Chemistry

Organic Chemistry fields

Okayama University

Year~2008

A cross-metathesis approach to the stereocontrolled synthesis of the AB ring segment of ciguatoxin

Isao Kadota* Takashi Abe[†] Miyuki Uni[‡] Hiroyoshi Takamura** Yoshinori Yamamoto^{††}

http://escholarship.lib.okayama-u.ac.jp/organic_chemistry/4

^{*}Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, kadota-i@cc.okayama-u.ac.jp

[†]Department of Chemistry, Graduate School of Science, Tohoku University

 $^{^{\}ddagger} \mbox{Department}$ of Chemistry, Graduate School of Natural Science and Technology, Okayama University

^{**}Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University

^{††}Department of Chemistry, Graduate School of Science, Tohoku University

This paper is posted at eScholarship@OUDIR : Okayama University Digital Information Repository.

A cross-metathesis approach to the stereocontrolled synthesis of the AB ring segment of ciguatoxin

Isao Kadota, ^a,* Takashi Abe, ^b Miyuki Uni, ^a Hiroyoshi Takamura, ^a Yoshinori Yamamoto ^b

^aDepartment of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530. Japan

^bDepartment of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

e-mail: kadota-i@cc.okayama-u.ac.jp, phone/fax:+ 81-86-251-7836,

Keywords: ciguatoxin, polycyclic ethers, allylstannane-aldehyde condensation, cross-metathesis.

Abstract— Synthesis of the AB ring segments of ciguatoxin is described. The present synthesis includes a Lewis acid mediated cyclization of allylstannane with aldehyde, cross-metathesis reaction introducing the side chain, and Grieco-Nishizawa dehydration on the A ring. © 2008 Elsevier Science. All rights reserved

Ciguatoxin (1), a principal causative toxin of "ciguatera" seafood poisoning, was isolated from moray eel *Gymnothorax javanicus*.¹ The potent neurotoxicity and novel polycyclic ether framework including five- to ninemembered rings have attracted the attention of synthetic chemists.^{2,3} The first total synthesis of 1 was achieved by Inoue and Hirama in 2006.⁴ As well as the construction of the huge molecular architecture, synthesis of the labile dihydroxybutenyl substituent on the A ring moiety is a great synthetic challenge.⁵ In this paper, we describe a stereocontrolled synthesis of the AB ring segment of ciguatoxin (1) via a cross-metathesis reaction.⁶

Scheme 1

Scheme 1 illustrates our synthetic strategy. The AB ring segment 2 is retrosynthetically broken down into the side chain moiety 3 and the bicycle 4. The 6-7 ring system 4 would be constructed from 5 via an intramolecular reaction of allylstannane with aldehyde. The vinyl group of 4, generated by the cyclization process, can be a suitable substrate for the subsequent cross-metathesis. The cyclization precursor 5 can be prepared from the known compound 6.

As a preliminary study, we examined the synthesis of a 1,4-diene system by using the simple substrate $\mathbf{7}^7$ via the Grieco-Nishizawa protocol. Thus, treatment of $\mathbf{7}$ with 2-nitro-phenylselenocyanate/Bu₃P afforded alkyl selenide $\mathbf{8}$ via S_N2 stereoinversion (Scheme 2). Oxidation of $\mathbf{8}$ with H_2O_2 gave selenoxide intermediate $\mathbf{9}$, which immediately underwent syn-elimination to furnish $\mathbf{10}$ as the sole product in 88% overall yield. Although the desired 1,4-diene was obtained in good yield, however, the reaction with the olefin $\mathbf{11}^{10}$ using metathesis catalyst such as the second generation Grubbs catalyst $\mathbf{12}^{11}$ gave poor result. Only a trace amount of the desired product $\mathbf{13}$ was detected in the reaction mixture.

After several unfruitful attempts, we found that the crossmetathesis of **7** and **11** in the presence of the catalyst **12** proceeded to give the product **14** in reasonable yield (Scheme 3). The alcohol **14** was then dehydrated to give the 1,4-diene **13** in 54% yield. ^{13,14}

Encouraged by these results, we next investigated the synthesis of the AB ring segment 2. Protection of the known alcohol 15¹⁵ as an ethoxyethyl ether followed by

Scheme 2

Scheme 3

TBDPSCI 1) ethyl vinyl ether. CSA, CH₂Cl₂, 0 °C imidazole TBDPSO 2) (Sia)2BH, THF, 0°C DMF. 0 °C Ě Ĥ OBn ÷ H OBn Á H Ĥ Ĥ ÷ H OBn then H₂O₂, NaOH 100% 3) CSA, MeOH, rt 15 16 17 81% QМе Bu₃Sn TMSI, HMDS TBAF 18 OBn `OBn H OBn Ĥ Ĥ Ē THF, rt CSA, CH₂CI₂, rt CH₂Cl₂, 0 °C ŌBn Bu₃Sn Bu₃Sn OMe 98% 74% (2 steps) 20 $\mathsf{BF}_3 ext{-}\mathsf{OE}\,\mathsf{t}_2$ SO₃·py, DMSO $\mathsf{Et}_3\mathsf{N},\,\mathsf{CH}_2\mathsf{CI}_2$ CH₂Cl₂ **OBn** OBn Ĥ Ĥ E H OBn -78 °C 0°C

Scheme 4

Bu₃Sn

OBn

5

hydroboration-oxidation provided the corresponding primary alcohol, which was treated with CSA in MeOH giving the diol 16 in 81% overall yield (Scheme 4). Selective protection of the primary hydroxyl group with TBDPSCI/imidazole afforded 17 in quantitative yield. Treatment of the secondary alcohol with the 7-methoxyallylstannane 18 gave the mixed acetal in 98% yield. Acetal cleavage of 19 was performed using TMSI/HMDS to give the allylic stannane 20,16 which was treated with TBAF furnishing 21 in 74% overall yield. Oxidation of the primary alcohol with SO₃·py/DMSO/Et₃N gave the

OBn

21

 Bu_3Sn

aldehyde 5, which was then subjected to the BF₃·OEt₂ mediated cyclization to afford the bicyclic compound 4 as a single stereoisomer in 80% overall yield. 17-19 cyclization product 4 having a vinyl group can be used directly for the next cross-metathesis reaction.

4

80% (2 steps)

Preparation of the chiral side chain segment is described in Scheme 5. Hydrolysis of the acetonide 22, prepared from D-mannitol,²⁰ gave the corresponding diol **23**, which was treated with TBDPSCI/imidazole followed by TBSCI to afford **24** in 76% overall yield. Ozonolysis of the alkene **24**, followed by Wittig reaction of the resulting aldehyde furnished **25** in 60% overall yield. The side chain segment **26** having a MPM group was prepared via selective removal of the TBS group followed by protection of the resulting alcohol as a MPM ether in 42% overall yield.

Both of the substrates were in hand, we next examined the cross-metathesis (Scheme 6). Treatment of **4** with **25** (8 eq) in the presence of the catalyst **12** (20 mol%) provided **27** as a single stereoisomer in 23% yield. The yield was slightly improved by using the less hindered substrate **26**, and the product **28** was obtained in 34% yield. Finally, the alcohol **28** was subjected to the Grieco-Nishizawa protocol to furnish the AB ring segment **29** in 47% yield. The coupling constants, $J_{\text{Ha-Hb}} = 15.6$ Hz, clearly indicated the *E*-geometry of the side chain olefin.

Scheme 6

In conclusion, the stereocontrolled synthesis of the AB ring segment of ciguatoxin was achieved. The Lewis acid mediated allylstannane-aldehyde condensation was successfully applied to the synthesis of the seven-membered cyclic ether skeleton. Cross-metathesis and subsequent Grieco-Nishizawa dehydration protocol were effective for the construction of the 1,4-diene system. Further studies towards the total synthesis of ciguatoxin are in progress in our laboratories.

Acknowledgement

This work was financially supported by the Nagase Science and Technology Foundation, and the Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- *Corresponding author. Tel/Fax: +81-86-215-7836; E-mail: kadota-i@cc.okayama-u.ac.jp
- (a) Scheuer, P. J.; Takahashi, W.; Tsutsumi, J.; Yoshida, T. Science 1967, 155, 1267-1268.
 (b) Murata, M.; Legrand, A. M.; Ishibashi, Y.; Yasumoto, T. J. Am. Chem. Soc. 1989, 111, 8929-8931.
 (c) Murata, M.; Legrand, A.-M.; Ishibashi, Y.; Fukui, M.; Yasumoto, T. J. Am. Chem. Soc. 1990, 112, 4380-4386.
 (d) Satake, M.; Morohashi, A.; Oguri, H.; Oishi, T.; Hirama, M.; Harada, N.; Yasumoto, T. J. Am. Chem. Soc. 1997, 119, 11325-11326.
- For the first total synthesis of ciguatoxin CTX3C, (a) Hirama, M.; Oishi, T.; Uehara, H.; Inoue, M.; Maruyama, M.; Oguri, H.; Satake, M. Science 2001, 294, 1904-1907. (b) Inoue, M.; Uehara, H.; Maruyama, M.; Hirama, M. Org. Lett. 2002, 4, 4551-4554. (c) Inoue, M.; Miyazaki, K.; Uehara, H.; Maruyama, M.; Hirama, M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12013-12018.
- For recent reviews on syntheses of polycyclic ethers, see: (a) Nakata, T. Chem. Rev. 2005, 105, 4314-4347. (b) Inoue, M. Chem. Rev. 2005, 105, 4379-4405.
- Inoue, M.; Miyazaki, K.; Ishihara, Y.; Tatami, A.; Ohnuma, Y.; Kawada, Y.; Komano, K.; Yamashita, S.; Lee, N.; Hirama, M. J. Am. Chem. Soc. 2006, 128, 9352-9354
- For the previous examples, see: (a) Sato, O.; Hirama, M. Synlett 1992, 705-707. (b) Oguri, H.; Hishiyama, S.; Oishi, T.; Hirama, M. Synlett 1995, 1252-1254. (c) Oguri, H.; Hishiyama, S.; Sato, O.; Oishi, T.; Hirama, M.; Murata, M.; Yasumoto, T.; Harada, N. Tetrahedron 1997, 3057-3072. (d) Oka, T.; Fujiwara, K.; Murai, A. Tetrahedron 1998, 54, 21-44. (e) Hosokawa, S.; Isobe, M. J. Org. Chem. 1999, 64, 37-48. (f) Oguri, H.; Sasaki, S.; Oishi, T.; Hirama, M. Tetrahedron Lett. 1999, 40, 5405-5408. (g) Oguri, H.; Tanaka, S.; Oishi, T.; Hirama, M. Tetrahedron Lett. 2000, 41, 975-978. (h) Saeeng, R.; Isobe, M. Heterocycles 2001, 54, 789-798. (i) Kobayashi, S.; Alizadeh, B. H.; Sasaki, S.; Oguri, H.; Hirama, M. Org. Lett. 2004, 6, 751-754.
- 6. For a previous study on the synthesis of the AB ring moiety of 1 by cross-metathesis reacion, see ref. 5f.

- Kadota, I.; Ohno, A.; Matsukawa, Y.; Yamamoto, Y. Tetrahedron Lett. 1998, 39, 6373-6376.
- Grieco, P. A.; Gilman, S.; Nishizawa, M. J. Org. Chem. 1976, 41, 1485-1486.
- Treatment of the mesylate, prepared from 7, with KHMDS afforded the undesired 1,3-diene derivative as the sole product.

10. The olefin 8 was prepared as follows.

- 11. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. *Org. Lett.* **1999**, *I*, 953-956.
- 12. Similar problem of the cross-metathesis with a 1,4-diene derivative was reported by Hirama, see ref. 5f.
- 13. Protection of the hydroxy group of **7** as a TBS ether inhibited the closs-metathesis. The reaction was very slow even in the presence of 1 equivalent of **12**, and the product was obtained in 35% yield after 16 h as shown below. One of the referee suggested carring out this reaction to clarify the effect of the free hydroxy group on the closs-metathesis.

- Recently, the acceleration effect of allylic hydroxy group on ring-closing enyne metathesis was reported, see: Imahori, T.; Ojima, H.; Takeyama, H.; Mihara, Y.; Takahata, H. Tetrahedron Lett. 2008, 49, 265-268.
- Cipolla, L.; Lay, L.; Nicotra, F. J. Org. Chem. 1997, 62, 6678-6681.
- Kadota, I.; Sakaihara, T.; Yamamoto, Y. Tetrahedron Lett. 1996, 37, 3195-3198.
- (a) Yamamoto, Y.; Yamada, J.; Kadota, I. *Tetrahedron Lett.* 1991, 32, 7069-7072. (b) Kadota, I.; Kawada. M.; Gevorgyan, V.; Yamamoto, Y. *J. Org. Chem.* 1997, 62, 7439-7446.
- Construction of the A ring moiety via the allylstannanealdehyde condensation has been investigated by Hirama, see ref. 5b, c.
- The stereochemistry of the product 20 was confirmed by ¹H NMR analysis as shown below.

 Takano, S.; Kurotaki, A.; Takahashi, M.; Ogasawara, K. Synthesis 1986, 403-406.