
Engineering

Electrical Engineering fields

Okayama University Year 2005

A Framework for Mobile Agent Systems

with the Capability of Preceding and

Following Users

Tokumi Yokohira Kiyohiko Okayama
Okayama University Okayama University

Takashi Murakami Kayo Takarako
Okayama University Okayama University

This paper is posted at eScholarship@OUDIR : Okayama University Digital Information
Repository.

http://escholarship.lib.okayama-u.ac.jp/electrical engineering/56

A Framework for Mobile Agent Systems with the Capability of
Preceding and Following Users

Tokumi Yokohirat, Kiyohiko Okayamatt, Takashi Murakamit and Kayo Takarakot
t The Graduate School of Natural Science and Technology,

Okayama University, 3-1-1, Tsushimanaka, Okayama, 700-8530, Japan
tt The Information Technology Center, Okayama University, Okayama, Japan

E-mail: yokohira@cne.okayama-u.ac.jp, okayama@cc.okayama-u.acjp,
takashi-m@net.cne.okayama-u.ac.jp, takarako@net.cne.okayama-u.ac.jp

Abstract

As one of mobile agent applications, many systems
which provide continuous service for users moving on a
network have been proposed. In these systems, because
a movement of mobile agents is performed after a user
movement, users must wait for arrival of mobile agents.
To reduce users' waiting time, we propose a fundamental
framework for mobile agent systems where an agent can
move precedently before a user movement. In our frame-
work, it is assumed that computers are connected on a

network and users with rewritable devices move on the
network. The framework supports precedent movement
ofmobile agents based on prediction using movement his-
tory of users. Because the prediction may be wrong, the
framework also provides the following movement of mo-
bile agents. Moreover, the framework provides a recov-
ery method of mobile agents in service in case that mo-
bile agents disappear due to problems such as their bugs.
Because we provide some APIs, via which various func-
tions of our framework are accessed, developers of mo-
bile agent systems can easily use our framework using the
APIs. We implemented an experimental agent system us-
ing the APIs and confirmed that the framework perforned
correctly using the experimental system.

I Introduction

A mobile agent is a software program which can au-

tonomously move among computers on a network. When
a mobile agent moves, it holds not only its program text
but also its state of execution. Mobile agents are there-
fore expected to be used for many kinds of applications
such as information gathering by moving among com-
puters, distributed computing, and so on. As typical ap-
plications using mobile agents, some systems providing
continuous service for users who move among computers
on the system are considered. In the systems, continuous
service can be performed by moving mobile agents auto-
matically as users move, and user movement can be also
automatically detected using sensing technologies such as
an RFID tag technologies and image processing technolo-
gies. Thus, users can receive continuous service transpar-
ently to physical configuration of computers and/or net-

works.
As conventional systems providing continuous service,

the system by Bates et al.[l], NetChaser[2], LocALE[3],
f-Desktop[4] and FollowingSpace[5] have been proposed.
In these systems, after a user receiving service by a mo-
bile agent at a computer (say A) departs from the com-
puter A and arrives at another computer (say B), the mo-
bile agent starts to move from the computer A to the com-
puter B. In other words, agent movement follows user
movement in the conventional systems. Thus, such fol-
lowing mechanism forces users to wait for arrival of mo-
bile agents, and consequently users suffer some waiting
time until the service by mobile agents starts. Though the
allowable value of the waiting time depends on the con-
tents of the services provided by agents, the waiting time
seems to become considerably large in such services that
agents need to involve large amount of data like image
data and agents need to perform large amount of com-
putation before starting to provide services at the arrived
computer, and consequently the waiting time of such ser-
vice seems to exceed their allowable values frequently.
Thus, it is important to consider a strategy to shorten the
waiting time.

In this paper, we propose a fundamental framework
with which agent application developers can easily im-
plement mobile agent systems where mobile agents can
arrive at a computer precedently before user's arrival at
the computer. The framework automatically detects the
user's departure from a computer, and then it immediately
moves the copies of the corresponding mobile agent to
computers (target computers), one ofwhich the user prob-
ably arrives at, and consequently the waiting time drasti-
cally decreases. Because we use such the strategy that
copies agents in order to provide the preceding mecha-
nism, when such copy is repeatedly done, a situation that
many unnecessary copies exist at the same time may oc-
cur. In order to avoid the situation, we introduce a gen-
eration number for each agent. Each agent initially has
the generation number of zero when it is generated and
each copy of an agent with the generation number n has
the generation number n+l. An agent with the largest
(newest) generation number serves their corresponding
user, and the other agents are automatically removed.
The framework also provides the following mechanism,

il

User v-- Sensor

T Rewritable
\

Device Host

/-"- Sensor

Host

f: Network
Host - H

Host
Sensor . |...

Management
Server

Sensor

Figure 1: Underlying Environment

because target computers are predicted using movementhistory of the agent and the prediction may be wrong.Moreover, the framework provides agent backup and re-
store mechanisms against disappearance of agents due toproblems such as their bugs. We have designed and im-plemented the preceding, following, backup and restoremechanisms and we provide some APIs, using which de-velopers of agent systems can easily use the mechanisms.
Moreover, we have implemented an experimental agentsystem using the APIs and we have verified the frame-work using the experimental system.
The rest of the paper is organized as follows. In Sec-tion 2, we describe the design of the mechanisms. In Sec-tion 3, we describe the implementation and APIs. In Sec-tion 4, the experimental system is described and the veri-fication is performed.

2 Design of the Framework
2.1 Underlying Environment

Figure 1 shows underlying environment of our frame-work. An agent platform such as AgentSpace[6] is imple-mented in each host and agents can move in a network us-ing a moving function of the platform. A sensor attached
to each host can communicate with a rewritable deviceattached to each user. Using the sensors and the devices,the framework can detect arrival and departure of usersand move agents which provide services for users. The
management server is used for management of the frame-work.

2.2 Required Mechanism
In the subsection, we describe the preceding, follow-ing, backup and restore mechanisms, and the generation

management mechanism which guarantees that an agentwith the newest generation number serves the correspond-
ing user.

2.2.1 Preceding Mechanism
As described earlier, we predict hosts (target hosts),one of which a user probably arrives at. If the predic-tion is wrong with a high probability, then the preced-ing mechanism obviously does not perform well. Thus,it is very important to consider a method which can pre-dict target hosts with a high probability. A trivial methodwhich can predict target hosts with the probability of one

is the method that all the hosts in the network are target

|Generation | I 1|2 |3 |4 | 5 |6 | 7 |8 | 9|Host A C B I D IC I B C |B F
1| 12 |13 14 15 16 17 18 19

ACB _CB ACA C B
Figure 2: An Example ofMovement History

hosts. However, the method can not be adopted from theview point of the scalability. In this paper, we adopt thefollowing method based on an idea that users move in the
same way as their past movement patterns with a highprobability.

In order to know past movement pattern of each user,
we record movement history of each agent. Movementhistory is a list of pairs of the generations of the corre-sponding agent and the hosts where the agent providesservice for the user. Figure 2 shows an example of move-
ment history. The example means that, the agent was orig-inally generated at the host A and then moved to the hostC, increasing the generation number by one, and so on,and currently the agent with the generation number 19
stays at the host B. We describe how to create movementhistory in the subsection 2.2.4.
Before an agent system using the framework runs, ittell the framework about the values of the two numbers xand y. The number x is the maximum number of targethosts, and y is the maximum number of hosts included inthe past movement list which is defined as follows. Whenthe value ofa parameter y' is specified, the past movementlist PML(y') is a list of y' hosts at which an agent arrivedin the last y' generations. For example, PML(5) is (A,C, A, C, B) in Fig. 2. When the framework detects thedeparture of a user from the current host, it determines

target hosts using the following procedure.
(0) Initialize the temporary variables x' = x and y' = y.(1) Find PML(y') from the corresponding movementhistory. For example, when x'= 3, PML(3) = (A,C, B) in Fig. 2.
(2) Excepted for PML(y') itself, find all sublists of the

movement history which are identical to PML(y'),and find the hosts which are located at the next posi-tions of the sublists. In Fig. 2, when y' = 3, we findthe sublist (A, C, B) in the generations 0-2, (A, C, B)in the generations 4-6 and (A, C, B) in the genera-tions 10-12 and find the host D in the 3rd generation,C in the 7th generation and C in the 13th generation,respectively.
(3) Ifthe number ofthe hosts found in the step (2) is less

than or equal to x', select all the hosts as target hosts
and go to the step (4). Otherwise select x' hosts inthe decreasing order of the occurrence number in the
step (2) and select such hosts as target hosts. If the
occurrence numbers of hosts are equal to each other,the host whose corresponding generation number is
larger takes precedence over the other host. For ex-
ample, we select the all hosts C and D when x' = 3,and we select the host C when x' = 1.

(4) If the number c of the current target hosts is equal to
x or y' = 1, then terminate the procedure. Otherwise,

",_L

set x' = x - c and y' = y' - 1, and go back to the step
(1), where we ignore hosts which have been already
selected as target hosts in the step (2). For example,
when x = 3 and y = 3, the steps (l)-(3) first find
the current targets hosts C and D (c = 2), and x' =
3 - 2, and y' = 2. And then the step (2) finds the
host A and F. The step (2) selects the host A because
the corresponding generation number ofA is greater
than that of F.

After the target hosts are selected, each copy (say a
child agent) of the agent (say the parent agent) prece-
dently moves toward each of the target host. If the gen-
eration number of the parent agent is n, that of each child
agent becomes n+ 1. The parent agent remains at the cur-
rent host during a certain period of time and then disap-
pears. Because the parent agent remains, the design of
the following mechanism become easy as described in the
next subsection.
When a user arrives at a host, the generation number

of the agent which the user requires has been already
recorded in the rewritable device of the user as described
in 2.2.4. If there exists an agent with the same generation
number as the recorded number at the host, a pair of the
generation number of the agent and the host's name is ap-
pended into the movement history, and the agent starts to
serve the user. That is, it means that the precedent mecha-
nism successfully works. Otherwise, that is, if there does
not exist such an agent, it means the precedent mechanism
fails, and the following mechanism takes over.

2.2.2 Following Mechanism

When the preceding mechanism fails, a host (say A) at
which a user arrives first searches the host (say B) where
the corresponding agent stays and bring the agent from
the host B as follows. As described earlier, a list of the
hosts where the agent served is recorded as the movement
history. Thus, we can know the last host (the host B)
where the user stayed from the movement history. And
also as described earlier, the parent agent of the corre-
sponding agent remains at the host B. Based on the facts,
the host A first knows the host B and then requests the
host B to move a copy (a child agent) of the parent agent
to the host A. Receiving the request, the host B makes a
child agent (whose generation number is greater than that
ofthe parent agent by one) and send it to the host A. When
the child agent arrives at the host A, the pair of the gen-
eration number of the child agent and the host's name is
appended into the movement history, and the child agent
starts to serve the user.

2.2.3 Backup and Restore Mechanism

As described in the subsection 2.2.1, the preceding
mechanism makes copies ofan agent. The backup mecha-
nism transfers one ofthe copies to the management server
as a backup of the agent, where the generation number of
the transferred copy remains unchanged unlike the pre-
ceding mechanism. Some additional information, that is,
the user identifier, the agent name, the backup time and
the removing condition are also transferred to the server.
The user identifier is the tag ID of the rewritable device of

the user, and the agent name is the name of the executable
program corresponding to the agent in the operating sys-
tem on the host. The removing condition is one for re-
moving the backup. We specify the maximum number of
backups, the maximum disk capacity and backup duration
as the conditions, and if one of the conditions is violated,
some of the backup are removed.

In addition to such automatic backup operation, the
framework also provides manual backup operation which
performs a similar transfer to the automatic operation
when it is explicitly called by an agent system on the
framework.
The automatic restore operation is triggered when the

framework detects the disappearance of an agent in ser-
vice. The disappearance is detected as follows. Each
agent in service regularly informs the framework of its
existence using such a message "I-am-alive". If such in-
formation does not arrive at the framework, it determines
that an agent disappears. When the framework detects the
disappearance, it automatically transfers the most recent
backup from the server to the host where the disappear-
ance is detected.
We additionally provide manual restore operation. In

the manual operation, an agent system on the framework
can specify a backup on the server. For example, the agent
system can specify the backup with a specified generation
number. When the manual operation is explicitly called
by an agent system, it transfers the specified backup from
the server.

2.2.4 Generation Management Mechanism

In this paper, because only an agent with the same gen-
eration number as that of the rewritable device of a user
can start to serve the user, the timing ofchanging the num-
bers of each agent and each rewritable device is impor-
tant. As described in the previous subsection, the gener-
ation number of each agent is increased by one when the
agent is duplicated from its parent agent. On the other
hand, the generation number of each rewritable device is
changed as soon as its owner starts to be served by the cor-
responding agent. That is, the generation number of each
rewritable device is greater than that of the corresponding
agent by one during the service. By doing that, even if
the user departs from the host at an arbitrary time, we can
keep the generation number of each rewritable device the
newest and consequently an agent with the newest gener-
ation number can start to serve its user.

Disappearance of unnecessary agents is performed us-
ing the generation numbers of each agent and each
rewritable device as follows.

Figure 3 shows an example of a family tree of agents.
The agent A generates the child agents B, C and D and
similarly only one child C generates its child agents E, F
and G by the preceding mechanism. Note that only one
agent in each generation generates child agents. Agents
which dose not generate a child agents, that is, the agents
B, E, D and G in Fig. 3, are unnecessary. Such agents
automatically disappear as follows. We set a timer with a
timeout value for every agent. Though the timer stops if
the corresponding agent becomes a parent agent, that i iit

-

CD nth generation

(n +J)st generation
--------f X -------

®i) ® ®) (n +2)nd generation

Figure 3: An Example ofA Family tree

generates a child agent, otherwise the timer fires after the
timeout duration and the agent automatically disappears
with the firing as a trigger.

Disappearance of each agent which becomes a parent
agent is performed as follows. As soon as a child agent
starts to serve the corresponding user, the starting is no-
tified to its parent agent. When the parent agent receives
the notification, it automatically disappears.

Using the two disappeanng mechanisms described
above, every agent can automatically disappear when it
becomes unnecessary. In this paper, in addition to the
mechanisms, we provide two disappearing mechanism in
order to remove unnecessary agents as soon as possible.
One is the mechanism that an agent (say X) automatically
disappears if there exists an agent (say Y) with larger gen-
eration number at a host and the agent X is not the parent
of the agent Y, because the agent X is unnecessary. For
example, if the agents B and F exist in a host at the same
time, the former disappears. And if the agents A and E
simultaneously exist in a host, the former also disappears.
However, even if the agent C and E simultaneously exist
in a host, the former does not disappear because C is the
parent of E. The other additional disappearing mechanism
is the mechanism that when a user with the rewritable de-
vices with the generation number n+2 arrives at a host, if
there exist an agent (say X) with smaller generation num-
ber and it is not the parent agent of an agent with the gen-
eration number n+2, then the agent X disappears, because
the agent X is unnecessary. For example, in Fig. 3, when
a user with rewritable device with the generation number
n+2 amrves at the host where the agent B exists, B disap-
pears. However, when the user amrves at the host where
the agent C exists, C does not disappear because C is the
parent agent of agents with the generation number n+2.

3 Implementation of the Framework
3.1 System Configuration

As described in the section 2, our framework provides
the preceding, following, backup, restore and generation
management mechanisms. The mechanisms are imple-
mented using the following system side agents as shown
in Fig. 4.

iManager Agent (MA)] Each MA is a static agent
which is stationed in each host and performs movement
management of user agents (simply UAs hereafter) and
the generation management mechanism.
Movement management of UAs is performed based on

- :

Host Host
/

.....Ho:rstv

-/ Host Server

Figure 4: System Configuration

at a host where a parent UA exists receives a list of target

hosts and hands the list to the parent UA which gener-

ates child UAs and each child UA moves to each target

host. In the following mechanism, first the MA (say X) in

a host (say A) at which a user with thie rewritable device

with the generation number n arrives receives the name

of a host (say B) where the parent UA of child UAs with

the generation number n exists from the server, and using

the name of the host B, MA X requests the MA (say Y)

in the host B to send a child UA of the parent UA to the

host A. MA Y informs the parent UA of the name of the

host A. The parent UA generates a child UA and the child

UA moves to the host A. Using the movement manage-

ment described above, the UA which a user wants to be

served can wait for the user in the preceding mechanism

or can arrive at the host at which the user arrives in the

following mechanism. The UA starts to serve for the user

as soon as the MA on the host orders the UA to serve. The

backup and restore mechanisms are also performed using

MAs as described later. As the generation management

mechanism, MAs remove unnecessary UAs and maintain

the generation numbers of writable devices and UAs.

ISensor Agent (SA)J Each SA is a static agent which

is stationed in each host. Using the sensor, after the SA

detects an event of user arrival or departure, it informs the

corresponding MA of the event. As soon as a UA starts

to serve a user, the SA increases the generation number

of the rewritable device via the sensor. Introducing SAs

enables the framework to use various kinds of sensors by

changing SAs only.

ICommunication Agent (CA)J Unlike MAs and SAs,

CAs are ephemeral mobile agents. MAs use CAs to send

various information to other MAs. When an MA (say X)

has information which should be sent to another MA (say

Y), MA X generates a CA and hands the information to

the CA. The CA moves to the host where MA Y exists

and hands the information to MA Y, and then the CA dis-

appears at the host.

IBackup and Restore Agent (BA)i BAs are static
agents and perform the backup and restore mechanisms.
As soon as a UA starts to serve in a host, the MA in the
host generates the corresponding BA and informs the BA

of control information such as the UA name, user identi-
fier, the generation number. In the backup operation, the

BA receives the executable image of the UA from the UA

and creates a backup by merging the control information
and the executable image together and then transfers the
backup to the management server.

In the restore operation, the BA receives a backup from

movement of users. In the preceding mechanism, the MA the server and extracts the executable image and then in-

MSCB
Agent platform Agent Platforn

Java VM Java VM Java VM
OS OS OS

Hardwar Hardware Hardware
Host Server Host

Network

Figure 5: Implementation Environment

import java.awt.*;
import java.io.*;
public class Editor extends UABASE{
private TextArea EditArea;
public void startService(){

EditArea.setEditable(true);
EditArea.setBackground(Color.white);
EditArea.setForeground(Color.black);
show(;

public void stopService({
dispose(;

}
public void destroy({

dispose(;

public void preService({
EditArea.setEditable(false);
EditArea.setBackground(Color.black);
EditArea.setForeground(Color.white);
show(;

public void create({
setTitle("Editor");
EditArea = new TextArea(20,40);
add("Center",EditArea);
pack(;
EditArea.setText('Hello.");

Figure 6: A Program using the Framework

forms the MA of the completion of the restore operation.
Then the MA runs the executable image as a UA. BAs
also detect disappearance of UAs using a kind of alive
message from the corresponding UA and a timeout mech-
anism.

Figure 5 shows environment of the implementation of
the framework. In this paper, as described earlier, we
adopt AgentSpace as an agent platform. Because our
framework and AgentSpace are both written in the Java
language, they can be used on many kinds of operating
systems.

3.2 APIs for Agent System Developers

We provide some APIs for agent system developers.
They can easily implement agent systems using the APIs.
The APIs are installed into our framework as a Java class
library named UABASE. Thus, the developers can use
the mechanisms of our framework by just inheriting the
UABASE class as shown in Fig. 6. There are two most
important class methods (functions) which must be writ-
ten by the developers, startService and stopService meth-
ods. MAs use the former method to request UAs to start
services and the developers write the content of the ser-
vices in the method. On the other hand, MAs use the
latter method to request UAs to stop services and the de-

Xto. . >Host B Host C
MA~~~14 ~ (A

®

.. (uA +7\i. ®

''i" -'L-"'

| Net1vork
® (@ - t- <HostD

Host A Server

Figure 7: An Example of Agent Behavior

velopers write the finishing operation of the services in
the method.

3.3 Example of Agent Behavior

Suppose that, as shown in Fig. 7, a UA with the genera-
tion number n (say UAn) currently serves a user at the host
A with the rewritable devices with the generation number
n+ 1, and after the user departs from the host A, the user
arrives at the host B. Focusing on agent behavior in the
preceding mechanism, such situation can be described in
detail as follows.
(1) The user departs from the host A.
(2) The SA detects the departure and informs the MA in

the host of the departure.
(3) The MA informs UAn of the finish of the service.
(4) In order to perform the preceding mechanism, the

MA obtains a list of target hosts from the manage-
ment server. We assume that the MA obtains the
hosts B and D as the target hosts.

(5) The MA informs UAn that the target hosts are B and
D.

(6) UA, generates two child agents UA+ l s, and they are
transferred to the hosts B and D by the preceding
mechanism.

(7) A UAn+j arrives at the host B.
(8) The UAn,, informs the MA in the host B of its ar-

rival.
(9) The user arrives at the host B.

(10) The SA in the host B detects the user arrival and ob-
tains the generation number n+ 1 which is recorded
in the rewritable device.

(I1) The MA confirms the existence of the UA,+1.
(12) The MA requests the SA to increase the generation

number of the rewritable device.
(13) The MA requests the UAn1 to start to serve the user.
(14) The MA requests the server to update the movement

history.

4 Experiment for Verification of the Frame-
work

Figure 8 shows experiment environment, where the OS
on the host A is FreeBSD 4.9R, the OSs of the host B and
C are Windows XP and the OS on the host D is Windows
2000. AgentSpace[6] is installed on the hosts A-C and
the host D is used as the management server. RFID tags

I

Figure 8: Experiment Environment

were used as rewritable devices and RFID reader/writer
was used as the sensor of every host. We implemented
a simple agent system called Editor Agent whose source
code has already shown in Fig. 6. Each UA of the sys-
tem is a kind of an editor window. We set the maximum
number of target hosts with 2 and the maximum number
of hosts in the past movement list with 1 in the preced-
ing mechanism, and set a timeout value of each UA with
30 seconds, that is, every agent which dose not become a
parent agent disappears after 30 seconds.

In the initial state of the experiment, the MA and SA
are running on each host except for D and the server is
also running on D, and the movement history is empty.

Under the environment and the initial state described
above, we have confirmed that all the mechanisms de-
scribed in the subsection 2.2 works correctly. For exam-
ple, the following mechanism was verified by confirming
the following steps (1)>(5) in this order.
(1) In the initial state, when a user arrved at the host B,

a UA (say UAO) was newly generated and started to
serve.

(2) When the user departed form B, the preceding mech-
anisms failed, because only B was registered in the
movement history and consequently the server could
not determine target hosts.

(3) When the user arrived at the host C, a child agent
UA, of UAo was generated at B, moved to C and
started to serve at C according to the following
mechanism.

(4) When the user departed from C, the preceding mech-
anism again failed, because the content of the move-
ment history was (B, C) and consequently the server
could not determine target hosts.

(5) When the user again arrived at B, a child agent UA2
of UAI was generated at C, moved to B and started
to serve at B according to the following mechanism.

The preceding mechanism was verified by confirning
the following steps (6)-(l 1) in this order.
(6) Following the step (5), when the user again de-

parted from B, the preceding mechanism success-
fully worked, that is, the server determined that the
target host was C because the content of the move-
ment history is (B, C, B) and a child agent UA3 of
UA2 precedently moved to C.

(7) The user did not arrive at C but the host A, that is,
prediction in the step (6) was wrong. Thus, a child
agent UA3 of UA2 was generated at B, moved to A
and started to serve at A according to the following
mechanism.

(8) When the user departed from A, the preceding mech-
anism again failed, because the content of the move-
ment history is (B, C, B, A) and consequently the

server could not determine target hosts.
(9) When the user again arrived at B, a child agent UA4

of UA3 was generated at A, moved to B and started
to serve at B according to the following mechanism.

(10) When the user departed from B, the preceding mech-
anism successfully worked, that is, the server deter-
mined that the target hosts were A and C because the
content of the movement history is (B, C, B, A, B)
and two child agents UO and Ul of UA4 precedently
moved to A and C, respectively.

0(I 1) When the user again arrived at A, UA5 which prece-
dently waited for the user started to serve.

5 Conclusions
In this paper, we have proposed a fundamental frame-

work for mobile agent systems where a mobile agent can
move to a computer precedently before a user arrives at
the computer in addition to a classical following mecha-
nism where an agent arrives at a computer after the arrival
of the user. The framework predicts computers, one of
which a user arrives at with a high probability, and moves
an agent to each of such computers before the arrival of
the user. The prediction is based on the movement his-
tory where the sequence of the computers at which the
user visits, in order to correctly predict such computer
with a high probability. The following mechanism is pro-
vided in case that the prediction is wrong. Moreover, the
framework also provides backup and restore mechanisms
in case that disappearance of agents due to problems such
as their bugs. One of our future works is to evaluate our
framework qualitatively and quantitatively. Another work
is to improve the reliability of our framework. Because
the management server of our framework becomes a sin-
gle point of failure, its decentralization is required.

References
[I] J. Bates, D. Halls, and J. Bacon, "A Framework to

Support Mobile Users of Multimedia Applications,"
ACMJournal on Mobile Networks andApplications,
Vol. L,No. 4, pp. 409-419, 1996.

[2] A. D. Stefano and C. Santoro, "NetChaser: Agent
Support for Personal Mobility," IEEE Internet Com-
puting, Vol. 4, No. 2, pp. 74-79, 2000.

[3] D. L. Ipina and S. L. Lo, "LocALE: A Location-
Aware Lifecycle Environment for Ubiquitous Com-
puting," Proc. ofICOIN15, pp. 419-426, 200 1.

[4] K. Takashio, G. Soeda and H. Tokuda, "A Mo-
bile Agent Framework for Follow-Me Applications
in Ubiquitous Computing Environments," Interna-
tional Conference on Distributed Computing System
Workshop, pp. 202-207, 2001.

[5] Y. Tanizawa, 1. Sato and Y. Anzai, "A User Tracking
Mobile Agent Framework "FollowingSpace"," IPSJ
Journal, Vol. 43 No. 12, pp. 3775-3784, 2002.

[6] 1. Sato, "AgentSpace: A Mobile Agent System,,"
http://research.nii.ac jpFichiro/agent/agentspace.html

