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Finite Element Simulation of Piezoelectric 
Vibrator Gyroscopes 

Yukio KaLgawa, Fellow, IEEE, Takao Tsuchiya, and Toshikazu Kawashima 

Abstruct- A finite ellement approach to the simulation of 
piezoelectric vibrator gyroscopes is presented for characteris- 
tic prediction. The formulation its given including the effect of 
Coriolis force due to rotation for a piezoelectric thin plate, 
which is considered to be two-dimensional in plane vibration. For 
numerical examples, the gyroscopes of a thin square plate, and 
a cross-bar and a ring built in the plate are considered, which 
pave the way for the development of the gyroscopes of monolithic 
configuration. The effect of the rotation on the modal shapes, 
the resonant frequencies, and the transmission characteristics 
are discussed demonstrating the sensing capability against the 
rotation. 

NOMENCLATURE 
S Strain vector {SI S2 s6) = uy,y u , , ~  + 

u ~ , ~ } ,  where SI and Sz are strains in the x and y 
direction, respectively, and S6 is a shear strain in 
the x-y plane. 
Strain vector {TI T2 T,}, where TI and T2 are 
stresses in the x and y direction, respectively, and 
T6 is the shear stress in the x-y plane. 
Elastic constant tensor ( E  = 0). 
Piezoelectric constant tensor {d31 $32 d36) .  

T 

sE 
d 
8 Gyro matrix 

[-; b ] .  
E,  Nodal displacement vector of elements e 

9, Nodal potential vector of elements e 

N Second-order interpolation function vector 
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Differential vector of interpolation function 

Area coordinates 

where 

ai = x j  y, - x,yj 

bi = y j  - ?/m 

ci = 2 ,  - xj 

( i ,  j ,  and m permute in the order of node 1, 2,  
and 3, and xi and y; are the coordinate values 
corresponding to node i). 
Differential coefficient matrix for the z direction 

Differential coefficient matrix for the y direction, in 
which bi in Be is replaced by c i .  
Unit matrix of n x n. 
Matrix associated with rotation 

O I  
[ - I ,  061. 

Natural frequency of longitudinal vibration of a bar 
with length ffi [= l/(2ffi &)I. 
2 x . f ~ ~ .  
Normalized frequency (= f / f ~ ~ ) .  
Normalized angular velocity (= R / 2 . r r f ~ ~ ) .  

0885-3010/96$05.00 0 1996 IEEE 
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I. INTRODUCTION 

IBRATOR gyroscopes are used as the sensors for detect- V ing angle and angular velocity like any other gyroscope. 
The piezoelectric vibrator gyroscopes provide piezoelectric 
transducers for excitation and detection. Their operation is 
based on the principle that a secondary vibration is generated 
in the direction lateral to the original vibration of the vibrator 
in rotation due to Coriolis force. The angular velocity of the 
rotation can thus be sensed by measuring the amplitude of 
this lateral vibration induced or transmitted from the exciting 
vibration [ 11. For the analysis of the operational characteristic 
of the piezoelectric vibrator gyroscopes, both equivalent circuit 
and analytical approaches have been used which are limited 
to the gyroscopes of simple configuration [2],  [3] .  They are 
difficult to apply to the gyroscopes of general shape for 
developing the best possible configuration and temperature 
characteristics. Numerical approaches should be sought for this 
purpose. Piezoelectric materials involve the energy exchange 
between the mechanical and electrical energy, for which the 
finite element method can effectively be utilized as it is based 
on the energy principle. Since its first introduction to the 
analysis of piezoelectric vibrators [4], it has extensively been 
used for the design of vibrators, sensors, and transducers, for 
which is now well established [ 5 ] ,  [6]. The application of the 
finite element method to the analysis of rotational sensors was 
recently tried but no successful example was given [7]. 

In the present paper, the finite element formulation for a 
piezoelectric vibrator in rotation is developed including effects 
both of piezoelectricity and Coriolis force. A thin plate in 
plane vibration rotating in that plane is considered, for which 
the development of the monolithic type being fabricated with 
a lithographic process is intended. 

For numerical examples, the piezoelectric vibrator gyro- 
scopes consisting of a thin square plate, a cross-bar, and a 
ring built in the plate are considered. The effect of the rotation 
on the modal shapes and the resonant frequencies, and the 

Fig. 1. Coordinates and Coriolis force in rotation 

Z 

vE% t 

electrodes 

Fig. 2. Piezoelectric thin plate in plane motion (cross-sectional view). 

yt 
piezoelectric 
thin plate 

Fig. 3. 
interpolation function, plain view). 

Piezoelectric field and triangular element (second-order polynominal 

the effects of the centrifugal forces or the last terms could be 
ignored. 

111. FINITE ELEMENT FORMULATION FOR 
PIEZOELECTRIC VIBRATORY SYSTEM IN ROTATION 

transmission characteristics are discussed demonstrating the 
sensing capability against the rotation. 

11. VIBRATORY SYSTEM IN ROTATION 

As shown in Fig. 1, a thin piezoelectric plate vibrates in 
its x-y plane with constant angular frequency w ,  which also 
rotates around the z axis with constant angular velocity R. 
Equations of motion for a particle p in steady-state motion are 
given as follows: 

} (1) 
f x  = F, + pw2u, + j2pRwuy + pR2x 
fy = Fy + PW’U, - j2pRwuZ + pR2y 

where f stands for total force acting on the particle, p is mass 
of the particle, F is external force, U is particle displacement, 
and x, y are the coordinates of the particle. The second terms 
on the right-hand side of (1) are the inertia forces due to the 
vibration, the third terms are the Coriolis forces, and the fourth 
terms are the centrifugal forces. When the plate rotates around 
the z axis, the Coriolis force is generated in the direction 
lateral to the displacement of the vibration. Coriolis forces 
and centrifugal forces both act in the 3;--y plane. If w >> 0, 

Finite element analysis is a method of transforming a 
continuum system to its equivalent discretized system in which 
the system is divided into elements. Here, a thin piezoelectric 
plate is shown in Fig. 2, in which the plate is divided into 
triangular elements with the second-order polynomial function 
interpolated as shown in Fig. 3. Pairs of partial electrodes are 
placed on both surfaces of the piezoelectric thin plate. As the 
thin plate vibrates in its z-y plane, it is assumed that the strain 
is independent of thickness or z direction, and the electric field 
is parallel to the x direction and constant. The piezoelectric 
constitutive expressions of d-type in the present case are 

where sE is the elastic modulus tensor (E3 = 0), T is the 
stress vector, d is the piezoelectric constant vector, E3, 0 3  is 
the electric field and electric displacement in the z direction, 
&T3 is the dielectric constant in the z direction (T = 0 ) ,  and 
( ) *  is the transposition of the matrix or vector. 
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It is assumed that the direction of polarization is parallel to T, = 
the z direction. (The concrete definition for the components is 
given in the Nomenclature.) 

Suppose that the plate is divided into triangular ele- - 
ments. Within an element e, displacement vector U, = 
{uz(x, Y), uy(x, Y)> and the potential pe = p(x, 9) 
are, respectively, defined and expressed in terms of the 

SJJ (3 2, + G ; f e  + @;je + 6; f e )  dz dy dz 
e 

(9) 

- 

linear combination of nodal displacement vector [ e  and 
nodal potential vector 4e defined at the nodal coordinates 
(xi, y;) (i = 1 - 6) as 

(3) 

where [, is the nodal displacement, 4, is the nodal potential 
vector, and N is the interpolation function vector. 

The strain vector Se, which is the derivative of the displace- 
ment with respect to the coordinates, is expressed as 

where K ,  is the stiffness matrix, P,  is the electromechanical 
coupling matrix, G, is the electrostatic matrix, 6 is the matrix 
of rotation, M e  is the mass matrix, and I ,  is the w x w 
unit matrix. (-) refers to the adjoint system and (-) to the 
complex conjugate. No mechanical work externally applied 
is considered. As the system is mechanically and electrically 
damped due to structural and dielectric loss, both mechanical 
(Rme) and electrical (Rge)  energy losses must be included, 
which are given as follows: 

e 

+ S:Tf - 3:Tf )  dx dy dz 
. t 3  1 - I  

(10) = J  - - ( - t ; K e g ,  + [:Kege) 
2 &me 

where A, is the area of the triangular element, n is the vector 
associated with the derivative of the interpolation function, 
and Be,  C ,  are the coefficient matrices associated with the 
derivative of the interpolation function with respect to the x or 
y direction. The z directional electric field E 3 ,  in the element 
is expressed with the nodal potential vector 4, as 

R,, = j tan Se ///(-E;E+E:E 

e 

+ l3:DT - &DT) dx dy dz 
t 
2 = j  2 t an  Se (-4fGeL + 6:Ge$e) (11) 

for the piezoelectric plate of thickness 2 t 3 .  

The energy functional for a piezoelectric vibrator consists 
of strain energy, kinetic energy, electrostatic energy, and 
work done by external forces. [n the finite element method, 
the energy functional is minimized applying the variational 
principle. However, when the system dissipates or rotates, the 
energy functional becomes complex. Here, an adjoint system is 
introduced to establish that the functional is real [8], in which 
case the physical meaning of rninimization is much clearer. 
Strain energy U,, electrostatic energy He,  and lunetic energy 
T, are thus defined for the element e as follows: 

U, = /// (S$ 2, + %re -t S:Te + S$Te) dx dy dz 

where Qme is the mechanical quality factor of the material, T E  
is the stress vector (E3 = 0), tan 6, is the tangent of dielectric 
loss factor, and DT is the dielectric flux density (T = 0).  

The dielectric loss is taken into account only over the region (6) 
where the electrodes are provided. External work W is only 
electrically made through the electrodes A, due to the charges 
applied, which is given as follows: 

= 2 (4*$ + @q + $*$ + gq) (12) 

where D, is the electric (displacement) flux density normal to 
the boundary, and q is the nodal charge vector corresponding 
to the electrodes. ( ) refers to known value. Lagrangian L for 
the whole system is thus given with the compatibility implied 
on the connecting nodes as follows: 

2 -  

L = (U, - He - T, - R,, - Rge) - W 
e e 
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SE 

The application of the variational principle (6C = 0) to (1 3) 
yields four sets of the discretized equations of motion for the 
whole system; the one corresponding to the real system is 
given in (14) at the bottom of the page. All the notations 
refer to the same definition, but for the whole system this 
time made of simple piezoelectric material. is the nodal 
potential vector induced over the electrodes due to the applied 
charge vector ij for excitation. Subscript 1 refers to the nodes 
associated with the electrodes and subscript 2 to the nodes 
of the region without electrodes. The mechanical loss is due 
to the structural damping, for which the stiffness is simply 
evaluated as of complex value. On the other hand, n / w  in 
(14) expresses the effect of rotation, with which the mass is 
now also evaluated as of complex value, and providing phase 
lag in the motion. The term for the rotation in the system 
matrix in (14) appears to cause additional damping. It should 
be noted, however, that the direction of the displacement which 
is included by Coriolis force due to rotation is orthogonal 
to the direction of the vibratory displacement (no diagonal 
term presents in the matrix of rotation), so that no dissipation 
takes place. The rotational effect increases as the vibratory 
angular frequency decreases. When the system is stationary 
(0 = 0), (14) arrives at the same conclusion as found in the 
usual finite element expression for piezoelectric vibrations. In 
the present case, as the matrix of rotation 8 is nonsymmetric. 
the system matrix in (14) is complex and nonsymmetric. The 
eigenvalues are therefore complex, but when no damping is 
assumed to exist, the eigenvalues are real, as the system matrix 
is Hermitian. 

12.7 -4.1 0.0 

12.7 0.0 x (m’/N) 

svm. 33.5 

IV. NUMERICAL EXAMPLES 

Equation (14) is implemented on a computer code to simu- 
late the behavior of the piezoelectric vibrator gyroscopes. The 
gyroscopes considered here are made of a thin plate and have 
pairs of electrodes on both their faces for driving and detecting. 
Here, the plate made of electrostrictive ceramics is considered. 
The material properties of the piezoelectric ceramics (NEPEC 
6, TOKIN Corp.) are given in Table I. For the calculation 
of the natural frequencies of the free vibration, both the LU 
decomposition method and determinant search method are 
used, and the inverse power method is also incorporated for 
the natural mode evaluation. For the forced responses, the LU 
decomposition method is used. All of the calculations are made 
for complex quantities with double precision. 

A. A Square Thin Plate 

We first consider the case of the simplest monolithic gy- 
roscope made of a thin piezoelectric square plate. The plate 
provides pairs of the partial electrodes. Electrode arrangement 
and the finite element division are shown in Fig. 4. The plate 

TABLE I 
MATERIAL PROPERTIES OF PIEZOELECTRIC CERAMICS (NEPEC 6) 

d I {-133 - 133 0 1 x lo-’’ (C/N) 

1050 

P I  i 7 3 0  (kg/m3) 

Qm I 1500 

0.3 (%) 

t 3 =  a 
200 
__ 

driving electrodes 

Fig. 4. 
element division. 

Piezoelectric thin plate gyroscope-electrode arrangement and finite 

is driven by the pairs of four electrodes distributed around its 
center and the electrodes for detection are placed in its four 
comers. 

1 )  Natural Frequencies and Modes: The case in which the 
thin plate is simply elastic without piezoelectricity and damp- 
ing IS examned first. The behaviors of the piezoelectric thin 
plate in plane motion have been well examined [9]. To observe 
the effect of the rotation, the natural frequencies and modes of 
free vibration are compared with those in rotation. The natural 
modes without rotation are shown in Fig. 5, in which 7, are 
the natural frequencies of a square plate of a x a, normalized 
with respect to ~ L B  [= 1/(2a&)], the natural frequency 
of longitudinal vibration of a thin bar of length a. The 
second, sixth, and eighth modes (f2, f 6 ,  f s )  are degenerated 
modes. When the piezoelectric effect is included, the natural 
frequencies increase as much as a few percent, though they 
depend also on the condition at the electrical terminals, and 



KAGAWA et al.: PIEZOELECTRIC VIBRKrOR GYROSCOPES 513 

1st x= 0.76981 

5th = 1.16680 

2nd %= 0.82484 
(degenerated mode) 

3rd = 0.86988 4th 3 = 0.99821 

6th fb= 1.24032 
(degenerated mode) 

7th &= 1.45393 8th %= 1.67579 
(degenerated mode) 

Fig. 5. Modal patterns and corresponding natural frequencies (no rotation, 7,: frequency normalized with respect to ~ L B )  

the order of the natural frequencies may interchange between 
the second and third modes, as well as between the fifth and 
sixth modes. The effect of the rotation is then considered. The 
first and second modes are shown in Fig. 6. The normalized 
rotational angular frequency Ti(= C l / 2 r f ~ ~ )  is chosen to 
be 6.3 x 10W4. The modes become complex in rotation as 
expected, and it should be noted that degeneration is resolved 
for the second mode (degenerated without rotation) which 
separates into two modes, the lower mode (f,,) and upper 
mode ( T Z U ) .  This also occui*s for the other degenerated 
modes. The separation of the degenerated modes is caused 
due to the appearance of the mass anisotropy in the plate 
because the Coriolis force is perpendicular to the direction 
of the inertia force (see the matrix of rotation 8 in the 
Nomenclature). The modal shapes of the imaginary part are 
the same as the ones of the real part except that they are only 
rotated clockwise or anticlockwise by 90". Fig. 7 shows the 
change of the normalized natural frequencies of the second 
modes against the normalized rotational angular frequency. 
The natural frequencies increase or decrease in proportion to 
the rotational angular frequency for << 1. The change of 
the natural frequencies may occur for other nondegenerated 
modes when the plate rotates, but the rate of the change of 
their natural frequencies is very small. 

2 )  Gyroscopic Characteristic: The square plate gyroscope 
is then considered, in which both mechanical and dielec- 
tric damping properties are included ( l /Qm = 6.67 x 
lo-*, tan 6 = 0.3%). When pairs of the four electrodes 
placed around the center of the plate are driven by a voltage of 
=tl V at frequency f as shown in Fig. 4, the driving electrical 

input admittance characteristic at a pair of the electrodes near 
the second mode resonant frequency is shown in Fig. 8. The 
input admittance is normalized with respect to the admittance 
of damped capacitance at frequency fLB.  As the electrodes 
are arranged symmetrically, it is the same for each pair of 
driving electrodes. And, to observe the effect of rotation, the 
open-circuit voltage that appears in the detecting electrodes 
provided at the comers is shown in Fig. 9. Fig. 9(a) shows 
the change of the output voltage in Terminal 1 (T1) and 
Fig. 9(b) shows the voltage in Terminal 2 (T2). For both 
cases the output is complex indicating the phase shift in the 
transmission. Solid lines are the cases without rotation and the 
broken lines are the cases with rotation of 2 = 6.3 x lop4. 
In T1, the voltage appears in the vicinity of the resonant 
frequency which, however, is not much effected by rotation. 
In T2, the voltage appears only when the rotation takes place. 
This makes it possible to detect the rotation. The output 
voltages in T3 and T4 are the same as the voltage in T2 and 
T1, except the sign is reversed. The sign of the output voltages 
is also reversed for the rotation reversed. Fig. 10 shows the 
change of output voltage against the normalized rotational 
angular frequency 2 for the input voltage of one volt on the 
driving electrodes given. As expected from Fig. 9, only the 
output voltages in T2 and T3 are sensitive to the rotation, 
and their changes are proportional to the rotational angular 
frequency. We define here the normalized figure of merit T/ as 
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- No rotation 
--- a= 6 . 3 ~ 1 0 ~  

conductance 

.B 3 0 

5 
‘susceptance - 5 1  

-10 I I 

0.868 0.870 0.872 0.874 
real pan  - imaginary part Normalized freqency 7 

(fi4.76981) 
Fig. 8. Effect of the rotation on the input admittance at the electrical 
terminals, second mode. Both mechanical and dielectric losses are included. (a) 

imaginary part 

0.868 0.870 0.872 0.874 
Normalized frequency? 

(4 

real part - -maginary pan 
f i~=0.82481 

3 r  

- 2 1  e 
imaginary pan - No rotation 

--- a= 6 . 3 ~ 1 0 ~  \ 

real pan  - imaginary part 
f2u4 .82487 

(b) 

Fig, 6. 
(a) first and (b) second modes. No damping is included. 

Modal patterns of the plate in rotation (a = 0 2 / w ~ ~  = 6 . 3  x l o r 4 ) ,  

-3 
0.868 0.870 0.87; 0.874 

Normalized frequency f 

(b) 
Fig. 9. 
and (b) at T2. 

Effect of the rotation on the output voltage, second mode, (a) at T1 

is 0.82, which is not satisfactory for practical applications, 
though the sensitivity could be doubled with the differential 
connection of the electrodes in T2 and T3. This differential 
operation could be used to establish the t e m p e r a t u r e  stability, 
as the effect of the temperature on the change of the natural 
frequency must be the same for each terminal. 

B. Cross-Bar Gyroscope 

Equation (14) suggests that the natural frequency must be 
chosen as low as possible for realizing the high sensitivity. 
Here, we employ flexural modes in plane. The configuration 
made of crossed bars shown in Fig. 11 is a candidate in which 
two bars are coupled at their center, supported at some places. 
This could be made of a piezoelectric thin plate with the 
etching process removing the shaded portions. In the present 

Normalized rotational angular frequency 

Change or separation of the natural frequency as the increase of Fig. 7. 
rotation. 

where V,  and V, are input and output voltage, respectively. 
The normalized figure of merit q of the present square plate 
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'I=---- T1 

T4 
-3 
-2 0 L 2 4 6A04 

Normalized rotational angular frequncy a 
The normalized figure of merit q = 0.82 

Fig. 10. Change of the output voltage against the rotation (input: 1 V). 

O.Cl2U 

E7 : driving electrodes 

: removed parts 

Fig. 11. Cross-bar gyroscope 

Number of elements : 512 
Number of freedom :1695 
Band width of the system matrix : 761 

: detecting electrodes 

model, only the crossed bars including supporting bars which 
are fixed at the other ends are considered for the analysis. 
NEPEC 6 is again assumed for the piezoelectric thin plate. 

The natural modes of vibration are shown in Fig. 12 for 
the lowest degenerated modes in rotation (n = 6.3 x 
Piezoelectric effect is included, but not damping. The modes 
are complex in which degeneration is resolved, so that the 
mode separates into two modes ( f Z L ,  Tzu). Fig. 13 shows 
the change of the open-circuit output voltage against the nor- 
malized rotational angular frequency for the input voltage 
of one volt on the driving electrodes. In this calculation, both 
dampings of the material are included. The output voltage is 
equal in T1 and T3, and also in T2 and T4. The normalized 
figure of merit 77 is 8.1. The sensitivity or figure of merit is 
now improved as much as about ten times compared with that 
of the square plate gyroscope. 

real part - imaginary part 
fi~=0.037481 

real pan - imaginary part 
fiu3.037530 

Fig. 12. Modes of cross-bar gyroscope in rotation (n = b l / w ~ , ~  
= 6.3 x loss is neglected). 

-0.2 ' I 

0 2 4 6x10 -6 
Normailzed rotational angular frequency 

The normalized figure of merit q = 8.1 

Change of the output voltage against the rotation (input: 1 V). Fig. 13. 

C. Ring-Plate Gyroscope 

The vibrator gyroscope first developed was the one making 
use of the bending modes associated with a bell-shaped 
configuration. This is a plate version of the original config- 
uration made of a piezoelectric thin plate which is shown 
in Fig. 14. A ring-plate is partly supported with the shaded 
portions removed. Only the ring including the supporting bars 
is considered for the analysis, and NEPEC 6 is again assumed 
for the material. 

1) Ring-Plate Without Support: We first consider the case 
without supporting bars. The finite element division and the 
electrode arrangement are shown in Fig. 15. The natural modes 
of vibration are shown in Fig. 16 for the second modes in 
rotation (1 = 6.3 x 10W6), which include the piezoelectric 
effect and the electrodes but not damping. The modes are 
originally degenerated without rotation. The modes separating 
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,- - 
,,,*' \imaginary 

I ,  

,, 
/ - 

,I , real part 

Fig. 14. Ring-plate type gyroscope. 

L a  

driving electrodes 

detecting electrodes 

Number of elements : 128 
Number of freedom : 904 
Band width of the system mamx : 333 

Fig, 15. 
and finite element division. 

Ring-plate piezoelectric vibrator gyroscope, electrode arrangement. 

into two modes ( f Z L ,  TZU) are complex due to the effect of 
the rotation as the degeneration is resolved. 

Fig. 17 shows the change of the open-circuit output voltage 
against the normalized rotational angular frequency 2 for 
the input voltage of one volt on the driving electrodes. The 
dampings are included. The output voltages are equal in T2 
and T4 in the amplitude, but reversed in phase. The phase 
shift is observed, as the driving frequency does not completely 
meet the resonant frequency in the present case. (The output 
voltages are not sensitive against rotation both in T1 and T3.) 
The normalized figure of merit 7 is 75.4. The sensitivity is 
now improved as much as 9.3 times compared with that of 
the cross-bar gyroscope. 

2) Ring-Plate with Support: We next consider the case 
when the supporting system is included. The element division 
and the electrode arrangement is shown in Fig. 18. Supporting 
bars are added to the ring-plate. The natural modes of vibration 

real part imaginary part 
f2L=0.165187 

real pan imaginary part 
-f2u=0.165195 

Fig. 16. 
= 6.3 x l o p 6 .  loss is neglected), without support. 

Second modes of ring-plate gyroscope in rotation (E = S 2 / w r , ~  

I 
t , I 

0.0 1.0 2.0 3.0 4.0 5.0 6 . 0 ~ 1 0 - ~  
Normalized rotational angular frequency fi 

The normalized figure of merit 7 = 75.4 

Fig. 17. 
1 V), without supporting bars. 

Change of the output voltage against rotation at T4 (input voltage: 

are shown in Fig. 19 for the second modes in rotation 
(2 = 6.3 x for the width w = 2.56 x lOW4a. Like 
the ring-plate without support, the modes are again complex 
separating into two modes (f,,, T,,), which correspond 
to the second modes of the ring-plate without support. The 
modal shapes are not much affected by the presence of the 
supporting bars which are very thin. 

Fig. 20 shows the change of the open-circuit output voltage 
against the normalized rotational angular frequency 2 for 
the input voltage of one volt on the driving electrodes. The 
dampings are included. The output voltages are equal in T2 
and T4 in amplitude, but reversed in phase. The output voltage 
is not sensitive to rotation both in TI  and T3. The normalized 
figure of merit is 60.5. The sensitivity is slightly decreased 
compared with the case without support. 
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I. .. 
.I' 

, , . , . --<imaginary 

. . 
,, 

.- real pan 
, , , . * 

0.c- ' I 1 I 
T 

Number of elements : 192 
Number of freedom : 1344 
I3and width of the system mamx : 321 

Fig. 18. 
porting bars are included. 

Finite element division and electrode arrangement when the sup 

real part imaginary part 
&=O. 174306 

i I 

real part imaginary part 
f3u=0.174313 

Fig. 19. 
= 6.3 x 

Second modes of ring-plate gyroscope in rotation (2 = C ~ / W L B  
loss is neglected), with support. 

The effects of the rigidity of the supporting bars on the 
resonant frequency of the third modes are shown in Fig. 21, 
in which the frequency deviation against the width of the 
supporting bars is given. 

For these particular modes of vibration, the electrodes and 
the supporting bars may not be best placed for sensing the 
rotation. This can be achieved through simulation procedures. 
The numerical examplles are shown only for the purpose of 
demonstration. 

Normalized rotational angular frequency fi 
The normalized figure of merit q = 60.5 

Fig. 20. 
voltage: 1 V), with support. 

Change of the output voltage against rotation bars at T4 (input 

Width of supporting bars w/u 

Fig. 21. 
bars referring to resonant frequency without support. 

Deviation of resonant frequency against the width of supporting 

v. CONCLUDING REMARKS 

The use of the finite element approach is proposed for the 
characteristic prediction of piezoelectric vibrator gyroscopes. 
The finite element formulation including the effect of Coriolis 
force due to rotation is given for a piezoelectric thin plate 
in plane vibration, which is considered as a two-dimensional 
model. 

Using the computer program developed, the modal shapes, 
electric input admittance, the change of the transmission 
characteristic, or the output voltage due to the rotation are 
demonstrated for three types of vibrators where the develop- 
ment of the gyroscopes of monolithic configuration is kept in 
mind. 

The following could be deduced from the examination: 
1) The property of Coriolis force is clearly represented in 

the finite element formulation, which shows that the 
vibratory frequency must be chosen as low as possible 
for high sensitivity to rotation. The sensitivity also 
depends on the quality factor of the modes. 

2) When flexural modes are used in low frequency range, 
out-of-plane motion may be involved. In this case, the 
assumption of the in-plane vibration may fall, so that 
three-dimensional analysis [ 101 will be required. 

3) The simulation shows that the two types of monolithic 
configuration, cross-bar and ring-plate, making use of 
the flexural vibration in plane, can be promising for 
sensitive sensing of the rotation. 
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4) The degenerated modes separate into two modes, the 
upper and the lower, due to the rotation. These modes 
can be advantageously utilized to provide the temper- 
ature stability, as the effect of the temperature change 
is the same on the resolved natural frequencies, which 
could be canceled. The temperature characteristic is an 
important factor for the device design, which can be 
easily incorporated into the program [ 1 11. The inclusion 
of the temperature characteristic for a crystal quartz plate 
is now under way, which will be reported in due course 
of time. 

The next step of this research should include the temperature 
effects. 
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