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Recently, pairing–based cryptographies have attracted much attention. For fast pairing calculation,
not only pairing algorithms but also arithmetic operations in extension field should be efficient. Especially
for final exponentiation included in pairing calculation, squaring is more important than multiplication.
This paper considers squaring algorithms efficient for cubic extension field which is often used for pairing
implementaions.

In this decade, pairing over elliptic curve has at-
tracted much attention to realize epochal public–key
cryptographic applications such as ID–based cryptog-
raphy [1] and group signature [2]. As pairings enable to
efficiently work for these appplications, several pairings
such as Ate pairing [3], Xate pairing [4], and R–ate pair-
ing [5] have been proposed. The above pairings consist
of two steps, one is a calculation by Miller’s algorithm,
and the other is so–called final exponentiation. In order
to provide fast these calculations, arithmetic operations
in the definition field should be efficient. Especially, for
final exponentiation, squaring is more important than
the other operations such as multiplication.

As the definition field of the above pairings, most
of researchers use optimal extension field (OEF) [6].
OEF can efficiently carry out arithmetic operations with
some efficient algorithms such as Karatsuba multiplica-
tion algorithm [6]. Of course, OEF provides fast squar-
ing by using efficient squaring algorithms such as com-
plex squaring algorithm [7] and Chung–Hasan squaring
(CH–SQR) algorithm [8]. However, OEF can not often
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be used as the definition field of pairings due to some
mismatches of the conditions of the parameters such as
characteristic p and extension degree m between OEF
and pairing. Thus, construction method of extension
field available regardless of these parameters is required.

For this requirement, the authors have proposed
type–〈h,m〉 all one polynomial field (AOPF) [9]. Type–
〈h, m〉 AOPF is constructed by Gauss period normal
basis (GNB) [10] whose preparation needs a certain pos-
itive integer parameter h in addition to characteristic p
and extension degree m. By changing h, type–〈h,m〉
AOPF is flexibly available for almost all pairs of p and
m. Additionally, the authors have proposed an effi-
cient multiplication algorithm in type–〈h,m〉 AOPF,
namely type–〈h,m〉 cyclic vector multiplication algo-
rithm (CVMA). By using type–〈h, m〉 CVMA, type–
〈h, m〉 AOPF can carry out multiplication and squaring
almost as efficient as OEF; however, in the cases that
m = 2 and 3, compared to the squaring algorithms ef-
ficient for OEF, type–〈h,m〉 CVMA is not efficient for
squaring. Thus, for type–〈h,m=2〉 AOPF, Kato et al.
and the authors have proposed efficient squaring algo-
rithms [11, 12] having the equivalent efficiency of the
squaring algorithm efficient for OEF. On the other hand,
for type–〈h,m=3〉 AOPF, such squaring algorithm have
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not been proposed yet, although cubic extension field is
often used for pairing implementations [4, 13]. There-
fore, this paper introduces pseudo Gauss period normal
basis (PGNB), and derives a squaring algorithm efficient
for the type–〈h,m=3〉 AOPF with PGNB.

Notation: Fp, Fpm , F∗
pm , and E(Fpm) denote a prime

field, an m–th extension field over Fp, the multiplicative
group in Fpm , and the elliptic curve defined over Fpm .
For two integers m and n, m |n means that m divides
n. Mm, Sm, Am, Dm, and Lm denote the calculation
costs of a multiplication, a squaring, an addition (a sub-
traction), a doubling, an one–half multiplication in Fpm ,
respectively.

This section briefly goes over optimal extension field
(OEF) and all one polynomial field (AOPF).

2.1 Optimal Extension Field (OEF)

Bailey et al. have proposed OEF [6], which achieves
efficient arithmetic operations by using some efficient
algorithm such as Karatsuba multiplication method [6].
OEF is constructed by a polynomial basis as

{1, α, α2, · · · , αm−1}, α = m
√

n, (1)

where n is the constant term of an m–th degree irre-
ducible binomial over Fp. In order to prepare the above
polynomial basis, p and m need to satisfy the conditions
such that each prime factor of m divides p − 1, for ex-
ample. Thus, OEF is not available for every pair of p
and m.

2.2 All One Polynomial Field (AOPF)

The authors have proposed type–〈h,m〉 AOPF [9],
which efficiently carries out multiplication and squaring
with cyclic vector multiplication algorithm (CVMA) [9]
in almost the same of OEF. Additionally, type–〈h,m〉
AOPF does not need any arithmetic operations for Frob-
enius mapping since type–〈h,m〉 AOPF is constructed
by Gauss period normal basis (GNB) [10]. In what fol-
lows, this paper briefly introduces GNB and CVMA.

2.2.1 Gauss Period Normal Basis (GNB)

Suppose a positive integer h which satisfies

Condition 1 (the h of GNB)
1) r = hm + 1 is a prime number not equal to p.

2) gcd (hm/e,m) = 1, where e is the order of p in Fr.

Then, let d be a primitive h–th root of unity in F∗
r, the

following multicative group is obtained,〈{〈〈
pidk

〉〉
: 0 ≤ i < m, 0 ≤ k < h

}
, ·

〉
= F∗

r, (2)

where 〈S, · 〉 means a multiplicative group with a non–
empty set S and 〈〈t〉〉 denotes t (mod r) with an integer
t and a prime number r. Let β be a primitive r–th root

of unity in F∗
pe . In other words, it is a zero of the all

one polynomial (AOP) over Fp as

f(t) =
tr − 1
t − 1

=
r−1∑
i=0

ti. (3)

Then, GNB [10] is defined with the above h, d and β as
follows.

{γ, γp, γp2
, · · · , γpm−1

}, γ =
h−1∑
k=0

βdk

∈ Fpm . (4)

This paper especially calls it type–〈h,m〉 GNB. This
basis has the following properties.

Property 1 The summation of the elements in type–
〈h, m〉 GNB is given by

m−1∑
i=0

γpi

=
m−1∑
i=0

h−1∑
k=0

βpidk

=
r−1∑
i=1

βi = −1, (5)

because p and d satisfy Eq. (2) and the β is a zero of
the AOP as shown in Eq. (3).

Property 2 Type–〈h,m〉 GNB can be prepared when-
ever 4p - m(p − 1) [10].

Since type–〈h,m〉 GNB is prepared with a zero β
of the AOP given by Eq. (3), the extension field con-
structed by this basis is called type–〈h,m〉 AOPF. Ac-
cording to Prop. 2, type–〈h, m〉 AOPF is available for
every pair of p and m when p > m.

2.2.2 Cyclic Vector Multiplication Algorithm
(CVMA)

Generally, as the parameter h of type–〈h, m〉 GNB
becomes larger, multiplication and squaring in type–
〈h, m〉 AOPF become more inefficient. In this section,
in order to give an example of the relation between the
parameter h and the efficiencies of multiplication and
squaring, this paper briefly shows type–〈h,m〉 CVMA
[9] which is a multiplication (squaring) algorithm effi-
cient for type–〈h,m〉 AOPF.

Let A, B and Y in type–〈h,m〉 AOPF Fpm be

A=
m−1∑
l=0

alγ
pl

, B=
m−1∑
l=0

blγ
pl

, Y =AB=
m−1∑
l=0

ylγ
pl

, (6a)

al, bl, yl ∈ Fp. (6b)

Then, type–〈h,m〉 CVMA calculates yl in Eq. (6a) as

yl =

{
−albl − cl + hcm (when h is odd),
−albl − cl (when h is even),

(7a)

cl =
∑∑

0≤i<j<m

(ai−aj)(bi−bj)
h−1∑
k=0

δl

[
η[i, j, k]

]
, (7b)

where δs denotes the unit impulse function as

δs(t) =

{
1 (when s = t),
0 (otherwise),

(8)
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and η means a function as

η[i, j, k] = ε
[〈〈

pi+ pjdk
〉〉]

, (9a)

ε
[〈〈

pidk
〉〉]

= i, and ε
[
0] = m. (9b)

With type–〈h, m〉 CVMA, the calculation amounts of
a multiplication and a squaring are explicitly given as
follows.

Mm =
m(m+1)

2
M1

+



(
m(m−1)(h+2)

2
−1+m

)
A1+H1

(when h is odd),(
m(m−1)(h+2)

2

)
A1 (when h is even),

(10a)

Sm =
m(m+1)

2
S1

+



(
m(m−1)(h+1)

2
−1+m

)
A1+H1

(when h is odd),(
m(m−1)(h+1)

2

)
A1 (when h is even),

(10b)

where H1 denotes the calculation cost of a scalar–h mul-
tiplication in Fp. As shown in Eq. (10a), type–〈h,m〉
CVMA needs more additions in Fp as h becomes larger.
Usually, A1 is much smaller than M1. However, if the
number of additions in Fp is quite large, it will not
be negligible. Thus, in order to carry out type–〈h,m〉
CVMA more efficiently, we should adapt the minimal
h among h’s such that the conditions for type–〈h,m〉
GNB are satisfied. Moreover, it is the most desirable
when h = 1 or h = 2 because then type–〈h,m〉 CVMA
are the most efficient.

Chung and Hasan have derived some squaring algo-
rithms efficient for OEF Fp3 from a certain approach
[8]. Also in the case of type–〈h,m〉 AOPF Fp3 , we can
apply the derivation approach; however, it is a daunt-
ing challenge. Therefore, in order to derive a squaring
algorithm efficient for type–〈h,m〉 AOPF Fp3 , we must
consider the different approach.

This section first runs over Chung–Hasan squaring
(CH–SQR) algorithms and the derivation approach, and
then shows the efficiency of the algorithms. After that,
by using the different approach, the authors derive a
squaring algorithm in type–〈h, m〉 AOPF Fp3 which has
the efficiency equivalent to CH–SQR algorithms.

3.1 Squaring Algorithm Efficient for OEF Fp3

Let A and Y in OEF Fp3 be

A=
2∑

l=0

alα
l, Y =A2 =

2∑
l=0

ylα
l, al, yl ∈ Fp. (11)

Schoolbook method [7] calculates yl in Eq. (11) as

y0 = a2
0 + 2na1a2, (12a)

y1 = 2a0a1 + na2
2, (12b)

y2 = a2
1 + 2a0a2, (12c)

where n is the constant number shown in Eq. (1). For
Eq. (12), the following matrix is considered with the
coefficients.

a2
0 2a0a1 a2

1 2a1a2 a2
2 2a2a0

y0 1 0 0 n 0 0
y1 0 1 0 0 n 0
y2 0 0 1 0 0 1

 . (13)

Let U(yl) denote the row vector of the above matrix.
Chung and Hasan have derived efficient squaring algo-
rithms by representing U(y0), U(y1) and U(y2) with 5
of the 24 vectors shown in Table 1 as follows [8].

Table 1: The vectors prepared by Chung and Hasan

i Vi Vi · W †

1 [1 0 0 0 0 0] a2
0

2 [0 0 0 0 1 0] a2
2

3 [1 1 1 1 1 1] (a0 + a1 + a2)
2

4 [1 − 1 1 − 1 1 1] (a0 − a1 + a2)
2

5 [16 8 4 2 1 4] (4a0 + 2a1 + a2)
2

6 [16 − 8 4 − 2 1 4] (4a0 − 2a1 + a2)
2

7 [1 2 4 8 16 4] (a0 + 2a1 + 4a2)
2

8 [1 − 2 4 − 8 16 4] (a0 − 2a1 + 4a2)
2

9 [0 1 0 0 0 0] 2a0a1

10 [0 0 0 1 0 0] 2a1a2

11 [4 3 2 1 0 2] 2(a0 + a1 + a2)(2a0 + a1)

12 [−4 3 − 2 1 0 2] 2(a0 − a1 + a2)(−2a0 + a1)

13 [0 1 2 3 4 2] 2(a0 + a1 + a2)(a1 + 2a2)

14 [0 1 − 2 3 − 4 − 2] 2(a0 − a1 + a2)(a1 − 2a2)

15 [1 0 − 1 0 1 − 1] (a0 + a1 − a2)(a0 − a1 − a2)

16 [0 1 0 − 1 0 0] 2a1(a0 − a2)

17 [1 0 − 1 − 1 0 − 1] (a0 − a1 − 2a2)(a0 + a1)

18 [0 1 1 0 − 1 1] (2a0 + a1 − a2)(a1 + a2)

19 [1 0 − 1 1 0 − 1] (a0 + a1 − 2a2)(a0 − a1)

20 [0 1 − 1 0 1 − 1] (2a0 − a1 − a2)(a1 − a2)

21 [1 0 0 0 − 1 0] (a0 + a2)(a0 − a2)

22 [0 1 0 1 0 0] 2a1(a0 + a2)

23 [0 4 0 1 0 0] 2a1(4a0 + a2)

24 [0 1 0 4 0 0] 2a1(a0 + 4a2)

† W denotes a vector as [a2
0 2a0a1 a2

1 2a1a2 a2
2 2a2a0]T .

The case of CH–SQR1 algorithm:
U(y0) = V1 + nV10, (14a)
U(y1) = nV2 + V9, (14b)
U(y2) = V1 + V2 − V15. (14c)

The case of CH–SQR2 algorithm:
U(y0) = V1 + nV10, (15a)
U(y1) = nV2 + V9, (15b)
U(y2) = V1 + V2 − V4 + V9 + V10. (15c)
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The case of CH–SQR3 algorithm:

U(y0) = V1 + nV10, (16a)
U(y1) = nV2 + V3 + V10 − V25, (16b)
U(y2) = −V1 − V2 + V25. (16c)

where V25 = (V3 + V4)/2.

Then, for each algorithms, the calculation amounts of a
squaring in OEF Fp3 are given by Table 2.

3.2 Squaring Algorithm Efficient for AOPF Fp3

Let A and Y in type–〈h, m〉 AOPF Fp3 be

A=
2∑

l=0

alγ
pl

, Y =A2 =
2∑

l=0

ylγ
pl

, al, yl ∈ Fp. (17)

The following positive integers satisfy Cond. 1 (1).

h = 2, 4, 6, 10, 12, . . . (18)

For example, type–〈h=2,m=3〉 CVMA calculates yl in
Eq. (17) as

y0 = −(a0−aq1)
2 − (aq1−aq2)

2 − a2
0, (19a)

yq1 = −(a0−aq2)
2 − (aq1−aq2)

2 − a2
q1

, (19b)

yq2 = −(a0−aq1)
2 − (a0−aq2)

2 − a2
q2

, (19c)

where q1 and q2 are given by

[q1, q2] =

{
[1, 2] (when 〈〈p〉〉 = 2 or 5),
[2, 1] (when 〈〈p〉〉 = 3 or 4),

(20)

Eq. (19) is expanded as

y0 = −2a2
0+2a0aq1−2a2

q1
+2aq1aq2−a2

q2
, (21a)

yq1 = −a2
0−2a2

q1
+2aq1aq2−2a2

q2
+2aq2a0, (21b)

yq2 = −2a2
0+2a0aq1−a2

q1
−2a2

q2
+2aq2a0. (21c)

For Eq. (21), the following matrix is considered with
the coefficients.

a2
0 2a0aq1 a2

q1
2aq1aq2 a2

q2
2aq2a0

y0 −2 1 −2 1 −1 0
yq1 −1 0 −2 1 −2 1
yq2 −2 1 −1 0 −2 1

. (22)

In the case of OEF Fp3 , there are a lot of non–zero el-
ements in the coefficient matrix as Eq. (13). Thus, in
order to make squaring more efficient, it is compara-
tively easy to choose 5 of the 24 vectors shown in Table
1. On the other hand, in the case of type–〈h,m=3〉
AOPF, because there are few non–zero elements in the
coefficient matrix as the above example, it is very diffi-
cult to find a pair of the 5 suitable vectors in the same
way of OEF Fp3 . Therefore, in what follows, let us con-
sider the different approach.

3.2.1 Pseudo GNB (PGNB)

For type–〈h,m〉 GNB shown in Eq. (4), let us con-
sider to replace γ with 1 as

{γp, γp2
, · · · , γpm−1

, 1}. (23)

The above set also forms a basis because it is obvious
that the elements in the set are independent of each
other, according to Eq. (5). This paper especially calls
this basis type–〈h,m〉 PGNB.

Let B and Z in type–〈h,m〉 AOPF Fp3 be repre-
sented with type–〈h,m〉 PGNB as

B=
2∑

l=1

blγ
pl

+ b3 · 1, Z =
2∑

l=1

zlγ
pl

+ z3 · 1, (24a)

bl, zl ∈ Fp. (24b)

When A = B and Y = Z, the following equations are
obtained from Eq. (5).

a0 = −b3, a1 = b1 − b3, a2 = b2 − b3, (25a)
y0 = −z3, y1 = z1 − z3, y2 = z2 − z3. (25b)

Additionally, from Eq. (25), the following equations are
obtained.

b1 = a1 − a0, b2 = a2 − a0, b3 = −a0, (26a)
z1 = y1 − y0, z2 = y2 − y0, z3 = −y0. (26b)

This paper derives each squaring algorithm efficient
for type–〈h = 2,m = 3〉 and type–〈h = 4,m = 3〉 AOPF
with Eq. (25), (26).

3.2.2 Derivation with PGNB When h = 2

According to Eq. (25), Eq. (21) is given by

zq1 = −b2
q2

+2b3bq1 , (27a)

zq2 = b2
q1
−2bq1bq2−b2

q2
+2bq2b3, (27b)

z3 = 2b2
q1
−2bq1bq2 +b2

q2
+b2

3. (27c)

For Eq. (27), the following matrix is considered with
the coefficients.

b2
q1

2bq1aq2 b2
q2

2bq2b3 b2
3 2b3bq1

zq1 0 0 −1 0 0 2
zq2 1 −1 −1 1 0 0
z3 2 −1 1 0 1 0

. (28)

The above matrix has more non–zero elements than that
of Eq. (22). Thus, for example, we can easily consider
the deformation of Eq. (27) as

zq1 = −b2
q2

+2bq1b3, (29a)

zq2 = (bq1−bq2)
2−b2

q2
+2bq2b3, (29b)

z3 =
1
2
(2bq1−bq2 +2b3)(2bq1−bq2 +b3)

+
1
2
b2
q2

+3bq1b3−
3
2
bq2b3. (29c)
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According to Eq. (26), Eq. (29) is given by

y0 =−1
2
(a0+2aq1−aq2)(2aq1−aq2)

− 1
2
(a0−aq2)

2−3a0(a0−aq1)−
3
2
a0(a0−aq2), (30a)

yq1=−1
2
(a0+2aq1−aq2)(2aq1−aq2)

− 3
2
(a0−aq2)

2−a0(a0−aq1)+
3
2
a0(a0−aq2), (30b)

yq2=−1
2
(a0+2aq1−aq2)(2aq1−aq2)−(a0−aq1)

2

− 5
2
(a0−aq2)

2−3a0(a0−aq1)+
7
2
a0(a0−aq2). (30c)

Moreover, Eq. (30) can be deformed as

y0 = −1
2
(a0+2aq1−aq2)(2aq1−aq2)

−2(a0−aq2)
2+3a0(aq1−aq2)+

3
2
aq2(a0−aq2), (31a)

yq1 = −1
2
(a0+2aq1−aq2)(2aq1−aq2)

−(a0−aq2)
2+a0(aq1−aq2)+

1
2
aq2(a0−aq2), (31b)

yq2 = −1
2
(a0+2aq1−aq2)(2aq1−aq2)+(aq1−aq2)

2

−2(a0−aq2)
2+3a0(aq1−aq2)+

1
2
aq2(a0−aq2). (31c)

When Eq. (31) is calculated with the algorithm as
Alg. 1, the calculation amount of a squaring in type–
〈h=2,m=3〉 AOPF is given as Table 3.

Algorithm 1: The squaring algorithm efficient for type–
〈h=2, m=3〉 AOPF

Input: A =
2∑

i=0

aiγ
pi

, ai ∈ Fp.

Output: Y = A2 =
2∑

i=0

yiγ
pi

, yi ∈ Fp.

s0 = a0 − aq2 , s1 = aq1 − aq2 .1

s2 = s1 + aq1 , s3 = s2 + a0.2

t0 = s2s3/2, t1 = s0aq2 , t2 = s1a0.3

t3 = s2
0, t4 = s2

1.4

t5 = −t0 + t2 − t3, t6 = 2t2, t7 = −t3 + t5 + t6.5

t8 = t1/2, t9 = t1 + t8.6

y0 = t7 + t9, yq1 = t5 + t8, yq2 = t4 + t5 + t87

3.2.3 Derivation with PGNB When h = 4

Type–〈h=4,m=3〉 CVMA calculates yl in Eq. (17) as

y0 =−2(a0−aq1)
2−(a0−aq2)

2−(aq1−aq2)
2−a2

0, (32a)

yq1=−(a0−aq1)
2−(a0−aq2)

2−2(aq1−aq2)
2−a2

q1
,(32b)

yq2=−(a0−aq1)
2−2(a0−aq2)

2−(aq1−aq2)
2−a2

q2
, (32c)

where q1 and q2 are given by

[q1, q2] =

{
[1, 2] (when 〈〈p〉〉 = 4, 6, 7, or 9),
[2, 1] (when 〈〈p〉〉 = 2, 3, 10, or 11),

(33)

Eq. (32) is expanded as

y0 =−4a2
0+4a0aq1−3a2

q1
+2aq1aq2−2a2

q2
+2aq2a0, (34a)

yq1=−2a2
0+2a0aq1−4a2

q1
+4aq1aq2−3a2

q2
+2aq2a0, (34b)

yq2=−3a2
0+2a0aq1−2a2

q1
+2aq1aq2−4a2

q2
+4aq2a0. (34c)

For Eq. (34), the following matrix is considered with
the coefficients.

a2
0 2a0aq1 a2

q1
2aq1aq2 a2

q2
2aq2a0

y0 −4 2 −3 1 −2 1
yq1 −2 1 −4 2 −3 1
yq2 −3 1 −2 1 −4 2

. (35)

According to Eq. (25), Eq. (34) is given by

zq1 = −b2
q1

+2bq1bq2−b2
q2

+2b3bq1 , (36a)

zq2 = b2
q1
−2b2

q2
+2bq2b3, (36b)

z3 = 3b2
q1
−2bq1bq2 +2b2

q2
+b2

3. (36c)

For Eq. (36), the following matrix is considered with
the coefficients.

b2
q1

2bq1aq2 b2
q2

2bq2b3 b2
3 2b3bq1

zq1 −1 1 −1 0 0 2
zq2 1 0 −2 1 0 0
z3 3 −1 2 0 1 0

. (37)

The above matrix also has more non–zero elements than
that of Eq. (35). Thus, for example, we can easily
consider the deformation of Eq. (36) as

zq1=−(bq1−bq2)
2+2bq1b3, (38a)

zq2=b2
q1
−2bq2(bq2−b3), (38b)

z3 =(bq1−bq2)
2+2b2

q1
+bq2(bq2−b3)+b3(bq2 +b3). (38c)

According to Eq. (26), Eq. (38) is given by

y0 =−2(a0−aq1)
2−(aq1−aq2)
−a0(2a0−aq2)+aq2(2a0−aq2), (39a)

yq1=−2(a0−aq1)
2−2(aq1−aq2)+a0(2a0−aq1)
−a0(2a0−aq2)+aq2(2a0−aq2), (39b)

yq2=−(a0−aq1)
2−(aq1−aq2)
−a0(2a0−aq2)+3aq2(2a0−aq2). (39c)

When Eq. (39) is calculated with the algorithm as
Alg. 2, the calculation amount of a squaring in type–
〈h=4,m=3〉 AOPF is given as Table 2.

Algorithm 2: The squaring algorithm efficient for type–
〈h=4, m=3〉 AOPF

Input: A =
2∑

i=0

aiγ
pi

, ai ∈ Fp.

Output: Y = A2 =
2∑

i=0

yiγ
pi

, yi ∈ Fp.

s0 = a0 − aq1 , s1 = a0 − aq2 , s2 = aq1 − aq2 .1

t0 = s2
0, t1 = s2

2.2

t2 = s0a0, t3 = s1a0, t4 = s1aq2 .3

t5 = −t0 − t1 − t3 + t4, t6 = 2t2, t7 = 2t4.4

y0 = −t0 + t5, yq1 = y0 − t1 − t6, yq2 = t5 − t7.5
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Table 2: The calculation amounts of a squaring in OEF Fp3

algorithm Schoolbook Karatsuba CH–SQR1 CH–SQR2 CH–SQR3multiplication
calculation amount (3, 3, 3, 3, 0, 2) † (0, 6, 13, 0, 0, 2) † (3, 2, 9, 2, 0, 2) † (2, 3, 8, 2, 0, 2) † (1, 4, 10, 1, 1, 2) †

† (a, b, c, d, e, f) means aM1 + bS1 + cA1 + dD1 + eL1 + fN1,
where N1 denotes the calculation cost of a scalar–n multiplication in Fp.

Table 3: The calculation amounts of a squaring in type–〈h,m〉 AOPF Fp3

the parameter h h = 2 h = 4
algorithm type–〈h,m〉 CVMA the proposed method type–〈h,m〉 CVMA the proposed method

calculation amount (0, 6, 9, 0, 0) † (3, 2, 13, 1, 2) † (0, 6, 15, 0, 0) † (3, 2, 10, 2, 0) †

† (a, b, c, d, e) means aM1 + bS1 + cA1 + dD1 + eL1.

This paper introduced type–〈h,m〉 pseudo Gauss pe-
riod normal basis (PGNB), and derives each squaring al-
gorithm efficient for type–〈h=2,m=3〉 and type–〈h=4,
m = 3〉 AOPF with PGNB. For an arbitary charac-
teristic p, type–〈h = 2,m = 3〉 or type–〈h = 4, m = 3〉
AOPF is available by about 88.9% [9]. Thus, for an ar-
bitary characteristic p, the proposed methods shown in
Sec. 3.2.2 and 3.2.3 can be used by about 88.9%.
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