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Abstract— Synthesis of the AB ring segments of ciguatoxin is described.  The present synthesis includes a Lewis acid mediated 
cyclization of allylstannane with aldehyde, cross-metathesis reaction introducing the side chain, and Grieco-Nishizawa dehydration on the 
A ring.  © 2008 Elsevier Science. All rights reserved 

Ciguatoxin (1), a principal causative toxin of “ciguatera” 
seafood poisoning, was isolated from moray eel 
Gymnothorax javanicus.1  The potent neurotoxicity and 
novel polycyclic ether framework including five- to nine-
membered rings have attracted the attention of synthetic 
chemists.2,3  The first total synthesis of 1 was achieved by 
Inoue and Hirama in 2006.4  As well as the construction of 
the huge molecular architecture, synthesis of the labile 
dihydroxybutenyl substituent on the A ring moiety is a 
great synthetic challenge.5  In this paper, we describe a 
stereocontrolled synthesis of the AB ring segment of 
ciguatoxin (1) via a cross-metathesis reaction.6 
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Scheme 1 illustrates our synthetic  strategy.  The AB ring 
segment 2 is retrosynthetically broken down into the side 
chain moiety 3 and the bicycle 4.  The 6-7 ring system 4 
would be constructed from 5 via an intramolecular reaction 
of allylstannnane with aldehyde.  The vinyl group of 4, 
generated by the cyclization process, can be a suitable 
substrate for the subsequent cross-metathesis.  The 
cyclization precursor 5 can be prepared from the known 
compound 6. 

As a preliminary study,  we examined the synthesis of a 
1,4-diene system by using the simple substrate 77 via the 
Grieco-Nishizawa protocol.  Thus, treatment of 7 with 2-
nitro-phenylselenocyanate/Bu3P afforded alkyl selenide 8 
via SN2 stereoinversion (Scheme 2).  Oxidation of 8 with 
H2O2 gave selenoxide intermediate 9, which immediately 
underwent syn-elimination to furnish 10 as the sole product 
in 88% overall yield.8,9  Although the desired 1,4-diene was 
obtained in good yield, however, the reaction with the 
olefin 1110 using metathesis catalyst such as the second 
generation Grubbs catalyst 1211 gave poor result.  Only a 
trace amount of the desired product 13 was detected in the 
reaction mixture.12   

After several unfruitful attempts, we found that the cross-
metathesis of 7 and 11 in the presence of the catalyst 12 
proceeded to give the product 14 in reasonable yield 
(Scheme 3).  The alcohol 14 was then dehydrated to give 
the 1,4-diene 13 in 54% yield.13,14 

Encouraged by these results, we next investigated the 
synthesis of the AB ring segment 2.  Protection of the 
known alcohol 1515 as an ethoxyethyl ether followed by 
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hydroboration-oxidation provided the corresponding 
primary alcohol, which was treated with CSA in MeOH 
giving the diol 16 in 81% overall  yield (Scheme 4).  
Selective protection of the primary hydroxyl group with 
TBDPSCl/imidazole afforded 17 in quantitative yield.  
Treatment of the secondary alcohol with the γ-methoxy-
allylstannane 18 gave the mixed acetal in 98% yield.  
Acetal cleavage of 19 was performed using TMSI/HMDS 
to give the allylic stannane 20,16 which was treated with 
TBAF furnishing 21 in 74% overall yield.  Oxidation of the 
primary alcohol with SO3·py/DMSO/Et3N gave the 

aldehyde 5, which was then  subjected to the BF3·OEt2 
mediated cyclization to afford the bicyclic compound 4 as a 
single stereoisomer in 80% overall yield.17-19  The 
cyclization product 4 having a vinyl group can be used 
directly for the next cross-metathesis reaction. 

Preparation of the chiral side chain segment is described in 
Scheme 5.  Hydrolysis of the acetonide 22, prepared from 
D-mannitol,20 gave the corresponding diol 23, which was 
treated with TBDPSCl/imidazole followed by TBSCl to 
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afford 24 in 76% overall yield.  Ozonolysis of the alkene 24, 
followed by Wittig reaction of the resulting aldehyde 
furnished 25 in 60% overall yield.  The side chain segment 
26 having a MPM group was prepared via selective 
removal of the TBS group followed by protection of the 
resulting alcohol as a MPM ether in 42% overall yield. 
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Both of the substrates were in hand, we next examined the 
cross-metathesis (Scheme 6).  Treatment of 4 with 25 (8 
eq) in the presence of the catalyst 12 (20 mol% ) provided 
27 as a single stereoisomer in 23% yield.  The yield was 
slightly improved by using the less hindered substrate 26, 
and the product 28 was obtained in 34% yield.  Finally, the 
alcohol 28 was subjected to the Grieco-Nishizawa protocol 
to furnish the AB ring segment 29 in 47% yield.  The 
coupling constants, JHa-Hb = 15.6 Hz, clearly indicated the 
E-geometry of the side chain olefin. 
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In conclusion, the stereocontrolled synthesis of the AB ring 
segment of ciguatoxin was achieved.  The Lewis acid 
mediated allylstannane-aldehyde condensation was 
successfully applied to the synthesis of the seven-
membered cyclic ether skeleton.  Cross-metathesis and 
subsequent Grieco-Nishizawa dehydration protocol were 
effective for the construction of  the 1,4-diene system.  
Further studies towards the total synthesis of ciguatoxin are 
in progress in our laboratories. 
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