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1. Introduction

In a previous issue of this journal (Fujimoto and Ranade (1998», I

produced jointly with Professor Ravindra R. Ranade an article on the

univalence of nonlinear mappings employing qualitative information

about the sign patterns of the Jacobian matrix of a given differentiable

transformation. The proof therein is based on one of the mean value

theorems for multivariable functions. In the final section of the above

paper, we suggested possible generalizations, among which is the one

concerned with the domain of a mapping. A given space need not be the

Euclidean space over the real field. All we need is an ordered vector space

which accommodates the construction of matrix as well as determinant

theory where Mx = 0 implies the vector x = 0 provided the determinant of

M is not zero. Since we do not use inverse matrices, the above

requirement is satisfied by any integral domains, more precisely ordered

integral domains. By this extension we can deal with the univalence

problem for models with indivisibility of commodities and / or processes.

Certainly this can be useful only when the existence of a solution is

guaranteed.
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In this note, I will explain in more detail how the above extension

proceeds. The underlying idea is the same as in the previous note, and we

establish a sort of mean value theorem for a mapping from a space

consisting oflattice points into itself.

2. Assumptions and Notation

Let us take up an ordered integral domain Q . This Q is an -integral

domain with a total order which has the following three properties:

o 1 : if a ~ b and c ~ d, a + c ~ b + d .

o 2: if a ~ b , - a ~ - b .

03: if. a > 0 and b > 0, ab > O.

A linear space over Q we consider is a set of n-tuples of Q , denoted as

Q n, each of which elements belongs to Q. Addition, subtraction, inner

product, and scalar multiplication are to be defined as in the normal

Euclidean space over the real field.

Now consider a mapping I;: (XI,X2,'" ,xn) from a subset D in Qn to

Q. For this mapping, we define the 'gradient' VI;: (gl,g2,'" ,gn),

something like (+, -,0, *, ...). The four signs have the following meanings:

(1) gj = + : when I is always increasing with respect to Xj'

(2) gj = - : when I is always decreasing with respect to Xj .

(3) gj = 0: when I is not dependent upon Xj .

(4) gj = * : the remaining cases complementary to the above (1) to (3),

3. Main Proposition

Now we are ready to prove this
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Lemma 1: If f(x) = f(y ) for x, y E Q n such that x f= y, then there exists a

vector P such that P •Z = 0, where and Z = x - y, and P has the same sign

pattern as the gradient. (The sign * can be any value. And P •Z stands for

the inner-product of two vectors.)

Proof. Let us prove this lemma by mathematical induction on the

dimension. When n = 1, the sign in the gradient must be either 0 or *. So,

the lemma is trivially true by setting p = O. Consider the case where

n = 2. If one of the elements in Z is 0, this case reduces to the case n = I .

Thus, we assume both the elements in z is non-zero. Without loss of

generality we suppose these two elements are 'positive' (> 0) because we

can reverse the direction of any coordinate. Then the two gradients cannot

be both positive or negative. Again without losing generality we can

regard one of them as + and the other as -. We have to solve the

equation: PIZI +PZZZ = 0, where ZI, ZZ > 0, and a pair of solutions must

satisfy PI > 0 and pz < O. Just choose PI = zz and pz = - ZI, and indeed

they are in Q .

Well now suppose the lemma is valid when n = m - 2 and m - 1 with

m > 2, and prove it when n = m. Again we can safely assume all the

elements of Z is positive. If one of the gradients is either 0 or *, the case

reduces to the case n = m - 1. So, every entry in the gradient is either + or

-. Not all the entries can' be positive nor negative, and so there should be

at least one pair of entries (i ,j) with the sign pattern (+, -). As in the case

n = 2, we can find out a pair of values (Pi, Pj) such that they are in Q , and

Pi Zi +Pj Zj = O. Thus, the case can be handled as the case n = m - 2.

Therefore by mathematical induction, the desired result follows. D

Using Q n , we can construct the theory of matrices and determinants

as in the case of R n except for inverse matrices and things related to
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inverse elements. Consider a system of simultaneous 'linear' equations

with coefficients all in Q : Az = 0, or more precisely

allz, +a 12z, + + alnZn = 0

az,Z, +a"Z, + +aznZn = 0

Lemma 2: If Az = 0 when I A IF 0, Z must be O. (The symbol I A I means

the determinant of A as in the usual theory.)

Proof. This can be proved by the elimination method. Note that the value

IA I is also in Q, and since Q is an integral domain, Z must be O. 0

At last we come to consider a 'nonlinear' mapping f == (/1,/2, ... ,fn)'

from a domain D into a subset of Qn. The 'Jacobian' matrix of f is defined

to be a matrix whose i-th row is the gradient of Ii .

Proposition: If the Jacobian matrix off keeps the same sign pattern on

the domain D, and it is known to be 'regular' by the sign pattern only,

then f is univalent on D .

Proof. Suppose there exist two solutions x and y. Defining Z == x - y, we

have a set of equations by the above Lemma 1; Az = O. If x and yare

distinct, Z is not zero, while by assumption IA IF O. This is a contradiction

to Lemma 2. o
As in the previous article we raise four examples of sign-regular

pattern :

+ 0

[~
+

~](: :), + 0
+ , and

0 +
+

0 0

The second example comes from Morishima et al. (1973, p. 40), while the
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last matrix is again from Quirk (1997, p. 133) with the (1, 3)-element

changed from 0 to -.

4. Conclusions and Remarks

The method based on the mean value theorem has at least one merit.

This can be semi-qualitative : one can use semi-quantitativeinformation

to establish the univalence. For example, when we know some or all

entries of the Jacobian matrix satisfy a certain set of quantitative

constraints and these constraints are sufficient to show the regularity of

the Jacobian together with the given qualitative information, the

injectiveness follows. This is because by the very nature of the mean value

theorem (Apostol (1974), p. 355), the value of each element in the

Jacobian matrix satisfies the presumed quantitative constraints. On the

other hand, the proposition presented here, as it stands now, cannot be

strengthened by quantitative information. And yet it gives a benefit. The

domain D need not be convex, and can be even discrete. When D is

formed of a set of lattice points, the existence of a solution becomes a

problem. One exception is the case in which I(x) = x - T(x) - d, where

each member function ofT(x) is increasing with x. (See Fujimoto (1986).)

The reader may wonder how our result can be applied to models with

indivisibility because every commodity is characterized by the same

integral domain. This is not a problem as we can choose a suitable unit of

measurement for each commodity. Or, we can allow for a different

integral domain for each commodity, and proceed in almost the same

manner. In the latter case, scalar multiplication is defined for the ring of

integers.
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A further research topic, if interesting enough so far, is how to

restrict our target spaces so that some quantitative information can be

incorporated, and by so doing, the first theorem in Bandyopadhyay and

Biswas (1994) may be included in that version of proposition as a special

case.

A final remark. The reader can be familiar with qualitative economics

by first reading the books by· Quirk and Saposnik (1968) and by

Morishima et al. (1973), then a classical paper by Lancaster (1962), and a

recent paper by Quirk (1997) which puts more emphasis on stability

problem.
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Abstract

This note is a sequel to the previous one published in this journal

(Vol. 30, No.1). In that article, we used one of mean value theorems to

prove the univalence of a nonlinear mapping based on the qualitative

regularity ofthe Jacobian matrix. The qualitative regularity is a property

of a matrix whose regularity is shown to be valid by using only the sign

patterns ofmappings involved.

In this note, we extend the result into a vector space over an integral

domain. The vectors themselves are ofn -tuples of elements in the integral

domain. This integral domain is totally ordered, and some natural

properties are assumed concerning this order.

First two lennnata are given, and the first one is in fact a sort of mean

value theorem for mappings from a direct product of discrete spaces into a

discrete space, and utilizes mathematical induction. The second lemma

depends on the fact that theory of matrices and determinants can be

constructed also on a ring except for inverse matrix. Finally, our main

proposition derives from the very integrity of a given domain.

Another merit of the result is that the domain of a mapping need not

be convex, and can be even a set oflattice points.
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