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EXPONENTIAL INTEGRABILITY OF STOCHASTIC
CONVOLUTIONS

JAN SEIDLER axnp TAKUYA SOBUKAWA

ABSTRACT

Sufficient conditions are found for stochastic convolution integrals driven by a Wiener process in a
Hilbert space to belong to the Orlicz space exp L?; standard exponential tail estimates follow from these
results. Proofs are based on the extrapolation theory and are rather simple.

0. Introduction

Let H be a Hilbert space, (¢'1) a Cop-semigroup on H, W a Wiener process in H, and
p a progressively measurable process taking values in a suitable space of operators
on H. Stochastic convolution integrals like

t
Wa(t) :J My (s) dW (s), t=0,
0

appear (with the choice p = X (-, X)) in the variation of constants formula for a
solution to a stochastic partial differential equation

dX = {AX + F(t,X)}dt + 2(t, X)dW ;

see the monograph [8] for a thorough account of the semigroup theory of stochastic
evolution equations. Unfortunately, the process W, is not a martingale and even its
basic properties like continuity of trajectories are rather difficult to verify. Nowadays
standard proofs are based on the factorization method (originating in the papers
[7, 9] by G. Da Prato, S. Kwapien and J. Zabczyk) which yields also LP-estimates
of the form

T
E sup |\WA<z>HP<KpEJ ol ds. 0.1)

0<t<T 0

Let us recall further a particular case of the classical Zygmund extrapolation
theorem: if (X, u) and (Y,v) are finite measure spaces and T : LF(u) — LP(v) is a
sublinear operator satisfying

ITflr < CYplfie
for all p = pg and f € L*(u), then

J exp(A|Tf*)dv < K
Y
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for some constants 4 > 0, K < oo and all f € L*(u), ||f|L- < 1. Tracing the proof
of (0.1) we shall show that

VK, = 0(yp), p — +o0. 0.2)

Thus we may hope that an extension of the Zygmund theorem to vector-valued
functions together with (0.1) and (0.2) imply that

Eexp(4 sup [|[Wa(1)[*) <K (03)
0<I<T
for some constants 4 > 0, K < oo and all processes p with esssup|y| < 1.
It is the purpose of this paper to show that exponential estimates of the type
(0.3) do hold and owing to the extrapolation theory may be proved quite easily.
Obviously, (0.3) yields that

P{ sup [ Wa(t)] = 5} <Ke ™', §>0 (0.4)
0<I<T

holds for all processes yp with esssup [[y] < 1. Exponential tail estimates closely
related to (0.4) were studied in the papers [2, 6, 16, 20]. Moreover, various types
of exponential estimates for stochastic convolutions appear in proofs of the large
deviation principle for stochastic partial differential equations, see, for example, [8,
Chapter 12] and [3-5, 17, 18] and the references therein. It may be shown that the
estimates (0.3) and (0.4) are equivalent, however, our direct proof of (0.3) is based
on ideas different from those employed in the cited papers to derive (0.4).

This paper is organized as follows. In the next sections, we state three theorems
on the validity of the estimate (0.3) under various hypotheses on the process W and
the semigroup (e4). We consider the non-autonomous case, replacing semigroups
with 2-parameter evolution operators. Further, for exponentially stable semigroups
it is shown that the estimate (0.3) holds uniformly in T > 0; the necessity to have
exponential estimates uniform in T is faced when large deviations for invariant
measures for stochastic partial differential equations are investigated, cf. [19] or
[11]. Proofs are deferred to Section 2. As we have already indicated, they are
based on finding the dependence of the constant K, in the LP-estimate (0.1) on
p and are not difficult from the technical point of view. For completeness and to
convince the reader that Zygmund’s theorem holds also for Banach space valued
functions, we present a full proof of the version of the theorem that we need in
Appendix A.

We close this section by introducing some notation. Let U, V' be Hilbert spaces,
by Z(U,V) we denote the space of all bounded linear operators from U to V
(endowed with the uniform norm) and by ¥4(U, V') the same space but equipped
with the strong operator topology. Let (S,%, 1) be a (complete) measure space,
recall that if U, V' are separable then a function f :S — (U, V) is measurable
(that is, f~1(B) € & for every Borel set B in Z((U,V)) if and only if f(-)u:S — V
is Bochner measurable for all u € U (see [13, Theorem 2]). Due to separability,
Ifl#w,v) is a measurable real function whenever f :S — Z((U, V) is measurable.
Further, we shall denote by #,(U, V) the Hilbert space of all Hilbert-Schmidt
operators from U into V. Let E be a Banach space; we denote its norm by
| - |lg the subscript being omitted if there is no danger of confusion. We denote
by LP(S,%,u; E) the standard Banach space of all Bochner measurable mappings
f:S — E such that either |f|% is p-integrable (p < o0), or |f|g is essentially
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bounded (p = o). If S is a compact space, then we use %(S; E) to denote the space
of all continuous mappings from S to E endowed with the sup-norm. If E = IR then
we simplify the notation in the usual way.

1. Main results

Let H and Yj be real separable Hilbert spaces, Q € #()y) a non-negative self-
adjoint operator and (Q,%,(Z,),P) a stochastic basis. Denote by Y the range
RngQ'/? endowed with the norm | x|y = [|Q~"/2x||z, O~'/? being the pseudo-inverse
to the square root Q'/2 of Q; note that (Y,] - ||y) is again a Hilbert space. Let W
be a possibly cylindrical (& )-Wiener process in Y with the covariance operator Q.
Denote by .# the g-algebra of (% ,)-progressively measurable sets over R, x Q and
set, for a fixed T > 0, L? = LP([0, T] X Q,.#,dt® P; #,(Y, H)). For brevity, we shall
denote the norm in L” by ||| - |||, that is

T 1/p
11 (EL RACIPAIE dS> <o 1<p<on,
P =

esssup | f(s, o)l g, <00, p= 0.
(5,0)€[0,T]xQ

Let A = {(s,t); 0 < s <t < T} and suppose that U = (U(t,s), (s,t) € A) is an
evolution operator: U € €(A; Ls(H)), U(s,s) =1 for all s € [0,¢] and U(t,s)U(s,r) =
U(t,r) whenever 0 < r < s <t < T. Let us recall that the stochastic convolution
integral

t
J U(t, s)p(s) dW (s), 0<t<T, (1.1)
0
is well defined provided that y is an .#-measurable Z(Y, H)-valued process and
t
J U, s)tp(s)Higz(Y,H) ds < oo P-almost surely, 0<t<T, (1.2)

0

in particular, if p € L*> 2 L*.
Now we are prepared to state our first result.
THEOREM 1.1.  There exist constants K < oo and / > 0 such that

A
eXp 72 Sup
Hwlll% o<t

holds for every yp € L™.

L U(t,s)yp(s)dW (s)

2
) <K (1.3)

We may strengthen the estimate (1.3) if the evolution operator U obeys suitable
‘parabolicity’ assumptions. Namely, we shall adopt the following hypothesis.

(P) Let 5,, « € [0,1], be Banach spaces such that Zy = H, Ep is continuously
embedded into Z, whenever 1 = f = y = 0, and for each ¢ € (0,1] there exists a
constant L, such that

L,

(t—s)e

Ults) € Z(H,Z,) and |U(s)| ez, <

forall 0<s<t<T.
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We shall denote the norm in Z, simply by || - |,. The following example is well
known. If (e*4) is a holomorphic Cy-semigroup on H, then the evolution operator
U(t,s) = =94 satisfies (P) if we set £, = [H,Dom(4)],, Z, = (H,Dom(A4)),, (the
complex and the real interpolation spaces, respectively), or =, = Dom((fI — A4)*)
equipped with the graph norm, the constant f being chosen sufficiently large for the
operator ;I — A to be positive.

THEOREM 1.2.  Let hypothesis (P) be satisfied. For every € (0, %) there exist con-
stants K5 < oo and As > 0 such that
2
) <K;
s

As
E exp 7‘)2 sup
Hwlll% o<i<t
holds for every yp € L™.

ReEMARK 1.1. Let (¢) be a holomorphic Co-semigroup on H, 6 € [0,%), 0 e
[0, % —§). Define the space Z5 as Dom((fI — A)°) for B sufficiently large and endow
it with the graph norm, set

J; Ul(t, s)yp(s) dW (s)

t
W (1) :J My (s) dW (s), 0<t<T,
0

and
[Wa(t) — Wals)lls
H(p) = sup |[Wa(t)|s+ sup e
0<t<T 0<si<T |t — 5]

sFt
Modifying slightly the proof of Theorem 1.2 by taking into account [9], Lemma 2

we may show that
Js.0H(p)?
E exp (5’0 (q;) ) < Ksp
w1

for some constants K5y < oo, 459 > 0 and all y € L*.

The preceding theorems are quite satisfactory if Q is a nuclear operator. In
the opposite case, the processes ¢ appearing in applications to stochastic evolution
equations satisfy |||y]||2 < oo only scarcely. However, reasonable sufficient conditions
on differential operators generating an evolution operator U are known, implying
that U consists of Hilbert—Schmidt operators and (1.2) may hold. If U is of this
type then we may integrate processes y taking values in £ (Y, H). However, the
space (Y, H), unlike #,(Y, H), is not separable and it is restrictive to assume that
the process y in (1.1) is Bochner measurable. In fact, the stochastic integral (1.1)
may be defined for processes measurable as Z (Y, H)-valued mappings, hence let us
define SL? as the set of all measurable mappings f : ([0, T] x Q, . #) — LY, H)
such that |f|, < co, where

T 1/p
(EJ ToI- ds) <w, l<p<um,
Iflp = 0
esssup || f(s, )| ¢rm) < 0, p = oo
(s,0)€[0,T]xQ2

The corresponding modification of Theorem 1.1 reads as follows.
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THEOREM 1.3.  Assume that there exist a measurable function k : [0, T] — R and
ay € (0,1] such that

UGSy <k(E—s),  0<s<t<T, (14)
and

T
K= J sTk3(s) ds < oo. (1.5)

0
2
)sk

A ‘parabolic’ version of Theorem 1.3 may be obtained in a straightforward way,
hence we shall not dwell upon it.

In Theorems 1.1-1.3, the time interval [0, T] was fixed and compact. However,
sometimes it is desirable to have exponential estimates uniform in 7. We shall show
that it is possible to derive such estimates provided that the evolution operator U is
exponentially stable. We shall assume the following.

Then there exist constants K < oo and 1 > 0 such that

)
Eexp | —5 sup
Wl o<i<r

holds for every yp € SL™.

L U(t, s)yp(s)dW(s)

(ES) U = (U(t,s), t =s = 0) is an evolution operator on H such that
|U(t, )| ) < Le )

for some constants L < co and > 0 and for all t,s € R, t >s.

We shall use L” and [||-]||, to denote also the space LF(R xQ, .#,dt® P; #,(Y,H))
and its norm, respectively.

THEOREM 1.4.  Let hypothesis (ES) be satisfied. Then for any q € (2,00) there exist
constants K < oo and A > 0 such that
2
Esup

=0

J; U(t,s)yp(s)dW (s)

g VTl

E exp

holds for all y € LY N L™,

Despite the fact that to suppose that Hqujz(Y u) 1s integrable over Ry x Q may
look rather restrictive the following example indicates that this assumption may be
checked by standard Lyapunov functions techniques in many reasonable cases.

ExamPLE 1.1. Let us consider a stochastic evolution equation
dX, = (AX; + f(Xy))dt + o(X;)dW,, Xo=x0€ H

in H, where 4 is an infinitesimal generator of a Cy-semigroupon H and f :H — H
and ¢ : H — #,(Y, H) are Lipschitz continuous mappings, that is

1f(x) = fWI < Lip(f)llx =y, llo(x) =Wl p0.m) < Lip(o)x =yl (1.6)
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for some constants Lip(f), Lip(c) and all x,y € H. Suppose that there exists a
constant f# > 0 such that for some g € (2,00) we have

a(0) =0, (1.7)
(Ax + f(x),x) < —=B|x[? x € Dom(4), (1.8)
{Lip(e)*(¢ — )TrQ < .

Then by [12, Corollary 3.2], E| X, [? < ™|/ x¢||4 holds for an a < 0 and all ¢t = 0. (In
particular, note that (1.8) is satisfied provided that ||| o) < e™7* for some y > 0
and every ¢t > 0, f(0) = 0 and —y + Lip(f) < 0.) Since [|a(x)|| s,(r,n) < Lip(a)|lx]| by
(1.6) and (1.7), we obtain o(X) € LY. If, moreover, ¢ is bounded then o(X) € LINL*

and the process yp = o(X) obeys the hypotheses of Theorem 1.4.

2. Proofs

As we have already indicated, our proofs are based on invoking the Zygmund
theorem, therefore, we need to compute the constants in LP-estimates of stochastic
convolution integrals precisely to see their dependence on p. We derive these estimates
by means of the factorization method, so to begin with we investigate the generalized
Riemann-Liouville operator, defined by the formula

t
RS0 = | (=7 U 6)ds 0<e< T, f e L(0.T]H)
0
for p > 1, o > 1/p. Setting
Lo= sup |U(,s)]2m)

0<s<t<T

we may prove the following estimate.

LeEmMA 2.1. For all p € (1,00) and o € (1/p,0) the mapping R, is a bounded linear
operator from LP([0, T];H) into ([0, T]; H) whose norm satisfies

-1 1-1/p
|Ru<meMLT%(;_1> . 1)

If, in addition, (P) is satisfied, 6 € (0,1] and o > 6 4+ 1/p then R, maps boundedly
LP([0, T]; H) into €([0, T]; Es) and

p— 1 1-1/p
[R,|l < Ls max(1, T*) ((0(—5)[7—1) . (2.2)

Proof. The boundedness of R, is known; we repeat here the easy proof to obtain
the constants explicitly. Take f € LP([0, T']; H), then

H&NW=LW%WWQWM%

t
<uju—g%Wﬂmws
0 . (—1)/p
< Lollf lro,1:m) (J (t — )= Dp/=D) ds)
0

1\ 3
= Lol flrro1:8) <:;_1> =/,

for all t € [0, T'] by the Holder inequality, and (2.1) follows.
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Let (P) be satisfied. The same procedure yields

IRF(0)s < Lo L(t — P F () | ads

p—1 SR
= oo ((a—é)p—l) e,

which proves (2.2). O

As the next step, let us recall a particular case of the Burkholder—-Davis—Gundy
inequality.

LeEMMA 2.2, For any p € [2,00) there exists a constant C, < oo such that
p

E max
o<r<t

t p/2
0 <GE (L IO rm) ds> 23)

holds for all t € [0, T] and @ € LP. Moreover, we may take

417 p 1 p/2
C,=|—— = .
= (521) (+3)
The standard stochastic calculus proof of Lemma 2.2 (see, for example, [8,
Lemma 7.2]) leads to the estimate (2.3) with a constant

pp—1 [ p "\
(%))

which, however, grows faster than C, as p — oo, so we need an alternative argument
taking into account that martingales with continuous paths are considered.

J () AW (5)

Proof of Lemma 2.2. Let us fix p € [2,00) and ¢ € L? arbitrarily. Set ¢(s) = 0
for s > T and define

M, = Jr o(s)dW (s), r=0.
0

Then M is an H-valued martingale with continuous trajectories whose quadratic
variation process (M) is given by

(M), = L 10($)%,0mds. 0.

By a standard random time change argument we may find an H-valued martingale
N with continuous trajectories such that Ny = 0, M, = N o (M),, (N), = r for all
r = 0 almost surely. There exists a real-valued Wiener process B such that

sup [N < sup (|B,| + i —7) < sup |B,| + i
0<r<t 0<r<t o<r<t
for all t > 0 almost surely by [14, Theorem 4.4]. Hence also
sup [ N,| < sup |B,| + 7
0<r<t 0<r<t
almost surely for any finite stopping time t for N. According to [10, Theorem 1.1],
we have

E|B,|” < z0Eq"/’ (2.4)
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for any stopping time o, where z, is the largest positive zero of the parabolic cylinder
function D, of parameter p. Using (2.4) and the Doob maximal inequality we obtain
E sup ||N,|P <2"7'E sup |B,|? + 2'~'E1"/?
0<r<e o<r<r
<2"'1lim E sup |B.|P 4+ 2" 'Et*/?

=% 0gr<tAn

14
<o (pl> lim E|Bp|? + 20~ E<P?
h—0

n—oo0

14
< 2! (p> zb lim E(x Any?/> + 20 ExP/?
p

N
[\e)

i
—
7N

‘u

p
" 1) z!‘;—l—l] Et'/?.

Therefore,

p
E sup [M,|"=E sup |N,F <2 Kl,fl) Z£+1] E(M);”.

0<r<t 0<r<(M),

From [1, §19.26], we know that z, < 24/p + %, SO

r Y 1\ /2 2
E sup | M, P < 22" () (p—I— ) 1| By
0<r<t p—1 2
and our claim follows. |
For § € [0,1) define
t
1) = sup ||| Vs awes) . pert
o<e<T || Jo 5
setting || - o = || - [l in accord with (P). Da Prato-Zabczyk’s maximal inequality

says that Iy maps L, into LP(Q) for p > 2; an analogous statement holds for I
under suitable assumptions on U. In fact, we have the following theorem.

THEOREM 2.3. There exists a constant M < oo, depending only on T and Ly, such
that for all p € (2,00) the estimate

1-1/p 1/2 1/2
p—1 p 1
e <M (2=5) (525) (p+3) vl

holds for all w € L”.
If hypothesis (P) is also satisfied, then for each ¢ € (0, %) there exists a constant
Mj < oo, dependent only on Ly, Ls and T, such that

p—1 1-1/p P 1/2 1 1/2
)|y < Ms | — — =
sl <M (250—5)  (Goap=s) (r+3) il
holds whenever p € (2/(1 —206),00) and yp € L”.
Proof. Takep>2,a€(1/p,1/2), p € L? and define

Y(t) = L(t —s)7*U(t, s)p(s) AW (s).



EXPONENTIAL INTEGRABILITY OF STOCHASTIC CONVOLUTIONS 253

By the factorization formula

fUmmmmwngmﬂmmm P-almost surely

0 T
p) 1/p

for any t € [0, T] (cf.,, for example, [8, §7.1]), whence

(sin noc) RY (1)
n

1
< —IRACENY [0 7))

[ To(w)lLr@) = (E sup

0<t<T

Invoking Lemma 2.2 and the Young inequality we get

T
EﬂYMmjﬂp=ELHYaMMt
J (t—)7*U(t, s)w(s) dW (s)

T
0 0
t p/2
J (t—s) | U, S)U)(S)Hi%()"ﬂ) ds> dt

T
< CPEJO ( 0

T
<o

T p/2 T
< C,L§ <J0 s_z“ds) EJ'O HI'U(S)Hp'z(i‘,H)dS

14
dt

t p/2
=106 pans)
/2
<crgri=ane (L)
ro 1— 20 ’

5 1 p/2
< CpLg max (1, "/ ) (1_20() |||UJ|H§

Combining this estimate with (2.1) we obtain

1 p—1 1-1/p 1/2
I no) < —L3 L, T)Cl/r [ —— )
[To(p)lre) < —Lymax(L, T)C, 1 =3, ) Wl

Now we have to choose « € (1/p,1/2). Set

1 1/1 1 1 1
— () =24 = 2.5
. p+2(2 p) 1+ 5 25)
then
_p—2 o, _p—2
1 2.%—721) and op 1—74 .

Therefore, with this choice of « we get

W (p—1 AN E
1 <Mclr [ —— — ,
7o) @) < MC; (p_z) (p_z) iy
with a constant M dependent only on T and L, as required.

The assertion about Is may be established by the same argument. It is only
necessary to replace (2.1) with (2.2) to obtain for o € (6 + 1/p, 1/2) the estimate

1 b1 1-1/p 12
I, ey < —LoL LTCYr | — :
15(w)llLre) < —LoLs max(1, T)C, ((zx—é)p—l) =2, ) vl
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Setting

4 2p

we complete the proof. O

1 11 1 11,3
a=-+0+5(z—-—8)=7+=+7,
P p 2

Proof of Theorem 1.1. This is now straightforward. Iy is a sublinear operator
from L? into LP(Q), in particular positive homogeneous, and by Theorem 2.3
constants 4 < oo and g € (2,00) may be found such that

o)y < AYplilwlllp, P €(g,0), v € L™

Hence Theorem 1.1 follows from Theorem A.1. O
The proof of Theorem 1.2 is almost identical and may be omitted.

Proof of Theorem 1.3. The proof is again very similar to that of Theorem 1.1.
However, since yp ¢ L’ the estimate of the process Y introduced above has to be
modified. Take p > 2/y and « € (1/p,y/2). By (1.4) and (1.5) we have

T t p/2
E|Y [Lyo1.m < CE . (L(t—s)‘z“IU(t,s)w(s)If,«zmm dS) dr
J
o T t p/2
< C,E . <L(f—5)_2ak2(t—5)|W(S)|2f(r,11)d5) dt
J
T /2 T
<G, ( . sz“kz(s)ds) EL 1w(S) 1) ds

T p/2
< C,max(1, T"/?) (J sT7k3(s) ds) ll)
0

= C, max(1, TVP/Z)K”QIwIl’;.

All other steps of the proof remain the same, therefore

4 , — 1\
17o() | ooy < = Lo max(1, T7)x'/? (p) C)/lyl,
i yp—2

for every p > 2/y and the proof may be completed in an obvious way. O
Proof of Theorem 1.4. Set

J () = sup . ypel’

=0

J(: U(t, s)y(s)dW (s)

We aim at finding, for any ¢ € (2,00), a constant 4 < oo so that

1)l Lrie) < ApllIwlllp (2.6)

for all p € [g,0) and p € LINL™. Proceeding as above, we derive (2.6) by means of
the factorization method. First, we have to estimate the norm of R, as an operator
from LP(IR, ; H) to the space €,(IR,; H) of bounded continuous H-valued functions
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onR,. Take p> 1, > 1/p and f € L’(IR, ; H). Using (ES) we get
t

IR.f (I < IZL(I — s le ) f(s)] ds

! 1-1/p
< i\|f|\Lp(R+ H) (J (t— S)(a—l)p/(p—l)e—up(z—s)/(p—n ds>
0
~ © 1-1/p
< L|flerw, 1) (J S(of,—l)P/(P—l)e—,uPS/(p—l)ds)
0

a—1/p 1-1/p
- p—1 ap — 1
=Llflem,; ( ) F( )
Flormaan up p—1

for each t > 0, where I' denotes the Gamma-function. Further, for p > 2, o €
(1/p,1/2) and yp € L? we have

p

EJHY@wmzj E’ dt
0

Jt(t —s)2U(t, s)yp(s) AW (s)
0

0

) SR /2
< LPCPEJ' (J (t— S)_Z“e_zu(l_s)HUJ(S)Hi%(Y,H) ds) dt
0 0

o p/2 0
<Irc, (J § 202 ds) EJ HIP(S)H;Z(Y,H) ds
0 0

1

= I /2 .
= Gz G (1= 20"l

hence

'L2 p— 1 o—1/p ap — 1 1-1/p .
J < r I(1—2x)!2clr :

Choosing « as in (2.5) we obtain

72 . 1/4—1/(2p)
NI (” 1)
Qu)P=2/% X pp

1—1/p 1/2
p—2 p—2 1/
r r clr
X (4p_4> ( o > o Tl

and (2.6) follows. O

Appendix A. Zygmund’s extrapolation theorem

We aim at proving Zygmund’s extrapolation theorem (see [21, Theorem XI1.4.41])
in a form we need it, that is, for vector-valued functions; our proof follows the one
in [21] rather closely.

Assume that (X,.#,u) and (Y,%,v) are measure spaces and u(X) < co. Let E be
a Banach space. In this appendix, we denote by | - ||, the norm in both L?(x) and
L?(v; E) since there is no danger of confusion.

First, recall the elementary fact that if f € LP(v; E)NL*(v;E) and g € (p,c0) then
f € L4v;E) and

1fllg < 1Fllp v ALf lloes (A.T)
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since

J I dv =J IFIE IFIE dv < esssupl\f\l%ﬁpj If 1% dv
Y Y Y
= FIEPIFS < (flloo v ILF 1)

Now we may state the theorem.

THEOREM A.1. Let p € [1,00), suppose that T :LP(v;E)NL*(v;E) — L%yu) is a
mapping satisfying the following:
(1) T is positive homogeneous, T(yf) =yT(f) for all f € LP(v;E)N L*(v;E) and
7 =0;
(ii) there exist constants A < oo and o > 0 such that
ITfllqg < Agq*[flq (A2)

for all g € [p,0) and f € LP(v;E)N L*(v;E).
Then for any A € (0,aA~"/%e1) there exists a constant C; < oo such that

NI
JX P (” [mv |f|w] )d“ =C A
holds for every f € LP(v; E) N L®(v; E).

REmMARK A.1. The constant C; depends on 4, o, p, 2 and p(X). If v(Y) < co then
LP(v;E) =2 L*(v;E) and it will be clear from the proof that (A.3) may be replaced

with an estimate
T 1/a N
Jexp i[' f'} du< G

valid for the same 4 as (A.3), for a constant C; which depends also on v(Y) and for
all f € L*(v;E).

REMARK A.2. In the proof of Theorem A.l1 we do not use the Bochner mea-
surability of functions in LP(v;E); only the fact that |f|g is measurable for
each f € LP(v;E) is relevant. Therefore, the theorem remains valid for mappings
T :SL’ N SL* — L%y) satisfying hypotheses (i), (ii) above.

REmMARK A.3. The estimate (A.3) may be naturally interpreted in terms of Orlicz
spaces. Define a Young function ¢ by

(/e il Ifk/“
k=0 "

(Hence, in particular, &(t) = e’ —1foro = %.) Let L®(u) be the corresponding Orlicz
space (denoted often by exp L!/%), see, for example, [15, § 3.2 and § 3.6]. Theorem A.1
states that T maps LP(v;E)NL*(v;E) into L?(u) and
CEUISf My V11 £ ll0)

A% ’
| - |4 denoting the Luxemburg norm in L®(u) (cf. [15, §3.8]).

ITflle <
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Proof of Theorem A.l. Denote by [ap] the least integer greater than or equal to
op. For every integer k = [oap] we have

K\ 3
j ITf [ < AM () J L1 d
X o Y

1/o k
< (47) Kar Vs

by (A.2) and (A.1), hence

T (AW>" .
Lhﬂpvud dps | =) K (A.4)

Choose 4 € (0,04~ '/%¢~!) and multiply (A.4) by A*/k! obtaining

J”‘( T/ )"/“dK(;LAI/x)"M<<M1/w>k5ﬁk
TV S0 ) kS \Ta ’

as obviously k¥/k! < ek. Note that § € (0,1) due to the choice of A. Summing up
the terms in this estimate we arrive at

* gk T kfa - 1
[ a(meim) #=Xp<ry o
Setting
SN 77
P(t)= ; o and Ufzm
we may rewrite (A.5) as
Jx{expu(UfW*) — POU(UA)} dp < %ﬁ (A.6)

Fort>1and 0 <k < [ap] — 1 we have t* < t/P1=1 thus

[op]—1 ﬂ.k
1 ¢1/a 7~ ([opl=1)/a )
Pt < E k!t <e't?, t>= 1. (A7)
k=0

Using positive homogeneity of T and hypothesis (A.2) we get

i f
JX U1 du = L s <|f|pv |f|x>

< APpr*.,

P
du < APph*

P

__r
£V 15 e

r

Therefore,

J exp()»(Uf)l/m) d’u = J eXp()»(Uf)l/“) d,u
X {ur<ty
+

J (exp(AUS)"*) — PG(US))} du
{Uf>1

!

J

+J PO(UHY*) dy
{Uf>1}
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. 1 .
<X +—— 1o j UFP di
1-8 (Uf>1)

. 1 .
< UX) + g + AT

follows from (A.6) and (A.7), which completes the proof. O
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