Subrenal capsule assay 法による 制癌剤感受性試験に関する研究

第 1 編

Subrenal capsule assay 法の基礎的検討

岡山大学医学部第二内科学教室(指導:木村郁郎教授)

多 田 敦 彦

(平成2年8月30日受稿)

Key words: Subrenal capsule assay 法,制癌剤感受性試験,ヒト肺小細胞癌株

楮 言

ヒトの癌は、組織学的には同一の腫瘍であっ ても個々の症例により代謝学的, 酵素学的, 超 微形態学的にまったく異なることが報告されて いる1)2)。また、臨床的に同一の組織型の腫瘍に 対して同じ制癌剤による治療を行っても、 個々 の症例で抗腫瘍効果の異なることが経験される. 従って、制癌剤治療に先立ち個々の腫瘍の制癌 剤に対する感受性を評価することは、制癌効果 の向上という意味において有意義である. これ までに, in vitro および in vivo での各種制癌 剤感受性試験が開発されてきた. うち in vitro の感受性試験では、human tumor clonogenic assay (HTC) 法の有用性が確立され、すでに臨 床応用3)や癌細胞の生物学的研究の手段として4) 利用されている。しかし、in vivo の感受性試験 ではヌードマウス皮下移植法以外には確立され た方法は未だなく、そのヌードマウス法にして も、感受性試験の終了までに時間がかかりすぎ ること、ヒトの腫瘍の生着率が低いこと、ヌー ドマウスは高価でありその飼育にも特別の設備 を必要とすることなどの欠点を有している.Subrenal capsule assay (SRC) 法は、Bogden ら により開発された in vivo の制癌剤感受性試験 であり、Bogden らは6日間という短期間で評 価判定が可能であること, 評価可能率が高いこ と, 臨床効果との相関性が高いこと, 簡便かつ

経済的であることなどを報告している5)-8).しか し、その後、評価判定の6日目ではマウスの宿 主反応による細胞浸潤が認められ移植腫瘍の生 着増殖が障害されるという報告もなされてい る9)-12), また, 評価方法, 試験期間, 薬剤投与 量などについても未だ確立されてはいない。今 回, 著者は SRC 法の基礎的検討として, ヒト 肺小細胞癌細胞株を用いた SRC 法の実験を行 い, 各種免疫抑制処置を併用することにより、 マウスの宿主反応を抑制し移植腫瘍の生着を改 善し得るか否かを検討するとともに、評価方法、 試験期間,薬剤投与量の設定についても若干の 検討を行った、さらに、各種制癌剤の SRC 法 による in vivo の感受性の結果と、HTC 法に よる in vitro の結果との比較検討をも行ったの で併せて報告する.

方 法

SRC 法の方法 (図1)

実験材料としてはヒト肺小細胞癌細胞株 SBC - 3のヌードマウス継代腫瘍を用いた.腫瘍は約1 mm大に細切し、抗生物質を加えた培養液(10%牛胎児血清加 RPMI-1640)に浮遊させた状態の腫瘍切片の長径(Lo)、短径(Wo)を実体顕微鏡にて計測し、移植前(Day 0)の体積(Vo=Lo×Wo²×1/2)を算出した。ネンブタール麻酔下の BDF1マウス(一群5匹)の左側腹部を切開し、左腎を体外に露出し、腎被膜に小切開を

ヒト肺小細胞癌株 SBC-3のヌードマウス継代腫瘍を 約1mm³に細切し実体顕微鏡にて計測

長径×短径 $^2 \times \frac{1}{2} = Vo(移植前体積)$

BDF₁マウスの左腎被膜下にベニューラ針で移植

移植t日後に腎を摘出し移植腫瘤径を計測 長径×短径×高さ×<mark>1</mark>2=Vt(移植t日後体積) %Volume=Vt/Vo×100

組織標本の腫瘍部分面積をコンピューター画像解析装 置にて計測

> 腫瘍部分面積/腫瘤面積二腫瘍部分面積比 全腫瘤体積×腫瘍部分面積比二腫瘍体積

図1 実験方法

加え、少し剝離した後、内針を鈍にしたベニューラ静脈留置針(内針19G、外針16G)を用いて腫瘍切片を腎被膜下に移植した。移植後3、6、9日目に、頚椎脱臼にてマウスを屠殺し、腎を取り出し、腎被膜下腫瘤の長径(L_t)、短径(W_t)を計測し、ホルマリン固定1日後に腫瘤の最高部に割面を入れて腫瘤の高さ(H_t)を計測した。移植t日後(Dayt)の腫瘤体積(V_t = $L_t \times W_t \times H_t \times 1/2$)および%Volume= $V_t/V_o \times 100$ を算定した。その後、組織標本を作成し、コンピューター画像解析装置を用い腫瘤に占める腫瘍部分の面積割合(腫瘍部分面積比)を算出し、宿主反応を差し引いた腫瘍体積(=全腫瘤体積×腫瘍部分面積比)を求めた。

1. 免疫抑制処置

免疫抑制処置としては、cyclosporin A(CSA) 30または60mg/kgを移植日(Day 0)から計測日の前日まで連日皮下投与、cyclophosphamide (CPA) 200mg/kgを移植日前日(Day-1)に皮下投与、全身放射線照射400radsを Day-1に照射、Bredinin 100または200mg/kgを Day 0から計測日の前日まで連日皮下投与の6群について比較検討した。

2. Adriamycin (ADM) に対する感受性の 検討

ADM はより臨床に近い治療モデルとするために一回静注投与とした。Day 1に2.5,5.0,10.0,15.0mg/kgの各投与量の ADMを,SBC-3を腎被膜下に移植したマウスの尾静脈より投与した。なお,後述する実験1の結果に従いCSA60mg/kg連日皮下投与を行った.腫瘤体積の計測をDay 3,6,9に行い適切な評価判定日について検討した。

次に、各投与量における Day 6 の腫瘤体積計測結果を用い、 SRC 法による ADM の dose response curve を作成し、 HTC 法による ADM の dose response curve と比較し、 制癌剤の至適投与量を検討した。 HTC 法では1.0,2.5,5.0,10.0×10-8Mの各濃度の ADM を SBC-3に1時間接触させて行った4).

3. HTC 法 (in vitro) との比較

Cisplatin (CDDP), mitomycin C (MMC), etoposide (VP-16), ADM, CPA, vincristine (VCR) の各薬剤につき、SRC 法にて SBC-3 移植腫瘍における感受性を検討した。マウスには CSA60mg/kg処置を行い、検討薬剤はLD10の1/2量 (CDDP 5 mg/kg, MMC 2 mg/kg, VP-16 15mg/kg, ADM 5 mg/kg, CPA 75mg/kg, VCR 0.4mg/kg) を day 1 に投与し、感受性の判定は Day 6 に行った。HTC 法では各薬剤の通常投与時の最高血中濃度の1/10濃度 (CDDP 1×10-6M, MMC 5×10-7M, VP-16 5×10-6M, ADM 1×10-7M, 4 hydroperoxy-CPA (CPAの活性型) 1×10-5M, VCR 5×10-8M) を 1 時間接触させて行った。

結 果

1. 免疫抑制処置

マウスの腎被膜下に移植された SBC-3腫瘍の腫瘤体積と、そのうちに占める腫瘍細胞部分の体積とを経時的に計測した、無処置群の腫瘤は、Day 6では長径短径には短縮は認められなかったが腫瘤の高さの短縮が認められ、腫瘤体積は移植前と比べて48%に縮小し、Day 9では長径短径も短縮し体積は22%に縮小していた(図2).

無処置群

Cyclosporin A 処置群

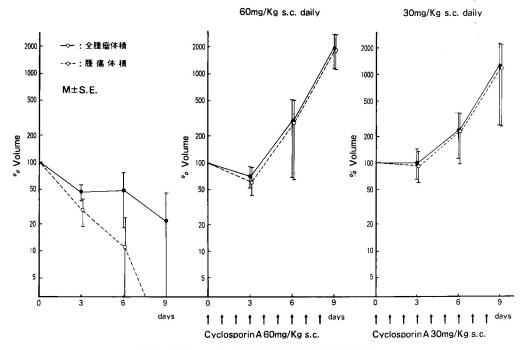


図 2 Cyclosporin A 処置による腫瘍生着改善効果

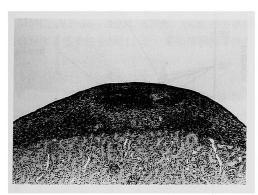


写真 1 無処置群 Day 6 (倍率×80)

組織学的に検討すると、Day 6 においてすでにリンパ球や線維芽細胞浸潤を主体とする著しい宿主反応が認められ、腫瘍細胞部分の体積は移植前と比べて11%しか残存していなかった(写真1). Day 9 では腫瘍細胞の残存は全く認められなかった。

それに対して、免疫抑制処置として CSA 60 mg/kgを連日投与した群では、移植前と比べて腫

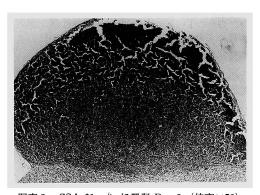


写真 2 CSA 60mg/kg処置群 Day 9 (倍率×50)

瘤体積は Day 6 では293%, Day 9 では1956% と順調に増大していた(図 2). 組織学的に検討しても宿主反応は Day 6, Day 9 ともにほとんど認められず腫瘍細胞は充実性に増殖していた(写真 2 は Day 9 の組織像を示す). CSA 30 mg/kg投与群でも比較的良好な成績が得られた(図 2).

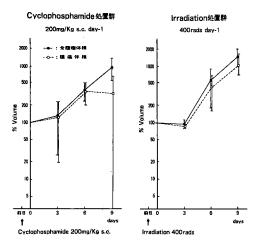


図3 Cyclophosphamide 処置, irradiation 処置に よる腫瘍生着改善効果

CPA 200mg/kg前日投与群および放射線400 rads 前日照射群においては, 両群ともに Day 6 では宿主反応は認められず良好な腫瘍体積の増大が認められた。しかし、 Day 9 では見かけの腫瘤は CSA 処置群に匹敵するほどの増大が示されたものの, 宿主反応もかなり認められた(図3).

Bredinin 処置群では, 200mg/kg投与群, 100 mg/kg投与群ともに Day 6 では腫瘍体積の増大が認められたが, Day 9 では著しい宿主反応と腫瘤体積の減少が認められた (図 4).

以上より、SRC 法においては免疫抑制処置を施さなければ腫瘍の生着は宿主反応のために著しく阻害されることが明かとなり、免疫抑制処置法としては CSA 60mg/kg連日投与が最適と考えられた。

2. ADM に対する感受性の検討

CSA 60mg/kg処置マウスを用い, ADM に対する SBC-3株の in vivo における感受性を検討した。ADM 10mg/kg以上投与群では Day 8 前後にマウスは全例死亡した。5 mg/kg投与群のDay 6 では移植前と比べて57%に縮小したが, Day 9 では138%と再増殖が認められ, 抗腫瘍効果の判定は Day 6 に行うのが適当と考えられた(図5).

ADM 1.25mg/kg投与時には Day 6 における 腫瘤体積は対照群に比して86%, 2.5mg/kgでは

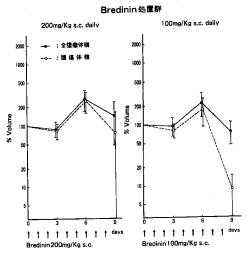


図 4 Bredinin 処置による腫瘍生着改善効果

図 5 CSA 60mg/kg処置マウスにおける adriamycin の抗腫瘍効果

32%, 5 mg/kgでは13%, 10mg/kgでは3%, 15 mg/kgでは1%であった. ADM の投与量に比例

して腫瘤の縮小が認められた。この結果に基づいて、SRC 法における SBC-3 株に対する ADM の dose response curve を作成した(図 6)

つぎに、SRC 法における ADM の dose response curve とHTC 法におけるADM の dose response curve とを比較することにより、SRC 法における適切な薬剤投与量の決定を試みた。HTC 法では各濃度の ADMの一時間接触により行った。両者の dose response curve はほぼ平行していた。HTC 法においては、ADM の 通常投与時の最高血中濃度の1/10濃度である 10×10^{-8} Mでの surviving fraction は 8%であり、これは SRC 法では ADM 6.5mg/kgの投与に相当していた。マウスにおける ADM の LD10 は10mg/kgであるところから、薬剤投与量は一回 静注投与法では LD10の1/2量が適当と考えられた。

従って、以後の SRC 法の実験では、CSA 60 mg/kg処置を行い、検討薬剤は LD_{10} の1/2量を day 1 に投与し、感受性の判定は 6 日目に行った。

3. HTC 法 (in vitro) との比較

次に, SRC 法にて SBC-3 移植腫瘍の CDDP, MMC, VP-16, ADM, CPA, VCR の各薬剤に対する感受性を検討した。各制癌剤投与群の

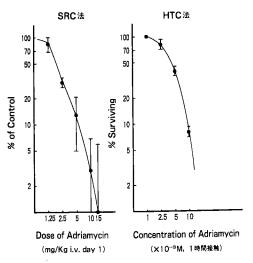


図 6 SRC 法と HTC 法による adriamycin の dose response curve の比較

腫瘤体積は、対照群との比において CDDP 102 %、MMC42%、VP-16 12%、ADM 13%、CPA 11%、VCR 1 %であった、VP-16、ADM、CPA、VCR 投与群は、対照群と比して著しい腫瘤縮小が認められたが、CDDP、MMC 投与群では縮小は軽微であった(図 7)。

SRC 法と HTC 法により得られた各薬剤の感受性の相関を検討したところ、CDDP、MMC、ADM、CPA では良好な相関が得られた。しかし、VCR の場合には HTC 法による結果ではsurviving fraction が50%と中等度の効果を示したのに対し、SRC 法による結果では腫瘤体積比が対照の1%と著しい効果を示し、両法間の成績に解離が認められた(図8)

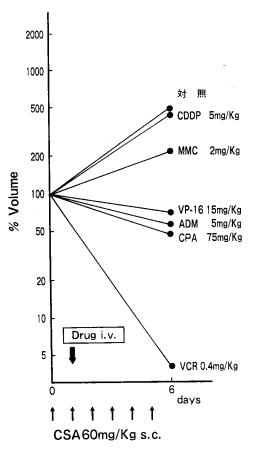
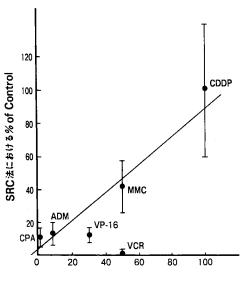



図7 CSA 60mg/kg処置マウスにおける各薬剤の抗 腫瘍効果 (6 日目判定)

HTC法における% Surviving

図8 SRC 法と HTC 法との相関性 SRC 法:マウス LD₁₀の1/2量 i.v. day 1 HTC 法:静注時最高血中濃度の1/10濃度 1 時間接触

考察

Bogden らは、ヌードマウス移植ヒト癌細胞株をヌードマウスの腎被膜下に移植する方法が従来のヌードマウス皮下移植法よりも迅速に制癌剤をスクリーニングする方法となりうると報告したり、また、Bennett らや Stratton らは、マウスあるいはラットの癌細胞株をそれぞれ同種動物の腎被膜下に移植し、良好な生着と報告したのある感受性試験結果が得られたと腎被膜に移植する SRC 法を通常マウスとヌードマウスで比較し、移植した腫瘤の大きさは6日間では両者に差がないことから、Day 6に判定するならば SRC 法に通常マウスを用いてもさしつかえないと報告したり、

Griffin, Bogden らは、さらに臨床材料への応用についての検討を加え、通常マウスによるSRC 法を各種の悪性腫瘍臨床材料を用いて行い、高い評価可能率と、臨床効果との高い相関性を報告した⁷. また、Von Hoff との共同研究

による、同じ試料を用いての SRC法と HTC 法 との比較では、評価可能率では SRC 法は HTC 法よりも優り、臨床効果との相関性では両者に は差は認められなかったと報告している⁸.

この後、数多くの追試がなされ、組織学的検討が加えられた。Aamdal らは、Day 6 では宿主反応は腫瘤体積の15-25%であり問題はないと報告し¹⁶⁾、Stenback らは、移植腫瘍の細胞構築と機能は Day 6 では保たれていると報告し¹⁶⁾、Bogden らの方法を支持した。一方、Bogden らの方法に対して否定的な意見も多く発表され、Edelstein らや Abrams らは、Day 6 の移植腫瘤にはマウスの宿主反応である炎症細胞浸潤や線維化が著しく腫瘍細胞の生着が防げられていると報告した⁹⁾¹⁰⁾

Cunningham らも, Day 6 に腫瘍細胞が残存していたのは移植腫瘍のうち 6 %にすぎなかったと報告している¹¹⁾. Levi らも, 腫瘍細胞が残存していたものは Day 4 では78%, Day 6 では43%であったと報告し, 効果判定は Day 4 に行うことを提案した¹²⁾.

以上述べたごとく、SRC 法の Bogden らの原法にはいくつかの検討すべき問題点が存在するが、1) 免疫抑制処置の必要性の有無、2) 適切な免疫抑制処置方法、3) 感受性試験の評価方法、4) 試験期間、5) 制癌剤の投与量と投与スケジュール、の5点に要約できよう。以上の諸点について、著者はヒト肺小細胞癌細胞株を用いた SRC 法の実験結果に基づいて考察し、併せて SRC 法が従来の制癌剤感受性試験よりも優っていると思われる要素についても考察を加える。

今回のヒト肺小細胞癌細胞株 SBC-3のヌードマウス継代腫瘍を用いた成績では、無処置群の腫瘤全体の体積の増大は不良であり Day 6では移植前と比して48%に縮小しており、宿主反応は腫瘤の割面面積の77%を占めていた。腫瘍部分体積は移植前と比較し11%に縮小していた。Day 9には腫瘍細胞はすべて消失しており腫瘍細胞は拒絶される過程にあると考えられた。各報告による宿主反応の程度の差は用いた腫瘍の抗原性の差に起因するのかもしれないが、今回の実験結果からは、少なくとも SBC-3を用い

た実験系では何らかの免疫抑制処置が必要と考 えられた。

免疫抑制処置としては、Edelstein らは CPA および全身放射線照射の有効性を報告し¹⁷⁾, Fingert らは CSA が効果的であると報告した18) また、津荷らはヌードマウスを用いた SRC 法 を提唱した19)が、この方法には経済的な問題点が ある。今回の実験では CSA, CPA, 全身放射線 照射, Bredinin について比較検討した。なお, CSA は IL-2 を含むリンホカインの産生および 遊離を阻害することとヘルパーT細胞を抑制する ことによって免疫反応を抑制し²⁰⁾²¹⁾, Bredinin は 核酸のプリン合成系におけるイノシン酸からグ アニル酸に至る経路を拮抗阻害し、リンパ球の 増殖を選択的に抑制する免疫抑制物質である22) 実験の結果, CSA 60mg/kg処置が腫瘍の生着増 殖効果と免疫抑制効果の持続と言う点で最も有 効であった. 他の方法もヌードマウス継代腫瘍 を用いた 6 日間の assay ならば利用可能とも思 われるが、より抗原性の高い臨床材料に応用す る際のことを考慮し最も有効であった CSA を 以降の実験に採用した。また、CPA 処置や全身 放射線照射処置は移植の24時間前に行う必要が あり、いつ実験材料が入手できるか分からない 臨床材料への応用には制約が大きいと考えられ た.

CSA 処置の問題点としては、CSA と 10mg/kg以上の ADM との併用によりマウスの死亡が認められたことから、CSA により制癌剤の毒性が増強される可能性が示唆された。その機構としては、Slater らは CSA が制癌剤と腫瘍細胞との結合を増強させると考えている²³⁾.

今回の実験に用いたヒト肺小細胞癌細胞株 SBC-3は、ヌードマウス皮下移植法の場合では exponential な増殖をし測定可能な大きさになるまでに10—14日間かかるが、今回の免疫抑制処置をした SRC 法では3日目より exponential な増殖が認められた。その理由としては、腎被膜下は豊富な血管床を有し栄養物質の供給が良好であるために、移植してから発育するまでの lag phase が皮下移植法に比べ極めて短期間であったと考えられた。また、薬剤の移植腫瘍への浸透も良好であるため、皮下移植法のように

腫瘍血管が充分に形成されるまで1-2週間も 待って薬剤を投与する必要がない点、薄い腎被 膜から移植腫瘤が透見され、小さい腫瘤の変化 が観察することができる点も、SRC法がヌード マウス皮下移植法よりも優っていると考えられ た

次に腫瘤の大きさの表現についてであるが、 Bogden らの原法では長径と短径の平均値にて 表現されている。今回の実験において、明らか な腫瘤体積の縮小時にも長径短径はほとんど変 化せず高さのみが短縮していた例が認められた ことより、緊張した腎被膜下にある腫瘤が縮小 する時には腫瘤径よりも先に高さが減じる植され があると考えられた。マウスの皮下に移植され た腫瘤では長径と短径の2方向の測定で足りる と思われるが、SRC法では三次元的に測定した ほうがよいと考えられた。坂井らも原法の平均 径測定よりも三次元測定のほうがより高い臨床 効果との一致性が認められたと報告している²⁴⁾.

原法のもうひとつの問題点は制癌剤の投与量である。原法では、ADM は 4 mg/kgの 5 日間連続投与としている。今回の実験では、ADM は一回静注投与とし、投与量は SRC 法と HTC 法との比較において決定した。その結果、ADM では BDF1マウスの LD10の½量である 5 mg/kgが適当と判断され、他の薬剤もそれに従った。楠山の実験でも ADM は 5 mg/kg一回静注投与とし乳癌株に抗腫瘍効果を認めている250、以上より、原法の量では総量として過量ではないかと思われた。また、Day 4、Day 5 の治療が Day 6の効果判定にどれだけ影響があるのかも疑問であり、原法は投与スケジュールにも問題があると思われた。

SRC 法と他の制癌剤感受性試験との相関性についての検討では、井上らは、SRC 法とヌードマウス皮下移植法とを27種類の制癌剤のヒト乳癌株に対する感受性について比較し、良好な相関を認めたと報告している²⁶⁾. Nishiyama らは、SRC 法と nude mice isotope assay 法とを臨床効果の相関性において比較し、両者に差は認められなかったと報告した²⁷⁾. また、前述のようにBogden と Von Hoff との共同研究による同じ試料を用いての SRC 法と HTC 法との比較で

は、評価可能率では SRC 法は HTC 法より優り、臨床効果との相関性では両者に差は認められなかった⁹.

今回著者は、SRC 法と HTC 法により得られた SBC-3の各薬剤に対する感受性の相関性での検討を行った結果、CPA、ADM、MMC、CDDPでは良好な相関が得られたが、VCRでは HTC 法による結果に比べて SRC 法による結果の方が高い感受性が示され、両法間の成績に解離が認められた。各薬剤の作用機序とか pharmacokinetics の相違が感受性試験の結果に反映しているものと思われたが、時間依存性を示す vinca alkaloid とか代謝拮抗剤などについては、SRC 法がより高い臨床相関を示すのではないかと思われた。

その他、SRC 法が HTC 法などの in vitro の制癌剤感受性試験法よりも優っている点としては、1)マウスを用いる in vivo 法のため、より人体に近い条件で感受性試験ができる、2)masked compound をも評価できる、3)6日間という短期間で効果判定が可能である、4)単細胞浮遊液にする必要がない、5)cell to cell contact を保ったままの腫瘍の感受性を評価できる、などの点が考えられた。

今後は SRC 法の臨床材料への応用について 検討する予定である。

結 論

Subrenal capsule assay (SRC) 法の最大の問題点である宿主反応を抑制し、移植腫瘍の生

着を改善することを目的として、ヒト肺小細胞癌細胞株 SBC-3のヌードマウス継代腫瘍をBDF₁マウス腎被膜下に移植し、cyclosporin A (CSA)、cyclophosphamide、放射線、Bredininなどの免疫抑制処置を行い、腫瘤体積と組織標本での腫瘍部分面積の割合を検討した。結果、以下の成績を得た。

- 1)無処置群では腫瘤体積の減少と著しい宿主反応が認められたが、免疫抑制処置群では宿主反応は乏しく腫瘤体積と腫瘍面積の増大が認められ、CSA 60mg/kg連日皮下投与処置群が最も良好であり、SRC 法では CSA 60mg/kg処置を行うのが最適と考えられた。
- 2) SRC 法の実験では, 検討薬剤はマウスの LD₁₀の1/2量を Day 1 に投与し, 感受性の判定は Day 6 に行うのが適当と考えられた.
- 3) SRC 法を human tumor clonogenic assay 法による *in vitro* の結果と比較検討したところ, vincristine をのぞき, cisplatin, mitomycin C, etoposide, adriamycin, cyclophosphamide では両法により得られた感受性の結果はよく相関することが認められた.

本論文を擱筆するにあたり、御親篤なる御指導ならびに御校閲を賜りました恩師木村郁郎教授に深甚の謝意を表します。また、直接御指導を賜りました大煛泰亮助教授、平木俊吉先生に深謝いたします。

なお本論文の要旨は第46回日本癌学会総会(昭和62年)において発表した。

文 献

- 1) Bickis IJ and Henderson IWD: Biochemical studies of human tumors. 1. Estimation of tumor malignancy from metabolic measurements *in vitro*. Cancer (1966) 19, 89—102.
- 2) Heidelberger C: Biochemistry of human tumours. Nature (1961) 189, 627-628.
- 3) 平木俊吉, 宮井正博, 沼田健之, 河原 伸, 瀬戸 匠, 田村哲生, 小沢志朗, 三宅賢一, 中田康則, 大熨泰 亮, 木村郁郎: ヒト肺癌細胞の Direct Cloing Assay に関する検討. 臨床サンプルの薬剤感受性試験を含めて. 肺癌 (1982) 22, 435—439.
- 4) Miyamoto H: *In vitro* chemosensitivity and radiosensitivity of an adriamycin-resistant subline of human small cell lung cancer cells. Acta Med Okayama (1986) **40**, 75—81.
- 5) Bogden AE, Kelton DE, Cobb WR and Esber HJ: A rapid screening method for testing chemotherapeutic agents against human tumor xenografts; in Proceedings of the Symposium on the use of

- athymic (nude) mice in cancer research, Houchens and Ovejera eds, Gustav Fischer, Inc. New York (1978) pp 231—250.
- 6) Bogden AE, Haskell PM, LePage DJ, Kelton DE, Cobb WR and Esber HJ: Growth of human tumor xenografts implanted under the renal capsule of normal immunocompetent mice. Exp Cell Biol (1979) 47, 281-293.
- 7) Griffin TW, Bogden AE, Reich SD, Antonelli D, Hunter RE, Ward A, Yu DT, Greene HL and Costanza ME: Initial clinical trials of the subrenal capsule assay as a predictor of tumor response to chemotherapy. Cancer (1983) 52, 2185—2192.
- 8) Bogden AE and Von Hoff DD: Comparison of the human tumor cloning and subrenal capsule assays. Cancer Research (1984) 44, 1087—1090.
- 9) Edelstein MB, Fiebig HH, Smink T, Van Putten LM and Schuchhardt C: Comparison between macroscopic and microscopic evaluation of tumour responsiveness using the subrenal capsule assay. Eur J Cancer Clin Oncol (1983) 19, 995—1009.
- 10) Abrams J, Jacobovitz D, Dumont P, Semal P, Mommen P, Klastersky and Atassi G: Subrenal capsule assay of fresh human tumors: Probrems and pitfalls. Eur J Cancer Clin Oncol (1986) 22, 1387—1394.
- 11) Cunningham D, Jack A, McMurdo DFS, Soukop M, McArdle CS, Carter DC and Kaye SB: The 6 day subrenal capsule assay is of no value with primary surgical explants from gastric cancer. Br J Cancer (1986) 54, 519-523.
- 12) Levi FA, Blum JP, Lemaigre G, Bourut C, Reinberg A and Mathé G: A four-day subrenal capsule assay for testing the effectiveness of anticancer drugs against human tumors. Cancer Research (1984) 44, 2660—2667.
- 13) Bennett JA, Pilon VA, Uppal GS and McKneally MF: Accurate prediction of experimental cancer chemosensitivity using the subrenal capsule xenograft assay. J Surg Oncol (1986) 33, 8-13,
- 14) Stratton JA, Rettenmaier MA, Braly PS and DiSaia PJ: Accurate predictions of tumor growth in vivo: The subrenal capsule implant site. J Biol Response Modif (1983) 2, 272-279.
- 15) Aamdal S, Fodstad O, and Pihl A: Human tumor xenografts transplanted under the renal capsule of conventional mice. Growth rates and host immune response. Int J Cancer (1984) 34, 725-730.
- 16) Stenbäck F, Kangas L, and Wasenius VM: Cell structure and function and response to chemotherapy in tumors heterotransplanted into the subrenal capsule of mice and rats. Eur J Cancer Clin Oncol (1985) 21, 1523—1538.
- 17) Edelstein MB, Smink T, Ruiter DJ, Visser W and Van Putten LM: Improvements and limitations of the subrenal capsule assay for determining tumour sensitivity to cytostatic drugs. Eur J Cancer Clin Oncol (1984) 20, 1549—1556.
- 18) Fingert HJ, Treiman A and Pardee AB: Transplantation of human or rodent tumors into cyclosporin-treated mice: A feasible model for studies of tumor biology and chemotherapy. Proc Natl Acad Sci USA (1984) 81, 7927-7931.
- 19) 津荷龍生,山内晶司,市橋秀仁:ヌードマウスを用いた腎被膜下移植法による制癌剤感受性試験法の基礎的研究. 日外会誌 (1987) 88, 522-528.
- 20) Palacios R: Concanavalin A triggers T lymphocytes by directly interacting with their receptors for activation. J Immunol (1982) 128, 337—342.
- 21) Leapman SB, Filo RS, Smith EJ and Smith PG: *In vitro* effects of cyclosporin A on lymphocyte subpopulations. l. Suppressor cell sparing by cyclosporin A. Transplantation (1980) **30**, 404—408.

- 22) Sakaguchi K, Tsujino M, Yoshizawa M, Mizuno K and Hayano K: Action of Bredinin on mammalian cells. Cancer Research (1975) 35, 1643—1648.
- 23) Slater LM, Sweet P, Stupecky M, Wezel MW and Gupta S: Cyclosporin A corrects daunorubicin resistance in Ehrlich ascites carcinoma. Br J Cancer (1986) 54, 235—238.
- 24) 坂井保信, 佐々木常雄, 今井邦之, 井深田鶴子, 小池盛雄, 岩本昌平:三次元測定(容積法)による腎被膜下移植抗癌剤感受性試験とそのすぐれた臨床一致性, 癌と化療(1987) 14, 2431-2443.
- 25) 楠山剛紹: 腎被膜下移植法による抗癌剤感受性試験の基礎的検討. J Jpn Soc Cancer Ther (1988) 23, 1077-1091.
- 26) 井上雄弘, 王 毅, 多田敦彦, 植野克巳, 小島和子, 小川一誠:マウス腎被膜下移植法(Subrenal Capsule Assay)による制癌剤感受性の検討. 癌と化療(1985) 12, 1644-1650.
- 27) Nishiyama M, Nosoh Y, Yamaguchi M, Hirabayashi N, Toge T, Niimoto M and Hattori T: Comparative study on nude mice isotope assay (NM-IA) and subrenal capsule assay (SRCA) sensitivity tests of anticancer agents. Jpn J Surg (1987) 17, 99—103.

Chemosensitivity test using subrenal capsule assays Part 1. Experimental evaluation

Atsuhiko Tada

Second Department of Internal Medicine,

Okayama University Medical School,

Okayama 700, Japan

(Director: Prof. I. Kimura)

Experimental evaluation of a new chemosensitivity test using a subrenal capsule assays (SRC) was performed. The effects of various immunosuppressants-cyclosporin A (CSA), cyclophosphamide, whole body irradiation, and Bredinin were studied using human small cell lung cancer cell line (SBC-3) serially transplanted in nude mice. A significant degree of host cell infiltration was seen in tumor fragments implanted under the renal capsule of immunocompetent mice. However, treatment with immunosuppressants effectively suppressed the host immune reaction. The most effective immunosuppressant was CSA at 60 mg/kg. We compared the antitumor activities of CDDP, MMC, VP-16, ADM, CPA, and VCR against SBC-3 using SRC and clonogenic assays. SRC was performed using mice administered CSA 60 mg/kg. Chemotherapeutic agents $(1/2 \text{ LD}_{10})$ were administered on day 1 and antitumor activities were evaluated on day 6 after implantation. The results of the assays were well-correlated except with VCR.