90 
4 THF 60   3.5   2 
5 THF 60 24  37 
6 1,4-dioxane 80   3.5 >99 
7 1,4-dioxane 60   3.5  11 
8 1,4-dioxane 60 24  46 
9 triglyme 60   3.5   0 
10 cyclopentyl methyl ether 60   3.5   3 
11 EtOH 80   3.5  23 
12 EtOH 60   3.5   9 
13 H2O 60   3.5   1 
14 [BMIM]N(SO2CF3)2 b 60   3.5   0 
15 [BMIM]BF4 b 60   3.5   0 
16 none 60   3.5   9 

a Experimental conditions: benzonitrile (1.0 mmol), water (4.0 mmol), 1 (0.005 mmol, 
0.5 mol% per benzonitrile), 2 (0.015 mmol), solvent (0.5 mL).  b BMIM = 
1-butyl-3-methyl-imidazorinium.   

 
 

Table2



Table 3 

Catalytic hydration of various nitriles at 80 °C for 5 h a 

 
a Experimental conditions: nitrile (1.0 mmol), water (4.0 mmol), 1 (0.01 mmol, 1.0 mol% 
per nitrile), 2 (0.03 mmol), 1,2-dimethoxyethane (0.5 mL),.  b 0.02 mmol of 1 (2.0 mol% 
per nitrile) and 0.06 mmol of 2 were used.   
 
 
 
 
 

Table3
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