細胞膜透過性に及ぼす高圧の影響

第1編筋肉負傷流に就て

岡山大学医学部生理学教室(主任:林教授)

講師 岡、田 勝 喜

[昭和29年9月17日受稿]

I 緒 言

蛙の剔出筋が周囲から強く平等に圧迫され, 其の圧が200~400気圧になると筋肉は短縮し, 圧が除かれると元状に復る¹⁾²此の高圧の作 用機構を究明する目的で,蛙剔出筋負傷流の 高圧(400気圧迄)による変化を知る為に, 以下の如き実験を行つた.蓋し筋肉形質膜の 膜電位に対する高圧の作用が伺へると考へた からである.併し勿論負傷流の発生機序に関 しては種々議論がある.故に更に条件の加は つた本実験の結果に就ては,解釈の困難な点 もある.

Ⅲ 実験方法

蛙の腓腸筋を高圧ボンベに入れ、ボンベ内から導線を引き出し、検流計を示零器として 補償法により、筋肉の正常面と負傷面との電 位差を測定した。高圧ボンベは教室の大和³³ 等の用ひた装置で、圧力は最高 600 気圧迄上 昇する。検流計は島津製L型、電位差計は島 津製 K₂ 型を用ひた。

蛙腓腸筋の膝関節側を筋全長の¹⁴~¹⁸だ け切捨て,残りの筋の正常面(傷いて居ない 表面)と其の切断端との間の電位差を測つた. 電導子は白陶土を用ひた亜鉛一硫酸亜鉛不分 極電導子で,筋に接する部分は陽極(正常面). 陰極(切断面)共に直径約1粍の円である.

Craib⁴⁾, 杉⁵⁾⁶⁾ 等によると, 負傷筋表面の 電位は負傷面に近い正常部で最も高く, 負傷 面では急に低くなる. 故に正常面に接する不 **分極電導**子は可及的に負傷部に近附けた. 高 圧ポンペ内はモビル油で充されて居り, 電導 子に接着した筋肉をそのまゝ油の充ちたボン ベ内に入れ,その中から導き出した導線を電 位差計に連絡した.

Ⅲ 実験成績

骨格筋の負傷流は時間の経過と共に徐々に 低減する.上記の如き実験条件の下にポンペ 外で観察した負傷流の時間経過による電圧変 化は第一図(a)のようである.加圧装置の構 造上高圧ポンペ内はモビル油である為,筋肉 を直接其の中に入れると負傷流に若干変動が あるが(第1図(b),矢印),以後の経過は上 記正常状態の場合(第1図(a))に比し相違 がない.(第1図(b))

A,作用させる圧力の大さに就て.

筋に圧力を瞬間的に加へたり,除いたりする(増圧,減圧時間は¹/₂秒以内)と,一般に

加圧の瞬間,負傷流の電圧は著減し,以後は 加圧前と略同様に,時間の経過と共に電圧は 徐々に下る。そして加圧の瞬間に於ける急激

な電圧減少の度合は作用させる圧力が大きい 程著しい. 但し圧力の大さと減少電圧との精 しい量的関係は確定出来ない.(第2図(a)-100 気圧,(b)-300 気圧)

第3図 圧力による筋肉負傷電圧の変化

第4図 短時間の加圧による負傷電圧変化. 300 A P

B. 加圧と降圧との差異 加圧の瞬間急激に減少し た負傷電圧は,筋肉をその ま、加圧状態に置くと,略 加圧前に似た経過で時間と 共に更に減少する.此の時 除圧して大気圧に戻すと其 の瞬間,加圧の場合と同様 急激な電圧の減少が起る. 但し其の電圧減少の程度は 加圧の際に比べ一般に小さ い.(第三図 200 気圧)

C. 圧力を作用させて居る時間に就て.

極く短時間(10秒及び30 秒間)加圧して後,直に除圧すると,降圧時 に起るべき電圧の急低下が現はれない.(第 4図(a),(b))此の実験操作では精密な観測 が出来ない為に由るのか,或は降圧時の電圧 減少は,加圧時に比し小さいから,斯る短時 間の加圧では起らないのに由るのか明かでない.1分間加圧の後除圧すると,降圧に際し て著明な電圧減少が明瞭に起る.(第4図(c))

> 即ち1分間以上加圧すれば, 降圧時の電圧減少が起ると も考へられる。

D. 加圧,降圧速度に就 て.

上述の実験は凡て加圧, 降圧を瞬間的に行つた.第 5図(a)は3分間で1気圧 より300気圧迄加圧し,第 5図(b)は2分間で300気 圧から大気圧迄降圧した時 の電圧経過である.何れの 場合も圧力は時間に比例し て変化させるように注意し

細胞膜透過性に及ぼす高圧の影響

加圧及び降圧速度を斯の 如く緩にしても、圧力の 変化に際し電圧は急激に 減少する。

E. 圧力と電気抵抗と の関係

次に圧力の作用による 筋の直流電気抵抗の変化 を観察した。方法はホイ トストン橋の未知抵抗の 部に、蛙腓腸筋を其の正 常部に貼用した二つの不 分極導子を介して連結し た (第六図) 斯る装置 で筋肉を流れる電流は極 く微弱で、筋肉は少しも 動かない事を確めて実験 を行つた.

此の方法では時間的に 精しくは測れないが、加 圧の瞬間抵抗は著減し, 降圧の瞬間抵抗は直ちに 復旧する。(第7図(a)) 又作用させる圧力が大き い程,抵抗の減少も大きい.(第7図(b))

۰.

圧力の作用による負傷流と直流抵抗の変化 を比較すると、加圧の瞬間は両者共減少する が,降圧の瞬間は負傷電圧が減少するに反し, 直流抵抗は増大して略元に戻り、両者は著し く相違する。

2

A

6

尚硫酸亜鉛、リンゲル氏液、白陶土等を含 む電導子の抵抗も圧力の作用で減少する. (第7図C)併し其の抵抗減少の度合は第7 図 b (筋肉と電導子を合はせたもの) に比し

第5図 緩速度加圧による負傷電圧変化

かなり小さく、筋肉自体の変化は此の電導子 の減少抵抗量を差し引いたものである事は言 う迄もない。

200 300

400 (A.P.).

100

3 (min)

IV 総括並に考按

生体の電気発生の機序が結局物理化学的の ものである事は明白で、其の電気現象には当 然無金属的な電気発生の理論が適用されねば ならぬ、併し其の発生機序は尚全く明かであ るとは云ひ難い現状である7)8)9)12)13).

併し本実际成績を検討して見るに Bernstein の膜説でかなり充分理解出来そうなの で,膜説の仮定するような発生機序を持つ負 傷流に対し,高圧が及ぼす作用に就て成績を 吟味する.

先づ加圧により筋肉の電導性が増す事実 (実験E)に注目する. 之より此処に計測し た抵抗値(第七図 b) は筋肉の抵抗の他に不 分極電導子の夫れの加はつたものである. 従 つて此の値の圧による変動は筋肉並に不分極 電導子の電解質溶液の圧効果が含まれるに相 違ない. 併し第7図Cに見るように筋肉を介 在しない電導子のみの電導度の圧効果に比し 筋肉を含む際(b)の圧効果が遙かに著しい (急勾配を示す)事は,一応半透性膜の透過 性の増進と考へてよかろう. 而も400気圧迄 では作用する圧力が大きい程抵抗の減少も大 きく, 従つて膜透過性は増進する事になる.

次に高圧と負傷流の関係を見ると、加圧の 瞬間に於ける負傷電圧の著減は、圧力によつ て細胞膜の透過性が高まり、陽イオンのみな らず或る種の陰イオンも膜外へ出る為それ迄 成立して居た電気二重層の一部が破れて起る のであろう.其の電圧減少の程度は圧力が大 きい程大きい(400気圧迄)から、作用する 圧力が大きい程膜透過性の亢進は大きいと考 へられる.但し定量的な関係は詳でない. Ebbecke¹⁾、丹原²⁾等は 200~400気圧の加圧 で筋が短縮する事を確認したが、本実験では 筋が短縮を起すより低い圧力(50~200気圧) で既に著明な負傷電圧の減少が見られる.

次に加圧後1分程経つて後は電圧が加圧前 と略同様な時間的経過をたどる事は,其の時 の圧力で透過性の増した細胞膜を出入するイ オンの配分移動が,其の条件で平衡するに由 ると考へられる.即ち加圧前の電気二重層は 一部破壊され,加圧により増大した透過性を 有する膜を尚通り難い陰イオンと膜外の陽イ オンとが再び新しい電気二重層を作るのであ ろう.実験成績に依ると圧力が大きい程電圧 の減少も大きいのだから,圧力を大きくする 程(400気圧迄)量質共に陰イオンの膜通過 は容易になると考へたい.

真

降圧に際しての負傷電圧減少は些か説明し 難い事実であるが、次のように解釈出来る。 厚ち正常な膜を通り得る陽イオンは特定のも のである故,加圧して膜の透過性が増すと, それ迄は膜を通り得なかつた陽イオンも膜を 通過出来るようになる。此の時前述の如く陰 イオンも透過するわけであるが、同一条件下 では陰イオンは陽イオンに比し膜を通り難い と考へる、換言すれば陽イオンは常に陰イオ ンに対し先行する。陽イオンが先づ膜を透過 すると、電気的平衡の関係から陰イオンがそ れに続いて膜を通るか、或は其の陰イオンが 膜を透過し難い時は陰陽両イオンにより膜の 内外で電気二重層が出来る。故に加圧状態で 膜の透過性が増して居る時、透過可能な陽イ オンは一定の速度で膜を通過して居り、此の 時急に降圧すると其の瞬間膜の透過性は減少 し、一定の速度で膜外へ出て居た陽イオンの 一部は透過を遮断され、相対的に一時膜外の 陽イオンは減少する事になり, 負傷電圧は低 下する結果になる。併し斯る状態は極く短時 間で、一時混乱した陰陽両イオンの平衡が回 復すれば負傷電位は降圧直前近く迄戻る.(第 六図C)

更に加圧速度を緩にしても(実験D)負傷 電圧が変動する事実は負傷流に対する圧作用 に関し、時間的要素が重要でないと考へられ る. Ebleche^D も圧力に関して所謂「忍び込 み」現象が見られないと云ひ、丹原^{2D} も高圧 による筋短縮の閾値に対し、加圧速度は無関 係であると報告して居る事から見て、負傷電 圧に対する高圧の作用に時間的要素がない事 は意義深いことである.

V 結 論

別出筋(蛙腓腸筋)に高圧(400気圧迄) を作用せしめ、其の時の負傷流の変化を観察 して次の結果を得た。

1) 加圧装置の関係上筋肉をモビル油に浸 したが負傷流の時間的経過は正常状態に比べ て相違がない。 2) 高圧を作用させる瞬間及び高圧を除く 瞬間に負傷電圧は著減する. 其の程度は加へ る圧力が大きい程著しく,又加圧の影響は降 圧の夫れに比し著しく大きい.

3) 加圧並に降圧による負傷電圧の減少は 加圧及び降圧速度に関係しない。

4) 筋肉の直流電気抵抗は高圧を作用させ

文

- Ebbecke U. : Pflüger Arch. 159 (1914) 79, 236 (1935) 662.
- 2) 丹原 岡山医誌. 64卷, 5号 (1952) 909.
- 3) 大和: 岡山医誌. 64巻, 5号 (1952) 859.
- 4) Craib W. H. · J. physiol. 66 (1928) 49.
- 5) 杉: Jap. J. med. Sci. Biophysics. II (1934) 17.
- 6) 杉: 生理学講座. 第2巻, 1A. 1, 7.
- 7) Hermann L. Pflüger Arch. 15 (1877) 191.
- 8) Bernstein J. u. Tschermark. Pflüger Arch.

て居る期間に相当して減少し、又圧力が大き い程抵抗の減少が強い。

5) 以上の事実は筋肉形質膜の透過性が圧 力の作用で増大すると理解される。

擱筆するに当り終始御懇篤なる御指導と御校閲を 賜つた恩師林教授並に種々御助言を賜つた西田教授 に対し深く感謝の意を表す。

献

103 (1904) 67.

- 9) 杉: Jap. J. med. Sci. Biophysics IV (1936) 123.
- 10) Biedermann · Elektrophysiologie (1895)
- 11) 橋田・生体の電気発生.
- 12) Hodgikin and Huxley Nature 144 (1939) 710.
- 13) Hodgikin and Huxley : J. Physiol. 104 (1945) 176.

Department of 1 Physiology, Okayama University Medical School. (Director Prof. Dr. K. Hayasi)

Effects of Hydrostatic High Pressure on the Permeability of Plasma Membrane

1. Resting Current of Muscle

By

Katuki Okada

Having taken observation on the resting current as hydrostatic high pressure has been evenly imposed upon isolated muscle (frog's gastrocnemius), obtained the following results; -

Due to the high pressure, injury potential of skeletal muscle decreases remarkably, while electric conductivity of any muscle indicates a great increase.

These facts may probably ascribed to the augmented permeability of plasma membrane, due to high pressure.