Chemistry

Organic Chemistry fields

Okayama University

Year~2008

RhCl3/amine-catalyzed [2+2+2] cyclization of alkynes

Kenta Yoshida* Ichiro Morimoto † Koichi Mitsudo ‡ Hideo Tanaka**

http://escholarship.lib.okayama-u.ac.jp/organic_chemistry/5

^{*}Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University,

 $^{^\}dagger \text{Division}$ of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University

 $^{^{\}ddagger}$ Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, mitsudo@cc.okayama-u.ac.jp

 $[\]rm ^{**}Division$ of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, tanaka95@cc.okayama-u.ac.jp

This paper is posted at eScholarship@OUDIR : Okayama University Digital Information Repository.

Graphical Abstract

$RhCl_3$ /amine-catalyzed [2+2+2] cyclization of alkynes

Leave this area blank for abstract info.

Kenta Yoshida, Ichiro Morimoto, Koichi Mitsudo,* Hideo Tanaka*

Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan

RhCl₃/amine-catalyzed [2+2+2] cyclization of alkynes

Kenta Yoshida, Ichiro Morimoto, Koichi Mitsudo,* Hideo Tanaka*

Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan

Abstract—The RhCl₃•3H₂O/*i*-Pr₂NEt-catalyzed [2+2+2] cyclotrimerization of alkynes has been achieved. The reaction can be widely used for various alkynes and provides tri- or hexa-substituited benzenes regioselectively in high yields. The [2+2+2] cycloaddition of diynes and alkynes is also developed, and it affords benzene derivatives in moderate to high yields.

© 2008 Elsevier Science. All rights reserved

Keywords: Rh/amine catalyst; Cyclotrimerization; Hexa-substituted benzene.

1. Introduction

[2+2+2] The transition metal-catalyzed cyclotrimerization of alkynes has been well known as a useful method for the construction of hexa-substituted benzenes in a one-step. Since the first discovery by Reppe and co-workers, various transition metals (Ni, Rh, Pd, Ru, Co, Ti, and Mo) catalyzed [2+2+2] cycloadditions have been found to date. However, it has been difficult to cyclize sterically hindered alkynes in a highly efficient and highly regioselective manner. For instance, the efficiency of the trimerization of internal alkynes bearing aryl and ester moieties, such as alkyl phenylpropiolate (PhC≡CCO₂R), is quite low. 9 Therefore, a more general and efficient catalyst has been in great demand. In recent years, amine ligands have received considerable attention for their unique reactivity. 11 For instance, Vicic and co-workers reported the Ni(cod)₂/tertbutylterpyridine-catalyzed cross-coupling reaction of alkyl zinc bromide and alkyl iodide. 11d The ligand system could catalyze Negishi couplings at room temperature in an amide-free solvent. Okamoto and co-workers reported that CoCl₂•6H₂O/2-iminomethylpyridine-catalyzed cycloaddition of diynes and alkynes proceeded efficiently. 11c The catalytic effect was specific to reactions with the 2-aminomethylpyridine ligand and no effect was observed with phosphine ligands. The reactivities in these reactions are quite different from those in metal/phosphine ligand chemistry. These results led us to investigate the transition metal/amine ligand-catalyzed trimerization of internal alkynes. Recently, we performed

RhCl₃•3H₂O/amine-catalyzed cyclization of alkynes, which can be widely used for internal alkynes.¹² The cyclization of alkynes or diynes and alkynes proceeded smoothly to afford multi-substituted benzenes regioselectively in moderate to high yields.

2. Results and Discussions

RhCl₃•3H₂O-catalyzed cyclotrimerization internal alkynes was performed successfully by the addition of a catalytic amount of an electron-rich and bulky alkylamine. First, using ethyl phenylpropiolate (1a) as a model substrate, the effect of the additives in the cyclotrimerization was investigated (Table 1). In the absence of amine, RhCl₃•3H₂O catalyzed cyclotrimerization of alkyne 1a to give cyclized product 2a in only 20% yield (entry 1). On the other hand, the trimerization of alkyne 1a was efficiently promoted by the addition of tert-amines. In the presence of Et₃N, which is a frequently used base, the yield of the products increased to 67% (entry 2). To compare the effect of Et₃N with that of other amines, we examined the cyclotrimerization of alkyne 1a using various electron-rich amines (entries 3–6). The trimerization of alkyne 1a using i-Pr₂NEt, Me₃SiNEt₂, and dicyclohexylmethylamine (Cy₂NMe), gave cycloadducts 2a and 3a in respective yields of 91, 80, and 75% (entries 3-5). Only in the case of $N(C_2H_4)_3N$ was the yield of products 2a and 3a significantly reduced (24%, entry 6). These facts indicate that the reactivity would be influenced by the bulkiness of the tert-amines. Indeed, the yields of cyclized products 2a and 3a increased with an increase in the

Corresponding authors. Tel.: +81-86-251-8072; Fax: +81-86-251-8079

E-mail addresses: tanaka95@cc.okayama-u.ac.jp (H. Tanaka), mitsudo@cc.okayama-u.ac.jp (K. Mitsudo)

bulkiness of the amines: $i-Pr_2NEt$ (91%) > Et_3N (67%) > N(C₂H₄)₃N (24%). Next, the cyclotrimerization of **1a** using PhNMe₂ and Ph₃N, the yields of cycloadducts 2a and 3a dramatically decreased (entries 7 and 8). These results suggest that such electron-deficient amines are not effective in cyclotrimerization. Pyridine was not effective, and starting material **1a** was recovered quantitatively, probably due to the generation of RhCl₃(py)₃, which might not be an active catalyst for the reaction (entry 9). 13 In a similar manner, the RhCl₃•3H₂O-catalyzed cyclotrimerization was performed with sec- and prim-amines, affording cycloadducts 2a and 3a in yields of 17-69% (entries 10-12). Among the examined sec- and prim-amines, electronrich and bulky amines, e.g., i-Pr2NH, were the most effective (entry 10). Bidentate amines such as TMEDA (N,N,N',N')-tetramethylethylenediamine) and 2,2'-bipyridyl were not effective at all (entries 13 and 14). Interestingly, commonly used phosphine ligands were not effective for the cyclotrimerization (entries 15-20). With alkyl phosphines, the yields of cyclized products 2a and 3a were lower than 6% (entries 15-17). PPh₃ and bidentate phosphines were not effective at all (entries 18-20). Above all, it has been found that the presence of an electron-rich and bulky amine is essential for the cyclotrimerization reaction. In particular, RhCl₃•3H₂O/i-Pr₂NEt is the best combination for promoting the cyclotrimerization of alkyne 1a, probably due to the generation of an "active catalyst" in situ.

Table 1
Cyclotrimerization using several additives

$$\begin{array}{c} \text{Ph} & \text{RhCl}_3\text{·3H}_2\text{O (8 mol \%)} \\ & & \text{Additive (30 mol \%)} \\ & & \text{Toluene, Reflux, 24 h} \\ & & \text{R} = \text{CO}_2\text{Et} \\ \textbf{1a} & & \textbf{2a} & \textbf{3a} \\ \end{array}$$

Entry	Additive	Yield of 2a+3a (%) ^a	2a:3a ^b
1	None	20	99:1
2	Et_3N	67	98:2
3	<i>i</i> -Pr ₂ NEt	91	96:4
4	Cy ₂ NMe	80	96:4
5	Me_3SiNEt_2	75	97:3
6	$N(C_2H_4)_3N$	24	95:5
7	$PhNMe_2$	45	96:4
8	Ph ₃ N	26	97:3
9	Pyridine	-	-
10	i-Pr ₂ NH	69	95:5
11	Et_2NH	32	97:3
12	t-BuNH ₂	17	95:5
13	TMEDA	-	-
14	2,2'-Bipyridyl	-	-
15	PBu_3	6	73:27
16	$P(t-Bu)_3$	5	90:10
17	PCy_3	<1	-
18	PPh ₃	-	-
19	Dppp	<1	93:7
20	(S)-BINAP	-	-

^a Isolated yield. ^b Determined by ¹H NMR.

To evaluate the catalytic activity of RhCl₃•3H₂O, several transition metal catalysts were used for the cyclotrimerization of ethyl phenylpropiolate (1a) (Table 2). First, other Rh(III) catalysts were employed for the reaction (entries 1 and 2). RhCl₃ (anhydrous) exhibited an activity similar to that of RhCl₃•3H₂O, affording cyclized products 2a and 3a in yields of 89% and resulting in high product selectivity (2a:3a = 99:1) (entry 1). This fact suggested that the presence of a small amount of water might not affect the reaction. On the other hand, $Rh(acac)_3$ (acac = acetylacetonate) was not effective (entry 2), resulting in the formation of only 6% yields of cyclized products 2a and 3a. [Rh(OAc)₂]₂, a Rh(II) catalyst, also showed poor catalytic activity to afford 11% yields of cyclized products 2a and 3a (entry 3). Next, Rh(I) catalysts were utilized for the trimerization of **1a** (entries 4–7). Among the Rh(I) catalysts examined thus far, no catalyst showed higher activity and higher regioselectivity than RhCl₃•3H₂O. Cationic Rh(I) complexes have received great attention as useful catalysts for cycloadditions. The reaction of alkyne 1a with $[Rh(cod)_2][BF_4]$ (cod = 1,5-cyclooctadiene) gave moderate yields of cyclized products 2a and 3a, but exhibited poor regioselectivity less than that with $RhCl_3 \cdot 3H_2O$ (2a:3a = 69:31) (entry 4). Using neutral Rh(I) catalysts such as [RhCl(cod)]₂, RhCl(PPh₃)₃, and Rh(acac)(cod), the yields and the regioselectivities of the cyclized products decreased significantly (entries 5–7). Notably, the reaction catalyzed by RhCl(PPh₃)₃, which is one of the typical catalysts for the trimerization reaction, gave the cyclized products in a yield of 60% and in the ratio of 62:38 (2a:3a = 37%:23%) (entry 6). Several other metal catalysts were also employed in the reaction. The trimerization of alkyne 1a using PdCl₂, PtCl₂, and IrCl₃ gave cycloadducts 2a and 3a in respective yields of a trace, 10%, and 3% (entries 8-10). With other metal halides, such as CoCl₂, CoCl₂•3H₂O, NiCl₂, RuCl₃•nH₂O, CrCl₂, CrCl₃, FeCl₃•6H₂O, CuCl, CuCl₂•2H₂O, SmCl₃, TiCl₄, ZnCl₂, PbCl₂, and BiCl₃, cyclized products 2a and 3a were not obtained at all. Above all, among thus far examined catalysts, the most effective catalyst is promote RhCl₃•3H₂O/*i*-Pr₂NEt which can cyclotrimerization efficiently in a virtually complete regioselective manner.

Table 2
Cyclotrimerization using several catalysts^a

$$\begin{array}{c} \text{Ph} & \text{Catalyst (8-10 mol \%)} \\ & & \\ \hline & i\text{-Pr}_2\text{NEt (30 mol \%)} \\ & & \\ R \\ R = \text{CO}_2\text{Et} \\ \textbf{1a} \end{array} \qquad \begin{array}{c} \text{Ph} \\ R \\ \text{Ph} \\ R \end{array} \qquad \begin{array}{c} \text{Ph} \\ R \\ \text{Ph} \\ R \end{array}$$

Entry	Catalyst	Yield of 2a + 3a (%) ^b	2a:3a ^c	
1	RhCl ₃	89	99:1	
2	Rh(acac) ₃	6	93:7	
3	$[Rh(OAc)_2]_2$	11	93:7	
4	$[Rh(cod)_2][BF_4]$	81	69:31	
5	[RhCl(cod)] ₂	63	87:13	
6	RhCl(PPh ₃) ₃	60	62:38	
7	Rh(acac)(cod)	29	85:15	

8	$PdCl_2$	<1	-
9	$PtCl_2$	10	86:14
10	IrCl ₃	3	55:45

^a Inactive catalysts: CoCl₂, CoCl₂•3H₂O, NiCl₂, RuCl₃•nH₂O, CrCl₂, CrCl₃, FeCl₃•6H₂O, CuCl, CuCl₂•2H₂O, SmCl₃, TiCl₄, ZnCl₂, PbCl₂, BiCl₃.

^b Isolated yield. ^c Determined by ¹H NMR.

The reaction efficiency of the RhCl₃•3H₂O/i-Pr₂NEtcatalyzed cyclization of 1a was highly influenced by the amounts and the ratio of RhCl₃•3H₂O and i-Pr₂NEt (Table 3). In the presence of RhCl₃•3H₂O (8 mol %) and *i*-Pr₂NEt (30 mol %), the cyclotrimerization of alkyne 1a occurred smoothly to give products 2a and 3a in 91% yield (entry 1). The ratio of the amount of RhCl₃•3H₂O to that of *i*-Pr₂NEt significantly affected the product yield (entries 2-5), and the best yields of cycloadducts 2a and 3a were obtained with a 1:3 mixture of RhCl₃•3H₂O and *i*-Pr₂NEt (entry 3). When the amount of RhCl₃•3H₂O was decreased to 2 mol % and 1 mol %, the yields of products 2a and 3a decreased to 71% and 57% yield, respectively (entries 6 and 7). From these results, it was found that the cyclotrimerization of 1a required approximately 3 equivalents of i-Pr₂NEt in comparison to RhCl₃•3H₂O, and the yields of products 2a and 3a decreased with an increase or decrease in the amount of i-Pr₂NEt. With 3 mol % RhCl₃•3H₂O and 9 mol % of the *i*-Pr₂NEt catalyst, cycloadducts 2a and 3a were obtained in the highest yield (93%).

Table 3
Effects of the amounts and the ratio of RhCl₃•3H₂O/*i*-Pr₂NEt

Entry	RhCl ₃ •3H ₂ O (mol %)	i-Pr ₂ NEt (mol %)	Yield of 2a+3a (%) ^a	2a:3a ^b
1	8	30	91	96:4
2	3	12	84	96:4
3	3	9	93	97:3
4	3	6	74	96:4
5	3	3	52	95:5
6	2	6	71	95:5
7	1	3	57	95:5

^a Isolated yield. ^b Determined by ¹H NMR.

The effect of the solvent on the cyclotrimerization was investigated. In several solvents, the RhCl₃•3H₂O/*i*-Pr₂NEt-catalyzed cyclotrimerization of **1a** was performed at reflux (Table 4). In toluene, the cyclotrimerization of alkyne **1a** afforded cycloadducts **2a** and **3a** in 91% yields in the ratio of 96:4 (entry 1). Other aromatic hydrocarbon such as *o*-xylene and benzene were used for the reaction, resulting in a decrease in the yields of adducts **2a** and **3a** (87% and 67%) (entries 2 and 3). Ethers could also be used for the reaction. When the reaction was carried out in DME (1,2-

dimethoxyethane) or 1,4-dioxane, cycloadducts 2a and 3a were obtained in yields of 87 and 83%, respectively (entries 4 and 5). In THF, the yields of products 2a and 3a dramatically decreased to 47% (entry 6). Et₂O was not of any use, and most of starting material 1a was recovered (entry 7). These facts indicated that the yields of cyclotrimerization products 2a and 3a could be affected by the reaction temperature (refluxing temperature of the solvents). Indeed, the yields of the cyclized products increased with an increase in the reaction temperature: oxylene (144 °C), toluene (111 °C), 1,4-dioxane (101 °C), or DME (83 °C) > benzene (80 °C) > THF (66 °C) > Et₂O (35 °C). Alcohols could be also utilized in the trimerization of alkyne 1a (entries 8 and 9). The cyclotrimerization of 1a in i-PrOH afforded products 2a and 3a in 86% yield, while the regionelectivity was lower than that in toluene (2a:3a =85:15) (entry 8). In other solvents, such as CH₃CN, H₂O, 1,2-dichloroethane and CH₂Cl₂, similar cyclotrimerization occurred to afford 18-59% yields of adducts 2a and 3a in the ratio of 72:28-89:11 (entries 10-13). Alkanes, e.g., hexane and heptane, were not of any use; thus, most of starting material 1a was recovered (entries 14 and 15). Above all, it was found that several kinds of solvents could be used and the best choice of the solvent is toluene, in which, the best yields and highest regioselectivity could be attained (91%, 2a:3a = 96:4). Thus, RhCl₃•3H₂O/i-Pr₂NEt/toluene is the best combination for promoting the cyclotrimerization of alkyne 1a.

Table 4

Cyclotrimerization of alkyne **1a** in several solvents

Entry	Solvent	Yield of 2a+3a (%) ^a	$2a:3a^b$
1	Toluene	91	96:4
2	o-Xylene	87	96:4
3	Benzene	67	92:8
4	DME	87	91:9
5	1,4-Dioxane	83	93:7
6	THF	47	88:12
7	Et ₂ O	-	-
8	i-PrOH	86	85:15
9	EtOH	55	80:20
10	CH ₃ CN	50	72:28
11	H_2O	39	89:11
12	1,2-Dichloroethane	59	88:12
13	CH ₂ Cl ₂	18	83:17
14	Hexane	-	-
15	Heptane	3	91:9

^a Isolated yield. ^b Determined by ¹H NMR.

Next, the RhCl₃•3H₂O/*i*-Pr₂NEt catalyst was applied to the cyclotrimerization of various alkynes (Table 5). In the

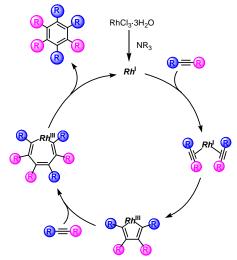
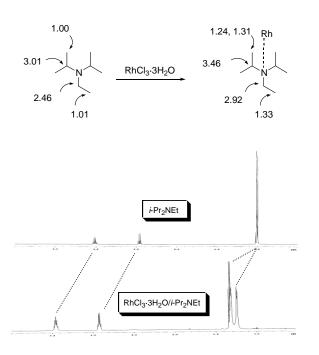
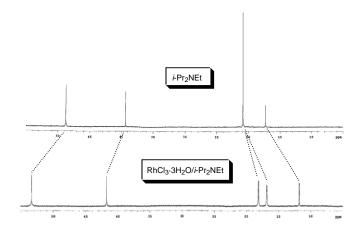

presence of RhCl₃•3H₂O (8 mol %) and i-Pr₂NEt (30 mol %), several internal alkynes could successfully undergo the cyclotrimerization to give the corresponding cyclized products (entries 1–11). The cyclotrimerization of alkynes **1a**–c bearing phenyl group smoothly proceeded in highly regioselective manner to predominantly afford cycloadducts 2a-c; indeed, the total yields of cycloadducts 2 and 3 were 85–91% and the ratio of 2:3 was more than 96:4 (entries 1–3). On the other hand, alkyne **1d** bearing no phenyl group underwent the cyclotrimerization to afford the corresponding adducts, but a slight decline in the regioselectivity was observed (2d:3d = 76:24) (entry 4). This fact suggested that the regioselectivity of the cyclotrimerization of alkyne was affected by the phenyl group. Notably, in the cyclotrimerization of alkynes 1a, 1c and 1d, the amount of RhCl₃•3H₂O/*i*-Pr₂NEt could be reduced to 3/9 mol % without an apparent change in the products yields. The cyclotrimerization of symmetrical internal alkynes 1e and 1f, gave cycloadducts 2e and 2f in respective yields of 96 and 73% (entries 5 and 6). Dimethyl acetylenedicarboxylate (DMAD, 1g), an active well-used alkyne in cycloaddition, was unsuitable for the reaction (2g: 46% yield, entry 7).. As we recently reported, dithienylacetylenes could be utilized in the reaction. 12a The cyclotrimerization of di(2-thienyl)acetylene and derivatives (1h-j) afforded corresponding hexakis(2thienyl)benzenes (2h-j) in respective yields of 49, 63, and 50% (entries 8–10). Using di(3-thienyl)acetlylene (1k), trimerized product 2k was obtained in 23% yield (entry 11). In a similar manner, terminal alkynes 11-0 were subjected to the Rh/amine-catalyzed trimerization (entries 12-15). trimerization of phenylacetylene (11) The cycloadducts 21 and 31 in 98% in the ratio of 94:6 (entry 12). The reaction of p-tolylacetylene (1m) proceeded in a highly selective manner to predominantly afford cyclized products 2m (total yield 97%) (2m:3m = >99:<1) (entry 13). The trimerization of 1-octyne (1n) afforded cycloadducts 2n and 3n in a total yield of 87%, but the ratio of 2n:3n dramatically decreased to 67:33 (entry 14). Upon the cyclotrimerization of ethyl propiolate (10), the yields of the corresponding adduct and the regioselectivity were reduced to 75% and 20:30 = 74:26 (entry 15). Above all, unsymmetrically substituted acetylene afforded asymmetric adducts 2a-d and 2l-o as the major products in good to excellent yields. The regioselectivity in the RhCl₃•3H₂O/i-Pr₂NEt-catalyzed cyclotrimerization was highly influenced by the aryl substituents of the alkynes; indeed, the cyclotrimerization of alkynes bearing phenyl or tolyl groups proceeded with virtually complete regioselectivities (entries 1–3, 12, and 13).

Table 5
Cyclotrimerization of various alkynes

Б.	nl	\mathbb{R}^2		Time	Yield of	a ah
Entry	K.			(h)	2+3 (%) ^a	2:3 ^b
1	Ph	CO ₂ Et	1a	24	91 (93) ^c	96:4
2	Ph	CO_2Me	1b	24	85	>99:<1
3	Ph	Me	1c	24	87 (91) ^c	>99:<1
4	Me	CO ₂ Et	1d	24	95 (90)°	76:24
5	Pr	Pr	1e	24	96	-
6	Ph	Ph	1f	24	73	-
7	CO_2Me	CO_2Me	1g	24	46	-
8^{d}	2-Thienyl	2-Thienyl	1h	24	49	-
9	5-Me-2-thienyl	5-Me-2-thienyl	1i	24	63	-
10^{d}	5-Ac-2-thienyl	5-Ac-2-thienyl	1j	24	50	-
11^{d}	3-Thienyl	3-Thienyl	1k	24	23	-
12	Ph	Н	11	12	98 (94) ^c	94:6
13	p-MeC ₆ H ₄	Н	1m	12	97	>99:<1
14	Hex	Н	1n	12	87	67:33
15	EtO ₂ C	Н	10	12	75	74:26


^a Isolated yield. ^b Determined by ¹H NMR. ^c 3 mol % of RhCl₃•3H₂O and 9 mol % of *i*-Pr₂NEt were employed. ^d Performed in *i*-PrOH.

The regioselectivity in the RhCl₃/amine-catalyzed cyclotrimerization was highly influenced by substituents of alkynes. In particular, the reaction of alkynes bearing aryl groups proceeded with virtually complete regioselectivities. A plausible mechanism of the reaction is illustrated in Scheme 1. First, RhCl₃ would be reduced by i-Pr₂NEt to afford a Rh(I) complex. Thus generated electron-rich Rh(I) species might interact with two alkynes by strong π -back donation to form a rhodacyclopentadienyl complex. The insertion of another alkyne to the complex and the subsequent reductive elimination afford the corresponding cyclized product. When alkynes bearing an aryl group were employed, $di(\alpha$ aryl)rhodacyclopentadienes would be favorable than di(βaryl) ones. It might be the reason for the regioselective formation of the triarylbenzenes (Table 5, entries 1–3, 12, and 13).



Scheme 1. A plausible mechanism

To obtain further insight into the mechanism, we attempted to capture the in situ generated Rh(I) catalyst. To a solution of RhCl₃•3H₂O in i-PrOH, i-Pr₂NEt was added and the mixture was stirred at room temperature for 0.5 h. After the solution was concentrated, the residual black were purified by GPC (gel permeation chromatography) to afford the colorless crystals, which were easily deliquescent in air. In the ¹H and ¹³C NMR spectra of the complex, the peaks of i-Pr₂NEt disappeared and new ethyl and isopropyl peaks were observed, suggesting the coordination of i-Pr₂NEt to the Rh center (Figures 1 and 2). Though the specific structure of the rhodium complex is not clear at present, the existence of a rhodium complex bearing *i*-Pr₂NEt is strongly indicated.

Figure 1. ¹H NMR analysis of *i*-Pr₂NEt and RhCl₃•3H₂O/*i*-Pr₂NEt complex.

Figure 2. 13 C NMR analysis of *i*-Pr₂NEt and RhCl₃•3H₂O/*i*-Pr₂NEt complex.

The combination of RhCl₃•3H₂O and *i*-Pr₂NEt was successfully used in the [2+2+2] cycloaddition of diyne and various alkynes (Table 6). In the presence of RhCl₃•3H₂O/i-Pr₂NEt, a mixture of diyne 4a and phenylacetylene (11, 4 equiv) in i-PrOH was stirred at 50 °C for 5 h to afford cycloadduct 5al in 81% yield and 16% of 6a (entry 1). When the reaction was carried out at reflux, the yields of 5al and 6a were almost the same as those in the reaction at 50 °C (entry 2). Next, the RhCl₃•3H₂O/*i*-Pr₂NEt-catalyzed cyclization of diyne **4a** and 1-octyne (1n) was performed at 50 °C for 5 h to afford cycloadduct **5an** in 60% yield (entry 3). When the reaction was carried out at reflux, the yield of **5an** increased to 82% (entry 4). In this case, the reaction proceeded much efficiently at a higher temperature. Internal alkynes could also be utilized in the RhCl₃•3H₂O/i-Pr₂NEt-catalyzed cycloaddition (entries 5-9). Using ethyl phenylpropiolate (1a), cyclized product 5aa was obtained in 39% yield together with 60% of 6a (entry 5). When the reaction was carried out at reflux, the yield of 5aa was almost the same as that in the reaction performed at 50 °C, but the yield of 6a decreased, resulting in the generation of by-products such as polymer (entry 6). The cycloaddition of diyne 4a and alkyne 1c at 50 °C or reflux gave the cycloadduct in respective yields of 43 and 48% (entries 7 and 8). When the reaction was carried out using alkyne 1f, the yield of 5af was 45% (entry 9). Above all, the RhCl₃•3H₂O/i-Pr₂NEtcatalyzed cyclization of diyne 4a and terminal alkynes gave the corresponding products in high yields. In the reaction of 4a and internal alkynes, the yields of dimer 6a decreased under the refluxing condition, while no significant change was observed in the yields of 5a, probably because generated 6a would react with 1 or 4a to give other products under the refluxing conditions.

Table 6

Cycloaddition of diyne and several alkynes

Entry	\mathbb{R}^1	\mathbb{R}^2		Temp.	Time (h)		Yield 5a/6a (%) ^a
1	Ph	Н	1l	50 °C	5	5al	81/16
2	Ph	Н	11	Reflux	2	5al	81/18
3	Hex	Н	1n	50 °C	5	5an	60/27
4	Hex	Н	1n	Reflux	2	5an	82/11
5	Ph	CO ₂ Et	1a	50 °C	5	5aa	39/60
6	Ph	CO_2Et	1a	Reflux	2	5aa	39/17
7	Ph	Me	1c	50 °C	5	5ac	43/41
8	Ph	Me	1c	Reflux	2	5ac	48/-
9	Ph	Ph	1f	Reflux	2	5af	45/-

a Isolated yield.

cycloaddition of diyne 4b Next. the and diphenylacetylene (1f) was performed. In the presence of RhCl₃•3H₂O (8 mol %) and i-Pr₂NEt (30 mol %), to a solution of alkyne 1f in i-PrOH was added dropwise diyne 4b at reflux, and the mixture was heated to reflux for an additional 24 h to afford 5bf in 46% yield and 45% of 4b was recovered (Scheme 2). While the yield of 5bf was still moderate, the generation of 6b, the dimer of 4b, was not observed, and hexa-substituted benzene derivative **5bf** was obtained chemoselectively.

Scheme 2. Cycloaddition of diyne 4b and diphenylacetylene (1f).

3. Conclusion

The [2+2+2] cyclotrimerization of alkynes proceeds with high reactivity when the combination of RhCl₃•3H₂O/*i*-Pr₂NEt/toluene is used. The reaction can be widely used for various mono- and di-substituted acetylenes and provides tri- or hexa-substituited benzenes

regioselectively in high yields. The [2+2+2] cycloaddition of diynes and alkynes has also been developed by using a Rh/amine complex, and it provides benzene derivatives in moderate to high yields.

4. Experimental

4.1. General remarks

¹H and ¹³C NMR spectra were recorded on Varian INOVA UNITY 600 (¹H 600 MHz, ¹³C 150 MHz) spectrometers in CDCl₃ using TMS or residual chloroform as internal standard. Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, double doublet; and tt, triple triplet. Coupling constants are reported in hertz (Hz). IR spectra were recorded on a JASCO FT/IR-4100 spectrophotometer in wave number (cm⁻¹) and only major absorption bands are compiled. Analytic thin layer chromatography (TLC) was performed on Merck, pre-coated plate silica gel 60 F₂₅₄ (0.25 mm thickness). Column chromatography was performed on KANTO CHEMICAL silica gel 60N (40-50 µm). Preparative recycling gel permeation chromatography (GPC) was performed with a JAI LC-9101 instrument equipped with JAIGEL-1H/JAIGEL-2H column using chloroform as an eluent. Elemental analysis was obtained with Perkin-Elmer PE 2400 Series II CHNS/O analyzer. Unless otherwise noted, all materials were obtained from commercial suppliers and used without further purification. Diynes 4a and 4b were prepared according to literature procedures. ¹⁴ All reactions were performed in dry solvents under argon atmosphere. Toluene, benzene, xylene, 1,4dioxane, i-PrOH, CH₃CN, dichloroethane, CH₂Cl₂, hexane and heptane were distilled from CaH2. DME, THF, Et2O and EtOH were distilled from sodium benzophenone ketyl under argon.

4.2. General procedure for Rh/amine-catalyzed cyclotrimerization of internal alkyne

To a suspension of RhCl₃•3H₂O (10 mg, 0.04 mmol) in toluene (3.0 mL) were added i-Pr₂NEt (26 μ L, 0.15 mmol) and ethyl phenylpropiolate **1a** (87 mg, 0.50 mmol). The mixture was stirred at reflux for 24 h. After being cooled to room temperature, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/EtOAc 5:1) to afford 1,2,4-triethoxycarbonyl-3,5,6-triphenylbenzene **2a** (79 mg, 91%) as colorless solids.

4.2.1. 1,2,4-Triethoxycarbonyl-3,5,6-triphenylbenzene $(2a)^{9d}$

Colorless solids; $R_f = 0.20$ (hexane/EtOAc 5:1); ¹H NMR (600 MHz, CDCl₃): δ 0.68 (t, J = 7.2 Hz, 3H), 0.87 (t, J = 7.2 Hz, 3H), 0.90 (t, J = 7.2 Hz, 3H), 3.65 (q, J = 7.2 Hz, 2H), 3.94 (q, J = 7.2 Hz, 2H), 3.98 (q, J = 7.2 Hz, 2H), 7.00–7.04 (m, 4H), 7.11–7.14 (m, 6H), 7.35 (s, 5H); ¹³C NMR (150 MHz, CDCl₃): $\square \delta$ 13.3, 13.41, 13.43, 60.9, 61.50, 61.51, 127.1, 127.3, 127.4, 127.5, 127.9, 128.0, 128.9, 129.8, 129.9, 132.0, 134.1, 137.2, 137.3, 137.4,

137.6, 139.2, 140.7, 167.29, 167.33, 167.7; IR (KBr) 3057, 2981, 2936, 1729, 1232, 1200 cm $^{-1}$. Anal. Calcd for $C_{33}H_{30}O_6$: C, 75.84; H, 5.79. Found: C, 75.61; H, 5.82.

In a similar manner, the Rh/amine-catalyzed cyclotrimerization of internal alkynes **1b–1g** was carried out. The reaction conditions and the results are illustrated in Table 5.

4.2.2. 1,2,4-Trimethoxycarbonyl-3,5,6-triphenylbenzene $(2b)^{9d}$

Colorless solids; $R_f = 0.31$ (hexane/EtOAc 1:1); ¹H NMR (600 MHz, CDCl₃): δ 3.17 (s, 3H), 3.47 (s, 3H), 3.51 (s, 3H), 7.00–7.03 (m, 4H), 7.12–7.15 (m, 6H), 7.32–7.38 (m, 6H); ¹³C NMR (150 MHz, CDCl₃): \square δ 51.7, 52.3, 52.4, 127.2, 127.4, 127.51, 127.52, 128.0, 128.1, 128.5, 129.57, 129.63, 131.7, 134.1, 137.1, 137.20, 137.23, 137.3, 139.2, 140.9, 167.7, 167.9, 168.1; IR (KBr) 3030, 3001, 2951, 1744, 1735, 1244, 1205 cm⁻¹.

4.2.3. 1,2,4-Trimethyl-3,5,6-triphenylbenzene (2c)^{6g}

Colorless solids; $R_f = 0.55$ (hexane/EtOAc 5:1); ¹H NMR (600 MHz, CDCl₃): δ 1.72 (s, 3H), 2.04 (s, 3H), 2.05 (s, 3H), 6.96–7.14 (m, 10H), 7.25 (dd, J = 7.8, 1.2 Hz, 2H), 7.35 (tt, J = 7.8, 1.2 Hz, 1H), 7.45 (tm, J = 7.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 18.1, 18.3, 19.4, 125.6, 125.7, 126.5, 127.28, 127.31, 128.4, 129.4, 130.286, 130.294, 131.3, 131.9, 133.9, 139.2, 140.6, 141.4, 141.58, 141.61, 142.4; IR (KBr) 3055, 2956, 2918, 2849 cm⁻¹.

4.2.4. 1,2,4-Triethoxycarbonyl-3,5,6-trimethylbenzene $(2d)^{2e}$

Colorless liquid; $R_f = 0.13$ (hexane/EtOAc 5:1); ¹H NMR (600 MHz, CDCl₃): $\delta \Box 1.35$ (t, J = 7.2 Hz, 3H), 1.36 (t, J = 7.2 Hz, 3H), 1.38 (t, J = 7.2 Hz, 3H), 2.22 (s, 3H), 2.26 (s, 3H), 2.30 (s, 3H), 4.32 (q, J = 7.2 Hz, 2H), 4.43 (q, J = 7.2 Hz, 2H), 4.40 (q, J = 7.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): $\delta 14.0$, 14.2, 16.5, 17.0, 17.3, $\delta 1.37$, $\delta 1.46$, $\delta 1.49$, 129.9, 130.3, 132.6, 133.7, 135.8, 137.5, 167.8, 168.5, 169.4; IR (neat) 2982, 2938, 2906, 1731, 1576 cm⁻¹. Anal. Calcd for $C_{18}H_{24}O_6$: C, $\delta 4.27$; H, 7.19. Found: C, $\delta 4.02$; H, 7.13.

4.2.5. 1,3,5-Triethoxycarbonyl-2,4,6-trimethylbenzene $(3d)^{2e}$

Colorless liquid; $R_f = 0.20$ (hexane/EtOAc 5:1); ¹H NMR (600 MHz, CDCl₃): $\delta \Box 1.37$ (t, J = 7.2 Hz, 9H), 2.23 (s, 9H), 4.38 (q, J = 7.2 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 14.2, 17.1, 61.3, 132.1, 133.5, 169.0; IR (neat) 2981, 2937, 1728, 1581, 1226 cm⁻¹. Anal. Calcd for $C_{18}H_{24}O_6$: C, 64.27; H, 7.19. Found: C, 64.34; H, 7.29.

4.2.6. Hexapropylbenzene $(2e)^{4e}$

Colorless solids; $R_f = 0.80$ (hexane/EtOAc 5:1); ¹H NMR (600 MHz, CDCl₃): δ 1.04 (t, J = 7.2 Hz, 18H), 1.49–1.57 (m, 12H), 2.46–2.48 (m, 12H); ¹³C NMR (150 MHz,

CDCl₃): δ 15.3, 24.8, 32.2, 136.7; IR (KBr) 2952, 2928, 2890, 2869 cm⁻¹. Anal. Calcd for C₂₄H₄₂: C, 87.19; H, 12.81. Found: C, 87.21; H, 13.14.

4.2.7. Hexaphenylbenzene $(2f)^{6g}$

Colorless solids; $R_f = 0.50$ (hexane/EtOAc 5:1); ¹H NMR (600 MHz, CDCl₃): δ 6.83–6.86 (m, 30H); ¹³C NMR (150 MHz, CDCl₃): δ 125.2, 126.5, 131.4, 140.3, 140.6; IR (KBr) 3056, 3024, 2925 cm⁻¹.

4.2.8. Hexamethoxycarbonylbenzene (2g)

Colorless solids; $R_f = 0.31$ (hexane/EtOAc 1:1), ¹H NMR (600 MHz, CDCl₃) δ 3.88 (s, 18H); ¹³C NMR (150 MHz, CDCl₃) δ 53.5, 133.9, 165.1; IR (KBr) 3009, 2958, 1739, 1445 cm⁻¹; Anal. Calcd for C₁₈H₁₈O₆: C, 50.71; H, 4.26. Found: C, 50.77; H, 3.99.

4.3. General procedure for Rh/amine-catalyzed cyclotrimerization of di(thienyl)acetylene

To a solution of RhCl₃·3H₂O (11 mg, 0.04 mmol) in *i*-PrOH (3.0 mL) were added *i*-Pr₂NEt (26 μ L, 0.15 mmol) and di(2-thienyl)acetylene **1h** (96 mg, 0.50 mmol). The mixture was stirred at reflux for 24 h. After being cooled to room temperature, the reaction mixture was filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/toluene 5:1) to afford hexa(2-thienyl)benzene **2h** (47 mg, 49%) as yellow solids.

4.3.1. Hexa(2-thienyl)benzene (2h)

Yellow solids; $R_f = 0.27$ (hexane/toluene 5:1); ¹H NMR (600 MHz, CDCl₃) δ 6.59 (dd, J = 3.6, 1.2 Hz, 6H), 6.68 (dd, J = 5.4, 3.6 Hz, 6H), 7.08 (dd, J = 5.4, 1.2 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 125.8, 126.2, 129.1, 137.0, 140.7; IR (KBr) 3068, 2923, 2360, 1647, 1381, 694 cm⁻¹; Anal. Calcd for C₃₀H₁₈S₆: C, 63.12; H, 3.18. Found: C, 63.08; H, 3.36.

In a similar manner, the Rh/amine-catalyzed cyclotrimerization of di(thienyl)acetylene derivatives **1i–1k** was carried out. The reaction conditions and the results are illustrated in Table 5.

4.3.2. Hexakis(5-methyl-2-thienyl)benzene (2i)

Yellow solids; $R_f = 0.23$ (hexane/toluene 5:1); ¹H NMR (600 MHz, CDCl₃) δ 6.33 (s, 12H), 2.30 (s, 18H); ¹³C NMR (150 MHz, CDCl₃) δ 15.2, 123.9, 128.7, 137.0, 138.8, 140.2; IR (KBr) 3068, 2912, 2855, 2357, 1747, 1442, 1219, 800 cm⁻¹; Anal. Calcd for $C_{36}H_{30}S_6$: C, 66.01; H, 4.62. Found: C, 66.09; H, 4.53.

4.3.3. Hexakis(5-acetyl-2-thienyl)benzene (2j)

Colorless solids; $R_f = 0.07$ (hexane/EtOAc 3:1), ¹H NMR (600 MHz, CDCl₃) δ 7.27 (d, J = 3.6 Hz, 6H), 6.67 (d, J = 3.6 Hz, 6H), 2.43 (s, 18H); ¹³C NMR (150 MHz, CDCl₃) δ

26.7, 130.9, 131.8, 136.5, 145.8, 146.7, 190.7; IR (KBr) 3080, 1658, 1471, 1381, 1274 cm⁻¹.

4.3.4. Hexa(3-thienyl)benzene (2k)

Brown solids; $R_f = 0.27$ (hexane/EtOAc 3:1), ¹H NMR (600 MHz, CDCl₃) δ 6.91 (dd, J = 4.8, 3.0 Hz, 6H), 6.58 (dd, J = 3.0, 1.5 Hz, 6H), 6.50 (dd, J = 4.8, 3.6 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 123.3, 124.1, 129.7, 136.5, 140.3; IR (KBr) 3068, 2923, 2360, 1647, 1381, 1223, 694 cm⁻¹; Anal. Calcd for C₃₀H₁₈S₆: C, 63.12; H, 3.18. Found: C, 63.08; H, 3.36.

4.4. General procedure for Rh/amine-catalyzed cyclotrimerization of terminal alkyne

To a suspension of RhCl₃•3H₂O (11 mg, 0.04 mmol) in toluene (3.0 mL) were added *i*-Pr₂NEt (26 μL, 0.15 mmol) and phenylacetylene **11** (55 mg, 0.50 mmol). The mixture was stirred at reflux for 12 h. After being cooled to room temperature, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/EtOAc 5:1) to afford 1,2,4-triphenylbenzene **21** (54 mg, 98%) as colorless solids.

4.4.1. 1,2,4-Triphenylbenzene (21)^{7a,15}

Colorless solids; $R_f = 0.57$ (hexane/EtOAc 5:1); ¹H NMR (600 MHz, CDCl₃): δ 7.17–7.24 (m, 10H), 7.37 (tt, J = 7.8, 1.2 Hz, 1H), 7.45–7.48 (m, 2H), 7.51 (dd, J = 7.8, 1.2 Hz, 1H), 7.65–7.69 (m, 4H): ¹³C NMR (150 MHz, CDCl₃): δ 126.1, 126.5, 126.6, 127.1, 127.4, 127.89, 127.92, 128.8, 129.4, 129.87, 129.90, 131.1, 139.5, 140.4, 140.6, 141.0, 141.1, 141.5; IR (KBr) 3075, 3056, 3027 cm⁻¹.

In a similar manner, the Rh/amine-catalyzed cyclotrimerization of terminal alkynes **1m–1o** was conducted. The reaction conditions and the results are illustrated in Table 5.

4.4.2. 1,2,4-Tris(4-methylphenyl)benzene $(2m)^{3g,4e}$

Colorless solids; $R_f = 0.60$ (hexane/EtOAc 5:1); ¹H NMR (600 MHz, CDCl₃): δ 2.32 (s, 3H), 2.33 (s, 3H), 2.40 (s, 3H), 7.03–7.10 (m, 8H), 7.26 (dd, J = 7.8, 0.6 Hz, 2H), 7.46 (dd, J = 7.8, 0.6 Hz, 1H), 7.56–7.62 (m, 4H); ¹³C NMR (150 MHz, CDCl₃): δ 21.11, 21.13, 125.7, 126.9, 128.6, 128.7, 129.2, 129.5, 129.68, 129.71, 131.1, 136.0, 136.1, 137.1, 137.8, 138.3, 138.7, 139.1, 140.0, 140.8; IR (KBr) 3025, 2917, 2863 cm⁻¹. Anal. Calcd for C₂₇H₂₄: C, 93.06; H, 6.94. Found: C, 92.67; H, 7.33.

4.4.3. 1,2,4-Trihexylbenzene $(2n)^{4e}$

Colorless liquid; $R_f = 0.77$ (hexane/EtOAc 5:1); ¹H NMR (600 MHz, CDCl₃): δ 0.87–0.91 (m, 9H), 1.28–1.39 (m, 18H), 1.54–1.59 (m, 6H), 2.52–2.58 (m, 6H), 6.92 (dd, J = 7.8, 1.8 Hz, 1H), 6.95 (d, J = 1.8 Hz, 1H), 7.04 (d, J = 7.8 Hz, 1H).

4.4.4. 1,2,4-Triethoxycarbonylbenzene $(2o)^{3d}$

Yellow liquid; $R_f = 0.23$ (hexane/EtOAc 5:1); ¹H NMR (600 MHz, CDCl₃): δ 1.38 (t, J = 7.2 Hz, 3H), 1.39 (t, J = 7.2 Hz, 3H), 1.41 (t, J = 7.2 Hz, 3H), 4.39 (q, J = 7.2 Hz, 4H), 4.41 (q, J = 7.2 Hz, 2H), 7.76 (dd, J = 8.4, 0.6 Hz, 1H), 8.19 (dd, J = 8.4, 1.2 Hz, 1H), 8.40 (dd, J = 1.2, 0.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 14.0, 14.1, 14.2, 61.7, 61.9, 62.0, 128.8, 130.1, 132.00, 132.04, 132.7, 136.2, 165.0, 166.6, 167.2; IR (neat) 2983, 2938, 1727, 1244 cm⁻¹. Anal. Calcd for C₁₅H₁₈O₆: C, 61.22; H, 6.16. Found: C, 61.14; H, 6.60.

4.4.5. 1,3,5-Triethoxycarbonylbenzene $(3o)^{16}$

Colorless solids; $R_f = 0.23$ (hexane/EtOAc 5:1); ¹H NMR (600 MHz, CDCl₃): δ 1.43 (t, J = 7.2 Hz, 9H), 4.44 (q, J = 7.2 Hz, 6H), 8.85 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 14.3, 61.7, 131.4, 134.4, 165.1; IR (KBr) 2943, 2907, 2877, 1724, 1240 cm⁻¹. Anal. Calcd for $C_{15}H_{18}O_6$: C, 61.22; H, 6.16. Found: C, 61.46; H, 6.28.

4.5. Synthesis of RhCl₃•3H₂O/i-Pr₂NEt complex

To a solution of RhCl₃•3H₂O (26 mg, 0.1 mmol) in *i*-PrOH (6 mL) was added *i*-Pr₂NEt (51 μ L, 0.3 mmol). The mixture was stirred at room temperature (or reflux) for 0.5 h, and was concentrated under reduced pressure. The residue was purified by gel permeation chromatography. Then the solid was purified by recyclization, and colorless crystals were obtained.

4.6. General Procedure for Cyclization of Diyne **4a** and Alkyne **1**

To a solution of RhCl₃•3H₂O (11 mg, 0.04 mmol) and *i*-Pr₂NEt (26 μ L, 0.15 mmol) in *i*-PrOH (2.0 mL) were added phenylacetylene **1l** (217 mg, 2.0 mmol) and diyne **4a** (116 mg, 0.49 mmol) in *i*-PrOH (3.0 mL). The mixture was stirred at reflux for 2 h. After being cooled to room temperature, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/EtOAc 5:1) to afford diethyl 5-phenyl-1*H*-indene-2,2(3*H*)-dicarboxylate **5al** (138 mg, 81%) as yellow liquid.

4.6.1. Diethyl 5-Phenyl-1H-indene-2,2(3H)-dicarboxylate (5al)^{6e}

Yellow liquid; $R_f = 0.37$ (hexane/EtOAc 5:1); ¹H NMR (600 MHz, CDCl₃): δ 1.25–1.28 (m, 6H), 3.63 (s, 2H), 3.66 (s, 2H), 4.26 (q, J = 7.2 Hz, 4H), 7.26–7.27 (m, 1H), 7.32–7.34 (m, 1H), 7.39–7.43 (m, 4H), 7.55–7.56 (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 14.0, 40.2, 40.4, 60.5, 61.7, 123.0, 124.4, 126.1, 127.0, 127.1, 128.6, 139.1, 140.3, 140.7, 141.3, 171.6; IR (neat) 3031, 2980, 2936, 1733 cm⁻¹. Anal. Calcd for $C_{21}H_{22}O_4$: C, 74.54; H, 6.56. Found: C, 74.53; H, 6.74.

In a similar manner, the Rh/amine-catalyzed cyclotrimerization of diyne **4a** and alkynes **1a**, **1c**, **1f**, and **1n** was carried out. The reaction conditions and the results are illustrated in Table 6.

4.6.2. Diethyl 5-Hexyl-1H-indene-2,2(3H)-dicarboxylate $(5an)^{2e}$

Orange liquid; $R_f = 0.47$ (hexane/EtOAc 5:1); ¹H NMR (600 MHz, CDCl₃): δ 0.87–0.89 (m, 3H), 1.24–1.33 (m, 12H), 1.54–1.60 (m, 2H), 2.54 (t, J = 7.2 Hz, 2H), 3.55 (s, 2H), 3.56 (s, 2H), 4.20 (q, J = 7.2 Hz, 4H), 6.97 (d, J = 7.2 Hz, 1H), 7.01 (s, 1H), 7.08 (d, J = 7.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 14.0, 14.1, 22.6, 29.0, 31.69, 31.72, 35.8, 40.1, 40.4, 60.5, 61.6, 123.8, 124.1, 127.1, 137.1, 140.0, 141.8, 171.8; IR (neat) 2957, 2928, 2856, 1735 cm⁻¹. Anal. Calcd for C₂₁H₃₀O₄: C, 72.80; H, 8.73. Found: C, 72.79; H, 8.84.

4.6.3. Diethyl 5-Ethoxycarbonyl 6-Phenyl-1H-indene-2,2(3H)-dicarboxylate (**5aa**)

Colorless solids; $R_f = 0.26$ (hexane/EtOAc 4:1); ¹H NMR (600 MHz, CDCl₃): δ 0.96 (t, J = 7.2 Hz, 3H), 1.27 (t, J = 7.2 Hz, 6H), 3.63 (s, 2H), 3.65 (s, 2H), 4.04 (q, J = 7.2 Hz, 2H), 4.22 (q, J = 7.2 Hz, 2H), 7.19 (d, J = 0.6 Hz, 1H), 7.26–7.28 (m, 2H), 7.30–7.37 (m, 2H), 7.66 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 13.6, 14.0, 40.0, 40.4, 60.4, 60.8, 61.8, 125.5, 126.4, 126.9, 127.9, 128.3, 130.2, 139.2, 141.66, 141.74, 143.7, 168.8, 171.3; IR (KBr) 3059, 3024, 2980, 2935, 2905, 1732 cm⁻¹. Anal. Calcd for C₂₄H₂₆O₆: C, 70.23; H, 6.38. Found: C, 70.15; H, 6.44.

4.6.4. Diethyl 5-Methyl 6-Phenyl-1H-indene-2,2(3H)-dicarboxylate (**5ac**)

Yellow liquid; $R_f = 0.40$ (hexane/EtOAc 5:1); ¹H NMR (600 MHz, CDCl₃): δ 1.27 (t, J = 7.2 Hz, 6H), 2.21 (s, 3H), 3.59 (s, 2H), 3.60 (s, 2H), 4.22 (q, J = 7.2 Hz, 4H), 7.05 (s, 1H), 7.10 (s, 1H), 7.28–7.33 (m, 3H), 7.37–7.40 (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 14.0, 20.4, 40.2, 40.3, 60.5, 61.7, 125.5, 126.6, 128.0, 129.2, 134.1, 137.5, 139.1, 140.8, 142.1, 171.7; IR (neat) 3057, 2980, 2935, 1733, 1244 cm⁻¹. Anal. Calcd for $C_{22}H_{24}O_4$: C, 74.98; H, 6.86. Found: C, 74.93; H, 6.99.

4.6.5. Diethyl 5,6-Diphenyl-1H-indene-2,2(3H)-dicarboxylate (**5af**)

Colorless solids; $R_f = 0.39$ (hexane/EtOAc 4:1); ¹H NMR (600 MHz, CDCl₃): δ 1.281 (t, J = 7.2 Hz, 3H), 1.282 (t, J = 7.2 Hz, 3H), 3.68 (s, 4H), 4.240 (q, J = 7.2 Hz, 2H), 4.241 (q, J = 7.2 Hz, 2H), 7.09–7.11 (m, 4H), 7.15–7.20 (m, 6H), 7.25 (d, J = 0.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 14.0, 40.3, 60.5, 61.8, 126.3, 127.8, 129.9, 139.4, 139.6, 141.6, 171.7; IR (KBr) 3057, 2985, 2903, 1732, 1708 cm⁻¹.

4.7. General Procedure for Cyclization of Diyne **4b** and Alkyne **1f**

To a solution of RhCl₃•3H₂O (11 mg, 0.04 mmol) and *i*-Pr₂NEt (26 μ L, 0.15 mmol) in *i*-PrOH (2.0 mL) were added diphenylacetylene **1f** (900 mg, 5.0 mmol) and diyne **4b** (132 mg, 0.50 mmol) in *i*-PrOH (3.0 mL). The mixture was stirred at reflux for 24 h. After being cooled to room

temperature, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/EtOAc 5:1) to afford diethyl 4,7-dimethyl-5,6-diphenyl-1*H*-indene-2,2(3*H*)-dicarboxylate **5bf** (102 mg, 46%) and 45% of **4b** was recovered.

Diethyl 4,7-Dimethyl-5,6-diphenyl-1H-indene-2,2(3H)-dicarboxylate (**5bf**)

Red liquid; $R_f = 0.50$ (hexane/EtOAc 5:1); ¹H NMR (600 MHz, CDCl₃): δ 1.32 (t, J = 7.2 Hz, 6H), 2.00 (s, 6H), 3.69 (s, 4H), 4.28 (q, J = 7.2 Hz, 4H), 6.92 (d, J = 7.2 Hz, 4H), 7.04–7.06 (m, 2H), 7.10–7.12 (m, 4H); ¹³C NMR (150 MHz, CDCl₃): δ 13.7, 19.2, 30.7, 64.4, 118.2, 128.0, 128.8, 130.2, 134.4, 144.5, 167.1; IR (neat) 3056, 3021, 2981, 2935, 1733, 1242 cm⁻¹.

Acknowledgements

We thank the SC-NMR Laboratory of Okayama University for ¹H and ¹³C NMR analyses.

Supplementary material

Supplementary material and representative spectra associated with this article can be found in the online version, at doi:

Reference and notes

- For reviews, see: (a) Tanaka, K. Synlett 2007, 1977–1993; (b) Heller, B.; Hapke, M. Chem. Soc. Rev. 2007, 36, 1085–1094; (c) Maryanoff, B. E.; Zhang, H.-C. Arkivoc 2007, xii, 7–35; (d) Takeuchi, R.; Kezuka, S. Synthesis 2006, 3349–3366; (e) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307–2327; (f) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 4741–4767; (g) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901–2915; (h) Grotjahn, D. B. in Comprehensive Organometallic Chemistry II, 1995, Vol. 12, (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson, L. Hegedus), Pergamon, Oxford, pp 741–770; (i) Boese, R.; Sickle, A. P. V.; Vollhardt, K. P. C. Synthesis 1994, 1374–1382; (j) Shore, N. E. in Comprehensive Organic Synthesis, 1991, Vol. 5 (Ed.: B. M. Trost, I. Fleming), Pergamon, Oxford, pp 1129–1162; (k) Trost, B. M. Science 1991, 254, 1471–1477.
- (a) Teske, J. A.; Deiters, A. J. Org. Chem. 2008, 73, 342–345;
 (b) Müller, C.; Lachicotte, R. J.; Jones, W. D. Organometallics 2002, 21, 1975–1981;
 (c) Jeevanandam, A.; Korioi, R. P.; Huang, I-w.; Cheng, C.-H. Org. Lett. 2002, 5, 807–810;
 (d) Saito, S.; Kawasaki, T.; Tsuboya, N.; Yamamoto, Y. J. Org. Chem. 2001, 66, 796–802;
 (e) Mori, N.; Ikeda, S.; Odashima, K. Chem. Commun. 2001, 181–182;
 (f) Sato, Y.; Ohashi, K.; Mori, M. Tetrahedron Lett. 1999, 40, 5231–5234;
 (g) Saito, Y.; Nishimata, T.; Mori, M. Heterocycles 1997, 44, 443–457;
 (h) Saito, Y.; Nishimata, T.; Mori, M. J. Org. Chem. 1994, 59, 6133–6135;
 (i) Chiusoli, G. P.; Pallini, L.; Terenghi, G. Transition Met. Chem. 1983, 3, 189–190.
- (a) Ramana, C. V.; Suryawanshi, S. B. Tetrahedron Lett. 2008, 49, 445–448; (b) Tanaka, K.; Sagae, H.; Toyoda, K.; Hirano, M. Tetrahedron Lett. 2008, 64, 831–846; (c) Ramana, C. V.; Salian, S. R.; Gonnade, R. G. Eur. J. Org. Chem. 2007, 5483–5486; (d) Tanaka, K.; Toyoda, K.; Wada, A.; Shirasaki, K.;

Hirano, M. Chem. Eur. J. 2005, 11, 1145-1156; (e) Dufková, L.; Císarová, L.; Stepnicka, P.; Kotora, M. Eur. J. Org. Chem. 2003, 2882–2887; (f) Kinoshita, H.; Shinokubo, H.; Oshima, K. J. Am. Chem. Soc. 2003, 125, 7784-7785; (g) Tagliatesta, P.; Floris, B.; Galloni, P.; Leoni, A.; D'Arcangelo, G. Inorg. Chem. 2003, 42, 7701-7703; (h) Witulski, B.; Zimmermann, A.; Gowans, N. D. Chem. Commun. 2002, 2984–2985; (i) Sun, Q.; Zhou, X.; Islam, K.; Kyle, D. J. Tetrahedron Lett. 2001, 42, 6495-6497; (j) Ojima, I.; Vu, A. T.; McCullagh, J. V.; Kinoshita, A. J. Am. Chem. Soc. 1999, 121, 3230-3231; (k) Amer, I.; Bernstein, T.; Eisen, M.; Blum, J.; Volhardt, K. P. C. J. Mol. Catal. 1990, 60, 313-321; (1) Grigg, R.; Scott, R.; Stevenson, P. Tetrahedron Lett. 1982, 23, 2691-2692; (m) Müller, E. Synthesis 1974, 761–774; (n) Collman, J. P.; Kang, J. W.; Little, W. F.; Sullivan, M. F. Inorg. Chem. 1968, 7, 1298-1303.

- (a) Sripada, L.; Teske, J. A.; Deiters, A. Org. Biomol. Chem. 2008, 6, 263–265; (b) Cheng, J. S.; Jiang, H. F. Eur. J. Org. Chem. 2004, 643–646; (c) Carvalho, M. F. N. N.; Almeida, F. M. T.; Galvão, A. M.; Pombeiro, A. J. L. J. Organomet. Chem. 2003, 679, 143–147; (d) Yamamoto, Y.; Nagata, A.; Nagata, H.; Ando, Y.; Arikawa, Y.; Tatsumi, K.; Itoh, K. Chem. Eur. J. 2003, 9, 2469–2483; (e) Li, J.; Jiang, H.; Chen, M. J. Org. Chem. 2001, 66, 3627–3629; (f) Negishi, E.; Ay, M.; Sugihara, T. Tetrahedron 1993, 49, 5471–5482; (g) Jhingan, A. K.; Maier, W. F. J. Org. Chem. 1987, 52, 1161–1165.
- (a) Senaiar, R. S.; Teska, J. A.; Young, D. D.; Deiters, A. J. Org. Chem. 2007, 72, 7801–7804; (b) Yamamoto, Y.; Kinpara, K.; Saigoku, T.; Takagishi, H.; Okuda, S.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2005, 127, 605–613; (c) Yamamoto, Y.; Ishii, J.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2004, 126, 3712–3713; (d) Ura, Y.; Sato, Y.; Shiotsuki, M.; Kondo, T.; Mitsudo, T. J. Mol. Catal. A: Chem. 2004, 209, 35–39; (e) Rüba, E.; Schmid, R.; Kirchner, K.; Calhorda, M. J. J. Organomet. Chem. 2003, 682, 204–211; (f) Yamamoto, Y.; Arakawa, T.; Ogawa, R.; Itoh, K. J. Am. Chem. Soc. 2003, 125, 12143–12160; (g) Peters, J.-U.; Blechert, S. Chem. Commun. 1997, 1983–1984.
- (a) Han, Z.; Vaid, T. P.; Rheingold, A. L. J. Org. Chem. 2008, 73, 445–450; (b) Agenet, N.; Gandon, V.; Vollhardt, K. P. C.; Malacria, M.; Aubert, C. J. Am. Chem. Soc. 2007, 129, 8860–8871; (c) Gandon, V.; Aubert, C. Malacria, M. Chem. Commun. 2006, 2209–2217; (d) Saino, N.; Amemiya, F.; Tanabe, E.; Kase, K.; Okamoto, S. Org. Lett. 2006, 8, 1439–1442; (e) Hilt, G.; Vogler, T.; Hess, W.; Galbiati, F. Chem. Commun. 2005, 1474–1475; (f) Yong, L.; Butenschön, H. Chem. Commun. 2002, 2852–2853; (g) Sigman, M. S.; Fatland, A. W.; Eaton, B. E. J. Am. Chem. Soc. 1998, 120, 5130–5131; (h) Lecker, S. H.; Nguyen, N. H.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1986, 108, 856–858.
- (a) Rodríguez, J. G.; Lafuente, A.; Martín-Villamil, R. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 1228–1237; (b)

- Ladipo, F. T.; Sarveswaran, V.; Kingston, J. V.; Huyck, R. A.; Bylikin, S. Y.; Carr, S. D.; Watts, R.; Parkin, S. *J. Organomet. Chem.* **2004**, 689, 502–514; (c) Ozerov, O. V.; Patrick, B. O.; Ladipo, F. T. *J. Am. Chem. Soc.* **2000**, 122, 6423–6431; (d) Ozerov, O. V.; Ladipo, F. T.; Patrick, B. O. *J. Am. Chem. Soc.* **1999**, 121, 7941–7942; (e) Johnson, E. S.; Balaich, G. J.; Fanwick, P. E.; Rothwell, I. P. *J. Am. Chem. Soc.* **1997**, 119, 11086–11087.
- (a) Sato, Y.; Nishimata, T.; Mori, M. J. Org. Chem. 1994, 59, 6133–6135;
 (b) Kaneta, N.; Hirai, T.; Mori, M. Chem. Lett. 1995, 8, 627–628.
- (a) Toganoh, M.; Matsuo, Y.; Nakamura, E. J. Organomet. Chem. 2003, 683, 295–300; (b) Yan, H.; Beatty, A. M.; Fehlner, T. P. Organometallics 2002, 21, 5029–5037; (c) Cioni, P.; Diversi, P.; Ingrosso, G.; Lucherini, A.; Ronca, P. J. Mol. Catal. 1987, 40, 337–357; (d) Diercks, R.; tom Dieck, H. Z. Naturforsch. B: Chem. Sc. 1984, 39B, 180–184; (e) Flynn, S. T.; Hasso-Henderson, S. E.; Parkins, A. W. J. Mol. Catal. 1985, 32, 101–105; (f) Hubel, W.; Hoogzand, C. Chem. Ber. 1960, 93, 103–114.
- (a) Reppe, W.; Schichting, O.; Klager, K.; Toepel, T. *Justus Liebigs Ann. Chem.* 1948, 560, 1–92.
- For recent examples, see: (a) Honeda, S.; Ueba, C.; Eda, K.; Hayashi, M. Adv. Synth. Catal. 2007, 349, 833–835; (b) López-Linares, F.; Fuentes, A.; Tenia, R.; Martinez, M.; Karam, A. React. Kinet. Catal. Lett. 2007, 92, 285–292; (c) Goswami, A.; Ito, T.; Okamoto, S. Adv. Synth. Catal. 2007, 349, 2368–2374; (d) Jones, G. D.; Martin, J. L.; McFarland, C.; R. A. Olivia.; Hall, R. E.; Haley, A. D.; Brandon, R. J.; Konovalova, T.; Desrochers, P. J.; Pulay, P.; Vicic, D. A. J. Am. Chem. Soc. 2006, 128, 13175–13183; (e) Ohmiya, H.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2006, 128, 1886–1889; (f) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 3686–3687; (g) Mathews, C. J.; Smith, P. J.; Welton, T. J. Mol. Catal. A, 2003, 206, 77–82; (h) Tao, B.; Boykin, D. W. Tetrahedron Lett. 2002, 43, 4955–4957.
- (a) Yoshida, K.; Morimoto, I.; Mitsudo, K.; Tanaka, H. Tetrahedron. Lett. 2008, 49, 2363–2365; (b) Yoshida, K.; Morimoto, I.; Mitsudo, K.; Tanaka, H. Chem. Lett. 2007, 36, 998–999
- Collman, J. P.; Holtzclaw Jr., H. F. J. Am. Chem. Soc. 1958, 80, 2054–2056.
- Bhar, S.; Chaudhuri, K. S.; Sahu, S. G.; Panja, C. Tetrahedron 2001, 57, 9011–9016.
- Yasuda, M.; Kojima, R.; Tsutsui, H.; Utsunomiya, D.; Ishii, K.; Jinnouchi, K.; Shiragami, T. J. Org. Chem. 2003, 68, 7618–7624.
- Kanner, C. B.; Pandit, U. K. Tetrahedron 1982, 38, 3597– 3604