Memoirs of the Faculty of Engineering, Okayama University, Vol. 45, pp. 15-26, January 2011

Hyper Least Squares and Its Applications

Kenichi KANATANI* Prasanna RANGARAJANT, Yasuyuki SUGAYA?, and Hirotaka NIITTSUMA*

* Department of Computer Science, Okayama University, Japan
1 Department of Electrical Engineering, Southern Methodist University, U.S.A.
T Department of Computer Science and Engineering,
Toyohashi University of Technology, Japan

(Received November 15, 2010)

We present a new least squares (LS) estimator, called “HyperLS”, specifically designed for parame-
ter estimation in computer vision applications. It minimizes the algebraic distance under a special
scale normalization, which is derived by rigorous error analysis in such a way that statistical bias
is removed up to second order noise terms. Numerical experiments suggest that our HyperLS is
far superior to the standard LS and comparable in accuracy to maximum likelihood (ML), which is
known to produce highly accurate results in image applications but may fail to converge if poorly
initialized. Our HyperLS is a perfect candidate for ML initialization. In addition, we discuss how
image-based inference problems have different characteristics form conventional statistical applica-
tions, with a view to serving as a bridge between mathematicians and computer engineers.

1. INTRODUCTION

We address a special class of parameter estimation
problems that frequently arise in computer vision ap-
plications. The parameters are estimated from ob-
servations that should satisfy implicit polynomials in
the absence of noise. The unique aspect of our ap-
proach is that we require the estimation accuracy to
increase rapidly as the noise level decreases with a
fixed number of observations. This requirement is a
consequence of the fact that computer vision applica-
tions have very different characteristics from standard
statistical domains. This issue is discussed in more
detail later. We are hoping that this paper serves as
a bridge between mathematicians and computer en-
gineers.

An important task in computer vision is the ex-
traction of 2-D/3-D geometric information from im-
age data (Kanatani, 1996; Hartley and Zisserman,
2004). In this domain, maximum likelihood (ML) is
known to produce highly accurate solutions, achiev-
ing the theoretical accuracy limit to a first approxi-
mation in the noise level (Kanatani, 1994; Chernov
and Lesort, 2004; Kanatani, 2008). However, ML re-
quires iterative search, which does not always con-
verge unless started from a value sufficiently close
to the solution. For this reason, various numerical
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schemes that produce reasonably accurate approxi-
mations have been extensively studied (Hartley and
Zisserman, 2004). The simplest of such schemes is al-
gebraic distance minimization, or simply least squares
(LS), which minimizes the sum of the squares of poly-
nomials that should be zero in the absence of noise.
However, the accuracy of LS is very much limited.
In this paper, we propose a new LS estimator, called
HyperLS, by doing rigorous error analysis. The im-
proved accuracy results from introduction of a nor-
malization that eliminates statistical bias up to sec-
ond order noise terms. Numerical experiments show
that our HyperLS is far superior to the standard LS
and is comparable in accuracy to ML. Thus, our Hy-
perLS is a perfect candidate for initializing the ML
iterations.

Section 2 defines the geometric fitting problem of
our interest with examples that frequently appear in
computer vision applications. Section 3 introduces a
statistical model of observation that specifically suits
image-based inference, discussing why the conven-
tional statistical framework is not appropriate in im-
age domains. In Sec. 4, we argue that ML is the best
tool for image-based inference but that its computa-
tional cost is a major obstacle. Section 5 describes our
framework of algebraic methods. In Sec. 6 and 7 we
analyze errors of algebraic methods by perturbation
techniques and in Sec. 8 derive expressions of covari-
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Figure 1: (a) Fitting an ellipse to a point sequence. (b) Computing the fundamental matrix from corresponding points
between two images. (¢) Computing a homography between two images.

ance and bias of the solution, pointing out that we
cannot control the covariance but can reduce the bias
through the choice of scale normalization. In Sec. 9,
we propose our HyperLS by choosing the scale nor-
malization that eliminates the bias up to second order
noise terms. In Sec. 10, we show examples of applying
our HyperLsS to typical computer vision problems. In
Sec. 11, we conclude.

2. GEOMETRIC FITTING

The term “image data” in this paper refers to val-
ues extracted from images by image processing opera-
tions such as edge filters and interest point detectors.
An example of image data includes the locations of
points that have special characteristics in the images
or the lines that separate image regions having differ-
ent properties. We say that image data are “noisy” in
the sense that image processing operations for detect-
ing them entail uncertainty to some extent. Let xi,
..., xy be noisy image data, which we regard as per-
turbations in their true values &1, ..., Zy that satisfy
implicit geometric constraints of the form

F®) (z;0) =0, k=1,..,L. (1)

The unknown parameter @ allows us to infer the
2-D/3-D shape and motion of the objects observed in
the images (Kanatani, 1996, Hartley and Zisserman,
2004). In many important computer vision applica-
tions, we can reparameterize the problem to make the
functions F(*)(z; @) linear in @ (but nonlinear in ),
allowing us to write (1) as

(£"(x),0) =0,

where and hereafter (a,b) denotes the inner product

k=1,..L, (2)

g eeey

of vectors @ and b. The vector £ () represents a
nonlinear mapping of .

Example 1 (Ellipse fitting). Given a point se-
quence (o, Yo), @« =1, ..., N, we wish to fit an ellipse
of the form

Az? + 2Bzy + Cy* +2(Dxz + Ey) + F = 0.
(Fig. 1(a)). If we let

(3)

€ = (2%, 2zy,9°, 22,29, 1) 7,
6 =(A,B,C,D,E,F)",
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the constraint (3) has the form of (2) with L = 1.

Example 2 (Fundamental matrix computa-
tion). Corresponding points (z,y) and (z’,y’) in two
images of the same 3-D scene taken from different
positions satisfy the epipolar equation (Hartley and
Zisserman, 2004)

(z, Fz') =0, z=(z,,9,1)", o' ="y, 1)7,
(5)
where F' is called the fundamental matriz, from which
we can compute the camera positions and the 3-D
structure of the scene (Kanatani, 1996; Harley and
Zisserman, 2004) (Fig. 1(b)). If we let

€ = (22’ 2y, z, 92’ yy y. 2y, 1)T,
0 = (Fi1, Fio, Fi3, Fay, Fao, Fog, F31, F39, F33) ', (6)

the constraint (5) has the form of (2) with L = 1.

Example 3 (Homography computation). Two
images of a planar or infinitely far away scene are
related by a homography of the form

' ~He, z=(z,y1)", o' =y, 1),

(7)

where H is a nonsingular matrix, and ~ denotes
equality up to nonzero multiplier (Kanatani, 1996;
Harley and Zisserman, 2004) (Fig. 1(c)). We can al-
ternatively express (7) as the vector product equality

' x Hx = 0. (8)

If we let

¢ = (0,0,0,—z,—y, ~Lay',yy',y) ",
5(2) = (fE, Y, 17 07 07 07 —xx/, _yxl’ _$/)T7
5(3) _ (7l’y/, 7yy/,7y/7xz/’yx/7x/7070’0)—r, (9)

6 = (Hyy, Hia, Hi3, Hay, Hos, Has, Hsy, Hs, Hss) ',

(10)
the three component equations of (8) have the form
of (2) with L = 3. Note that £V, ¢® and ¢®
in (9) are linearly dependent; only two of them are
independent.
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3. STATISTICAL MODEL

For statistical analysis of the above problems, we
need a statistical model of observation. We regard
each datum x, as perturbed from its true value &,
by Ax,, which we assume to be independent Gaus-
sian variables of mean 0 and covariance matrix V [z, ].
We do not impose any restrictions on the true val-
ues &, except that they should satisfy (1). This is
known as a functional model. We could alternatively
introduce some statistical model according to which
the true values &, are sampled. Then, the model
is called structural. This distinction is crucial when
we consider limiting processes in the following sense
(Kanatani, 2008). Conventional statistical analysis
mainly focuses on the asymptotic behavior as the
number of observations increases to co. This is based
on the reasoning that the mechanism underlying noisy
observations would better reveal itself as the number
of observations increases (the law of large numbers)
while the number of available data is limited in prac-
tice. So, the estimation accuracy vs. the number of
data is a major concern. In this light, efforts have
been made to obtain a consistent estimator for fit-
ting an ellipse to noisy data or computing the funda-
mental matrix from noisy point correspondences such
that the solution approaches its true value in the limit
N — oo of the number N of points (Kukush et al.,
2002; 2004).

However, a peculiar characteristic of image pro-
cessing applications is that one cannot “repeat” ob-
servations. One makes an inference given a single set
of images, and how many times one applies image
processing operations, the result is always the same,
because standard image processing algorithms are de-
terministic; no randomness is involved. This is in
a stark contrast to conventional statistical problems
where we view observations as sampled from poten-
tially infinitely many possibilities and could obtain,
by repeating observations, different values originating
from unknown, uncontrollable, or unmodeled causes,
which we call “noise” as a whole. In image-based
applications, on the other hand, the accuracy of in-
ference deteriorates as the uncertainty of image pro-
cessing operations increases. Thus, the inference ac-
curacy vs. the uncertainty of image operations, which
we call “noise” for simplicity, is a major concern. Usu-
ally, the noise is very small, often subpixel (less than
one pixel) levels. In light of this observation, it has
been pointed out that in image domains the “con-
sistency” of estimators should more appropriately be
defined by the behavior in the limit ¢ — 0 of the noise
level o (Chernov and Lesort, 2004; Kanatani 2008).

In this paper, we are interested in image process-
ing applications and focus on the perturbation anal-
ysis for 0 ~ 0 with a fixed number N of data. Thus,
the functional model suits our purpose; if we were to
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analyze the error behavior in the limit of N — oo,
a model that specifies how the data increase would
be necessary. However, we cannot imagine how they
change, because the image data x,, @ =1, ..., N, in-
cluding the number N, is the property of the images
under consideration. If we observe other images with
different IV, the properties of the images are different:
They are different scenes. Thus, the asymptotic anal-
ysis for N — oo does not have much sense in image-
based applications. This is one of the reasons why
ML is regarded as the best tool for image-based es-
timation. Practical experience of image applications
suggests that ML almost always produces a desirable
solution. If one could arbitrarily increase the number
N of data, as in laboratory experiments, estimation of
the true values &, called nuisance parameters when
viewed as parameters, would not be consistent in the
ML framework, as pointed out by Neyman and Scott
(1948) as early as in 1948. However, the lack of con-
sistency, which some statisticians view as a drawback
of ML, has no realistic meaning in computer vision
applications. On the contrary, ML has very desirable
properties in the limit ¢ — 0 of the noise level o:
the solution is “consistent” in the sense that it con-
verges to the true value as ¢ — 0 and “efficient” in
the sense that its covariance matrix approaches a the-
oretical lower bound as ¢ — 0 (Chernov and Lesort,
2004; Kanatani 2008).

4. MAXIMUM LIKELIHOOD

Under our Gaussian noise model, maximum like-
lihood (ML) is equivalent to minimizing the Maha-
lanobis distance

N
I= Z(-’ia - mcwv[moz}il(i‘a - .’Da)),

a=1

(11)

with respect to &, subject to the constraint that

(€W (z.),0) =0, k=1,...L, (12)
for some 6. If the noise is homogeneous and isotropic,
(11) is the sum of the squares of the geometric dis-
tances between the observations x, and their true
values &, often referred to as the reprojection error
in the computer vision community (Hartley and Zis-
serman 2004). That name originates from the follow-
ing intuition: We infer the 3-D structure of the scene
from its projected images, and when the inferred 3-D
structure is “reprojected” onto the images, (11) mea-
sures the discrepancy between the “reprojections” of
our solution and the actual observations.

In the computer vision community, ML is known to
produce highly accurate solutions (Hartley and Zis-
serman, 1004). It can also be shown that the ML
solution achieves a theoretical accuracy limit, called
the KCR lower bound, to a first approximation in the
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noise level ¢ (Kanatani, 1994; Chernov and Lesort,
2004; Kanatani, 2008). Hence, not much accuracy
improvement can be expected any longer. As far as
image processing applications are concerned, where
noise is small, usually the subpixel level, ML is vir-
tually the ultimate desirable goal, and no necessity is
felt for further accuracy improvement. Rather, a ma-
jor concern is its computational burden, because ML
usually requires complicated nonlinear optimization.
The standard approach is to search the entire param-
eter space of &,, a = 1, ..., N, and 6, which usually
has very high dimensions, for the minimum of (11).
This strategy is called bundle adjustment (Triggs et
al., 2000; Hartley and Zisserman 2004), a term orig-
inally used by photogrametrists. This is very time
consuming, in particular if one seeks a globally opti-
mal solution by searching the entire parameter space
exhaustively (Hartley and Kahl, 2008).

A popular alternative to bundle adjustment is min-
imization of a function of @ alone, called the Sampson
error (Hartley and Zisserman, 2004), which approxi-
mates the minimum of (11) for a given @ (the actual
expression is shown later). The name “Sampson er-
ror” stems from the classical ellipse fitting scheme
of Sampson (1982). Kanatani and Sugaya (2010b)
showed that the exact ML solution, equivalent to
bundle adjustment, can be obtained by repeating
Sampson error minimization, each time modifying the
Sampson error so that in the end the modified Samp-
son error coincides with the Mahalanobis distance.
It turns out that in many practical applications the
solution that minimizes the Sampson error coincides
with the exact ML solution up to several significant
digits; usually, two or three rounds of Sampson er-
ror modification are sufficient (Kanatani and Sugaya,
2008; 2010a; Kanatani and Niitsuma 2010).

However, minimizing the Sampson error is not
straightforward. Many numerical schemes have been
proposed, including the FNS (Fundamental Numer-
ical Scheme) of Chojnacki et al. (2000), the HEIV
(Heteroscedastic Errors-in-Variable) of Leedan and
Meer (2000) and Matei and Meer (2006), and the
projective Gauss-Newton iterations of Kanatani and
Sugaya (2007). All these rely on local search, but the
iterations do not always converge if not started from
a value sufficiently close to the solution. Hence, accu-
rate approximation schemes that do not require itera-
tions are very much desired, even though the solution
may not be optimal, and various algebraic methods
have been studied in the past.

5. ALGEGRAIC METHODS

For the sake of brevity, we abbreviate £€*)(z,) as
£g€). Algebraic methods refer to those minimizing the
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algebraic distance

J = &P, 0)?

M=

==

0 ¢Me 0 = (0, M0), (13)
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where we define

L Qn S 20T
M= > el

a=1k=1

(14)

However, (13) is trivially minimized by 8 = 0 unless
some scale normalization is imposed on 6. The most
common normalization is [|@]] = 1; we call this the
standard LS. The crucial fact is that the solution de-
pends on the mormalization. The aim of this paper
is to find a normalization that maximizes the accu-
racy of the solution. This issue has been raised by
Al-Sharadqah and Chernov (2009) and Rangarajan
and Kanatani (2009) for circle fitting, by Kanatani
and Rangarajan (2010) for ellipse fitting, and by Ni-
itsuma et al. (2010) for homography estimation. In
this paper, we generalize their results to an arbitrary
number of constraints. Following Al-Sharadqah and
Chernov (2009), Rangarajan and Kanatani (2009),
Kanatani and Rangarajan (2010), and Niitsuma et
al. (2010), we consider the class of normalizations

(6, NO) = constant. (15)
Traditionally, the matrix IN is assumed to be posi-
tive definite, but here we allow IN to be nondefinite
(i.e., neither positive nor negative definite), so the
constant in (15) is not necessarily positive. Given the
matrix IV, the solution 6 that minimizes (13) subject
o (1), if it exists, is obtained as the solution of the
generalized eigenvalue problem

M6 = \NG. (16)
In the absence of noise (i.e., if the image operations
detected them without uncertainty), we have (6, &,)
= 0 for all @ and hence from (14) we have M6 = 0,
i.e., A = 0. If N is positive definite or semidefinite,
the generalized eigenvalue A is positive in the presence
of noise. The corresponding solution is obtained as
the generalized eigenvector 0 for the smallest A\. Here,
however, we allow IN to be nondefinite, so A may not
be positive. In this paper, we do error analysis of (16)
by assuming that A =~ 0, following Kanatani (2008).
So, we choose the solution to be the generalized eigen-
vector @ for the A with the smallest absolute value.
Since M is a random variable, it can become arbi-
trarily large with a small probability, and for a non-
definite N the solution € that minimize (13) subject
to (16) can become arbitrarily large. As a result,
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the expectation E[||@]]] of the resulting estimator 6
could possibly diverge to oo for some 6 (Cheng and
Kukush, 2006). In order to avoid such an anomaly,
we hereafter start from (16), which we identify with
the definition of our “algebraic method”. Once in the
form of (16), the solution @ has scale indeterminacy,
so we can adopt normalization ||@|| = 1 rather than
(16). Then, 6 is always a unit vector. The standard
LS is the choice of N = I, for which (16) becomes an
ordinary eigenvalue problem

M6 = )6, (17)
and the solution is the unit eigenvector € of M for
the smallest eigenvalue .

6. ERROR ANALYSIS

We can expand each £ in the form

e =+ el + 00l 4 (18)
where Eék) is the noiseless value, and Aiéff) is the ith
order term in Ax,. The first order term is written as

€T

ag(k) (o)
0

AP =T Az, TH = . (19)

=T,

We define the covariance matrices of é&k), k=1, ..,
L, by

I INTIRVNTICAN
= TWE Az Az TOT
= TPV JTOT,

vVEDIE )]

(20)

where E[-] denotes expectation. The Sampson error
that approximates the minimum of the Mahalanobis
distance in (11) subject to the constraints in (12) has
the following form (Kanatani, 1996; Hartley and Zis-
serman, 2004):

N L
K=Y 3 wieh o)Ed.0). ()
a=1k,l,=1

Here, Wi is the (kl) element of (V ), and V is
the matrix whose (kl) element is
Vo= ((0.V,]6)), (22)
where the true data values &, in the definition of
V(D¢ ] are replaced by their observations x,. The
operation (), denotes the pseudoinverse of trun-
cated rank r (i.e., with all eigenvalues except the
largest r replaced by 0 in the spectral decomposi-

tion), and r is the rank (the number of independent
equations) of the constraint in (12).
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Example 4 (Ellipse fitting). For the ellipse fitting
in Example 1, the first order error A€ is written as

.
o TaTa 0100 Az,
AlEa_2(0:zagao1o> (Aya '

The second order error As€,, has the following form:

(23)

AsE, = (A%, 2A2,Ays, Ay>,0,0,0) . (24)

Example 5 (Fundamental matrix computa-
tion). For the fundamental matrix computation in
Example 2, the first order error A& is written as

T

g, 10 00000 Az,
A = |0 00z,7,1000 Ay
15a To 007, 00100 Ax!,
0 200 0 50010 Ay,

(25)

The second order error A€, has the following form:

Ag€,, = (Ao Axl,, Az, Ayl 0, Ay Azl Aya Ay,
0,0,0)7. (26)
Example 6 (Homography computation). For

the fundamental matrix computation in Example 2,
the first order error A;£ is written as

000-10 07, 00\'/ Az,
A — [ 0000 =100 g 0| f Ay,

a 0000 000 00 || Az, |
0000 0 0Zagal/ \ Ay,
100000-2, 0 0\ /Az,

@ [010000 0 -z, 0 || Ay,

Aiga” = 000000 —Zo —Fo —1 | | Az, |’
000000 0 0 0/ \Ay,
—g, 0 0z, 00000\ [/Az,
@ [ 0 =7, 0 02,0000 Aya
M= g g 0 Ta 51000 || A2/,
T —Ta—-10 00000/ \ Ay,
(27)

The second order error Agﬁ&k) has the following form:

Az€L) = (0,0,0,0,0,0, Aza Ayl,, Ayalry,,0) T,

AqtP = (0,0,0,0,0,0, — Az, A, — Az, Ay, 0) T,
ALY = (~Ayl Azy, — Ay, Ay, 0, Azl Az,

Az Ay,,0,0,0,0)". (28)
7. PERTURBATION ANALYSIS
Substituting (18) into (14), we obtain
M=M+AM+AM+ -, (29)
where
M — 1 i ié(k)é(kﬁ (30)
N o Sa

a=1k=1
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L
€l

=1

Ag®T 4 A gWERT),
(31)

ZZ é(k)A ¢V T LA, €(k)A £(k)T

(32)

3

a=1

Z\H

AsM =

We also expand the solution 8 and A of (16) in the
form
0=0+200+00+-,
A=A+ AN+ AgA+ -+ (33)

Substituting (29) and (33) into (16), we have

(M + A1M + AsM + ) (0 + A0 + 200 + - - )
= (A +A N+ + - IN(O+A10+ 220+ ).
(34)
Equating terms of the same order, we obtain
M6 = AND, (35)
MAO+A M6 =XNAO+AXNO,  (36)
MA0 + AT MA,0+ A, M8
= ANA0 + A{IANA0 + A ANO.  (37)

We have M8 = 0 for the true values, so X = 0. From
(31), we have (8, A; M@) = 0. Computing the inner
product of (36) and @ on both sides, we see that Ay A

= 0. Multiplying (36) by the pseudoinverse M~ of
M from left, we obtain

A0 = —M~ A, MB. (38)
Note that since M = 0, the matrix M~ M (= Pyp)

is the projection operator in the direction orthogonal
to . Also, equating the first order terms in the ex-
pansion [|@ 4+ A10 4+ Ay + - - - || = 1 shows (0, A,0)
= 0 (Kanatani, 2008)0 hence PgA16 = A 6. Substi-
tuting (38) into (37) and computing its inner product
with @ on both sides, we obtain

Ad — (0,A;M0) — (0,A\MM A,M¥)
S 6, N0)
(0,T90)
=1 39
B.N0)’ (39)
where we put
T =AM — A\MM A, M. (40)

Next, we consider the second order error As6. Since 0
is normalized to have unit norm, we are interested in
the error component orthogonal to 8. So, we consider

Ay 0 = PyAy0 (= M MA,H). (41)
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Multiplying (37) by M~ from left and substituting
(38), we obtain

AyO = Ap)AM NO+M A MM A, M6
~M A;M6
(6,T6)

= M N6 - M T8.
(6.N0)

(42)

8. COVARIANCE AND BIAS

8.1 Covariance Analysis

From (38), the covariance matrix V[0] of the solu-
tion O has the leading term

V[0 =E[A10A,07]
1

= ﬁJ\’/[‘E[(AIM@)(Alz\/m)T]z\’/I‘

L

N
_ %M_E[Z S (ae®), 9)gl

a=1k=1

(l)T} M~

a,B=1k,l=1
Z(B) ()T o —
£re) T M
I - dige: ) zO)T
=M (3 D 0.V 00l el ) i
a=1k,l=1
1o
=M MM, (43)
where we define
1 N L A .
!
M =3 S 0.V l0e e ()
a=1k,l=1

In the above derivation, we have noted that from
our noise assumption we have E[Algfjmlgg”] =
SapVFD[E, ], where 0,5 is the Kronecker delta.

8.2 Bias Analysis

The important observation is that the covariance
matrix V[6] does not contain N. Thus, all algebraic
methods have the same covariance matriz in the lead-
ing order, as pointed out by Al-Sharadqah and Cher-
nov (2009) for circle fitting. This observation leads
us to focus on the bias. From (38), we see that the
first order bias E[A;0] is 0, hence the leading bias is
E[AZ$0)]. From (42), we have

E[Ay 6] = (0. E[T)6) ¢
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We now evaluate the expectation E[T] of T in (40).

From (32), we see that E[A;M] is given by
E[AsM)
v z(K) ENT
= 2 Y (6 Bl
a=1k=1
+EAEP AN T + Blaxe e T)
| N L
= N Z Z(V(kk)[g ]"’QS[E (k)T]) (46)
a=1k=1

where we have used (20) and defined
el = B[], (47)

The operator S[-] denotes symmetrization (S[A] =
(A+ A")/2). The expectation E[A\MM A, M]
has the following form (see Appendix):

E[A\MM A, M|

N L
=LY (wlar v el

a=1k,l=1
<£(k’ & > e

From (46) and (48), the expectation of T is

N L
BIT) = No— 5 30 3 (v, el

a=1k,l=1
+EY, M)V e, ]
+28[V g, M EPEDT), (49)

where we put

ii(vw’“’ | +25[6,7ePT]). (50)
a=1k=1

9. HYPERLS

We propose to use as N the expression E[T] in
(49), namely,

N = Neo LSS (i v, g0elT

a=1k,i=1

e e )V e,]
w28V, 1M ENENT]), (51)
Letting N = E[T] in (45), we see that
(6,N6)
(6,N6)

E[ALG] = M*( N - N)é —0. (52

Hyper Least Squares and Its Applications

Since the right-hand side of (49) contains the true val-
ues Ea and M, we replace Z,, in their definition by the
observation x,. This does not affect the result, since
the odd order noise terms have expectation 0 and
hence the resulting error in E[Ay 6] is of the fourth
order. Thus, the second order bias is exactly 0. We
call this scheme hyper least squares, or HyperLS for
short, after Al-Sharadqah and Chernov (2009). Note
that IN has scale indeterminacy: If IN is multiplied
by ¢ (# 0), (16) has the same solution 6; only A is
divided by c. Thus, the noise characteristics V*D[¢ ]
in (20) and hence V[z,] need to be known only up
to scale; we need not know the absolute magnitude of
the noise.

For numerical computation, standard linear alge-
bra routines for solving the generalized eigenvalue
problem of (16) assume that N is positive definite,
but here N is nondefinite. We circumvent this prob-
lem by rewriting (16) in the form

N6 = %M@. (53)

The matrix M in (14) is positive definite except in the
absence of noise, in which case the smallest eigenvalue
is 0.

Example 7 (Ellipse fitting). If the noise in
(T, Ya) is independent and Gaussian with mean 0
and standard deviation o, the vector e, (= e")) in
(47) is given by

eq =02(1,0,1,0,0,0)". (54)
Hence, the matrix N in (50) is given by

Nt =
622 6Zala T2+ Y2 634 2ys 1
N 62 aYa 4(17(21 =+ y(Qy) 620Ya 4Ya 420 0
o2 22+ 92 62aYa 632 214 6yo 1
N Z_:l 62, 4y, 22, 4 0 0
2y 4z, 6Ya 0 4 0
1 0 1 0 0O

(55)

The method due to Taubin (1991) is to use as N

a:i :r(,y(, 0 x4
N Tala x + ya xaya Ya Ta 0
4o 0 TaYa ya 0 0 0
NTaubin = W Z To Yo 0
56
0)

a=1

1 00
0 Tq Yo 0 10
0 0 0 0 00
which we see is obtained by letting e, = 0 in
As pointed out earlier, the value of ¢ in (55) and (56)
need not be known. Hence, we can simply let o =
in (16) and (53) in actual computation.
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Figure 2: (a) 31 points on an ellipse. (b) Two views of a curved grid. (¢) Two views of a planar grid.

Example 8 (Fundamental matrix computa- (/) ) 0 —T O/ 0
tion). If the noise in (z4,yq) and (2/,y) is in- ~TaYa 0 0 ~La 0
dependent and Gaussian with mean 0 and standard 0 0 0, 0 0
deviation o, the vector e,, (= eM)) in (47) is 0, so the , vola  ZLa “Ya O, 0
. Ya+ZTa+1 Yo 0 —Ya 0 ,
N in (50) becomes 0 0 0
0 0 a:i—f—a:f —|—yfl2 , Qxa2ya , 2T
A 0 2% aYa o+ T+ Yn 2Ya
22 4+2? iyl 7, Tala 0 0 0 21,3 Y +2ya+y g
s T EYL Ya 0 Zala (58)
xl, Yl 1 0 0
2 TaYa 0 0 y2+a2 Lyl For homography computation, the constraint is a
Nr= WZ 0 TaYa O TLY, Yo +Ys  vector equation in (8). Hence, the method of Taubin
a=1 0 0 0 y, Yo (1991) cannot be applied. However, the use of the
Lo 0 0 Yo 0 above N1 as IN plays the same role of the method
0 Ta 0 0 Yo of Taubin (1991) for ellipse fitting and fundamental
0 0 0 0 0 matrix computation, as first pointed out by Niitsuma
0 2, 00 et al. (2010). As before, we can let o = 1 in the
0 0 2,40 matrix N in actual computation.
9 000 10. NUMERICAL EXPERIMENTS
T, Yo 00
ylla 8 y(‘)l 8 (57) We did the following three experiments:
01 0O Ellipse fitting: We fit an ellipse to the point se-
0 010 quence shown in Fig. 2(a). We took 31 equidis-
0 0 00 tant points on the first quadrant of an ellipse

It turns out that the use of this matrix N1 coincides
with the well known method of Taubin (1991). As
in ellipse fitting, we can let o = 1 in (57) in actual
computation.

Example 9 (Homography computation). If the
noise in (Za,Yo) and (z7,,y)) is independent and
Gaussian with mean 0 and standard deviation o, the
vectors el in (47) are all 0, so the Nt in (50) be-
comes

w§+yf+1 Tala Lo —il‘fxy&
TalYo  Yatyatl Yo 0
Ta Yo 1 0
o2 N —zhYh 0 0 z24z2+1
Nt = Fz 0 —zhys 0O ToYo
a=1 0 0 0 Lo
—z 0 0 —yh
0 —x, 0 0
0 0 0 0

with major and minor axes 100 and 50 pixels,
respectively.

Fundamental matrix computation: We com-
pute the fundamental matrix between the
two images shown in Fig. 2(b), which view a
cylindrical grid surface from two directions. The
image size is assumed to be 600 x 600 (pixels)
with focal lengths 600 pixels for both. The 91
grid points are used as corresponding points.

Homography computation: We compute the ho-
mography relating the two images shown in
Fig. 2(c), which view a planar grid surface from
two directions. The image size is assumed to be
800 x 800 (pixels) with focal lengths 600 pixels
for both. The 45 grid points are used as corre-
sponding points.

For each example, we compared the standard LS,
our HyperLS, its Taubin approximation, and ML, for
which we used the FNS of Chojnacki et al. (2000)
for ellipse fitting and fundamental matrix compu-
tation and the multiconstraint FNS of Niitsuma et

22
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Figure 3: The true value 8, the computed value 6,
and its orthogonal component A8 to 6.

al. (2010). As mentioned in Sec. 4, FNS and simi-
lar schemes like HEIV and projective Gauss-Newton
iterations minimize not directly (11) but the Samp-
son error in (21), which approximates the minimum
of (11), and the exact ML solution can be obtained
by repeated Sampson error minimization (Kanatani
and Sugaya, 2010). However, It has been observed
that the solution that minimizes the Sampson error
agrees with the ML solution up to several significant
digits (Kanatani and Sugaya, 2008; 2010a; Kanatani
and Niitsuma, 2010), and hence FNS can safely be
regarded as minimizing (11).

Let @ be the true value of the parameter 6, and 0
its computed value. We consider the following error:
A0 = Pyo, Pyo=1-00". (59
Recall that matrix Pg represents the orthogonal pro-
jection onto the space orthogonal to €. Since the
computed value @ is normalized to a unit vector,
it distributes around @ on the unit sphere. Hence,
the meaningful deviation is its component orthogo-
nal to 6, and we measure the error component in
the tangent space to the unit sphere at 6 (Fig. 3).
The theoretical accuracy limit, called the KCR lower
bound (Kanatani, 1996; Chernov and Lesort, 2004;
Kanatani, 2008), is given by

11 &

E[A*0AY0T] - + (5

1k,

T (R zOT\ ™
(gl

Vkcrl[6], (60)

where Wé’“” is the value of Wu(ékl) in (21) evaluated

by using the true values 6 and Egkl). The relation >
means that the left-hand side minus the right-hand
side is a positive semidefinite symmetric matrix, and
the operation (-)~ denotes pseudoinverse.

We added independent Gaussian noise of mean 0
and standard deviation ¢ to the x and y coordinates
of data each point and repeated the fitting M times
for each o, using different noise. We let M = 10000 for
ellipse fitting and fundamental matrix computation
and M = 1000 for homography computation. Then,
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we evaluated the root-mean-square (RMS) error

E (61)

1 M
a7 2 llate |,
M a=1

where A8 is the value of A@ in the ath trial. We
compared this to the following bound obtained by
computing the trace (60):

E[|AL0]] > v/trVior 6],

Figure 4 plots for o the RMS error of (61) for each
method and the KCR lower bound of (62). We ob-
serve the following:

(62)

Ellipse fitting: The standard LS performs poorly,
while ML exhibits the highest accuracy, almost
reaching the KCR lower bound. However, ML
computation fails to converge above a certain
noise level. In contrast, HyperLS produces, with-
out iterations, an accurate solution close to ML.
The accuracy of its Taubin approximation is
practically the same as the traditional Taubin
method and is slightly lower than HyperLS.

Fundamental matrix computation: Again, the
standard LS is poor, while ML has the highest
accuracy, almost reaching the KCR lower bound.
The accuracy of HyperLS is very close to ML. Its
Taubin approximation (= the traditional Taubin
method) has practically the same accuracy as
HyperLS. The fundamental matrix has the con-
straint that its rank be 2. The comparison here
is done before the rank constraint is imposed.

Homography computation: In this case, too, the
standard LS is poor, while ML has the high-
est accuracy, almost reaching the KCR lower
bound. However, ML computation fails to con-
verge above a certain noise level. The accuracy
of HyperLS is very close to ML. Its Taubin ap-
proximation has practically the same accuracy as
HyperLS.

In all examples, the standard LS performs poorly,
while ML provides the highest accuracy. We also see
that ML computation may fail in the presence of large
noise. The convergence of ML critically depends on
the accuracy of the initialization. In the above ex-
periments, we used the standard LS to start the FNS
iterations. We confirmed that the use of our HyperLS
to start the iterations significantly extends the noise
range of convergence, though the computation fails
sooner or later. On the other hand, HyperLsS is al-
gebraic and hence immune to the convergence prob-
lem, producing a solution close in accuracy to ML in
any noise level. The Taubin approximation is clearly
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Figure 4: RMS error vs. the standard deviation o of noise added to each point. 1. standard LS, 2. HyperLS, 3. Taubin
approximation, 4. ML. The dotted lines indicate the KCR lower bound. (a) Ellipse fitting. (b) Fundamental matrix

computation. (c) Homography computation.

inferior to HyperLS for ellipse fitting but is almost
equivalent to HyperLS for fundamental matrices and
homographies. This reflects that fact that while & is
quadratic in z and y for ellipses (see (4)), the corre-
sponding ¢ and €® are bilinear in z, y, 2/, and y’
for fundamental matrices (see (6)) and homographies
(see (9)), so el in (47) is 0.

In computer vision applications, we frequently do
inference from multiple images based on “multilinear”
constraints involving homographies, fundamental ma-
trices, trifocal tensors, and other geometric quantities
(Hartley and Zisserman, 2004). In such a situation,
although the constraint itself is nonlinear, it is lin-
ear in observations of each image, so we have e((lk) =
0, because noise in different images are assumed to
be independent. In such a problem, the accuracy of
HyperLS is nearly the same as its Taubin approxi-
mation. However, HyperLS is expected to be clearly
superior if the constraint involves nonlinear terms in
observations of the same image.

11. CONCLUSING REMARKS

We presented a new form of least squares (LS),
which we call “HyperLS”, for geometric problems
that appear in computer vision applications. Doing
rigorous error analysis, we maximized the accuracy by
introducing a normalization that eliminates statisti-
cal bias up to second order noise terms. Numerical
experiments for computing ellipses, fundamental ma-
trices, and homographies show that our method yields
a solution far superior to the standard LS and compa-
rable in accuracy to ML, which is known to produce
highly accurate solutions but may fail to converge if
poorly initialized. Thus, our HyperLS is a perfect
candidate for ML initialization. We compared the
performance of HyperLS and its Taubin approxima-
tion and attributed the performance differences to the
structure of the problem. We have also discussed in
detail how image-based inference problems have char-
acteristics very different form conventional statistical
applications, with a view to serving as a bridge be-
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tween mathematicians and computer engineers.

In this paper, we analyzed only the leading covari-
ance term, which is O(0?), and the leading bias term,
which is also O(c?). Due to technical difficulties, we
are unable to evaluate at this stage how higher order
terms of O(o?) affect the solution. This is a remain-
ing issue to be studied in the future.
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Appendix

The term E[AlMM_AlM] is computed as follows:

[AlMM_AlM]
N 3
k) or— 1 z( =0T
CES )Y CONTIRRN L L W CONT RN |
a:l k=1 B=11=1
1 N 2 (k) (k)T T
WT
= ZZZE AP+ MEPE) M (E 15) +A1€ 5 )]
o =1 k,1=1
L = o® C—z2() A LOT | F(R) c DT
el BEDAEPTM EYAEDT + €A P TM ALY EY
o, f=1 k=1
MeME) MEY Mgl T + AP M ael e
N
1 k vr— 20 z(k cr— ()T
== 2 Z EED (26D, M ED) AT + €D (26D, 2,60
a,f=1k

A ék (€ Mg + 2l € M AEl)ES ]

1 5k _ E)=(DT
= 7 Z Z B0, MTEET MY + (ae), M A[)EPEY
a,B=1k,l=1
+ED MED) AP AEDT 4 AP (2D, EP)EYT]
N 3
1 Z(k)  ip—2(l - (k) 2T
=5 > D BIE (M E)) T Al Angl T + M Al AT e
a,B=1k,l=1
+ED, M ED) AP A DT £ AW (8D T ER)EDT
N 3
1 2B g (DT o — - 2(B) z()T
=5 2 > (EVE) T M BAEP M) T + M g g e €
a,B=1k,l=1

2(k) -z o= (k)2(DT
+(E0 MEIEDEP MY + E[aEP M) 1M ENEYT)

5 N 3
o (k) z(DT =p— - — 2 (k)=z(D)T
= 25 2 D (EVE) T M 0V lgn] + 6l M T oas Vi €N IES €S
a,B8=1k,l=1

HELS MTER)0,Ve " 6] + bapVi V)M ELES )

9 N 3
= w2 2 (66 MVl v e e e + € e v e

N 3
= 00 3 (I Ve e ENT + €, M ED )WV leL] + 2SIV g M EVED ).

Thus, (48) is obtained.
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