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SURGERY OBSTRUCTION OF TWISTED
PRODUCTS

TomoyosHr YOSHIDA

1. Introduction. Let (G.x) be a pair of a finite group G and a
homomorphism x: G— {%£1}. Then we call an oriented closed PL (or
smooth) G-manifold L™ a G-x-manifold when the action of g € G preserves
the orientation of L™ if and only if 7(g) = +1. and we can define the
cobordismgroup £2%(G) of G-y-manifolds as in [1]). Moreover, let (z, w)
be a pair of a finitely presentable group 7 and a homomorphism w: 7 —
{x1}). Then the Wall group Li(x, w) is defined in [7]. Its element ¢
can be represented as the surgery obstruction o(f) of a normal map of
degree one f: M" — N between compact PL (or smooth) manifolds to
deform to a simple homotopy equivalence, where m(N”)= 7 and w:
m(N")— {£1} is the characteristic map of the orientation bundle of N%.

Now, assume that there is an epimorphism ¢:7m— G. Then we can
define a homomorphism

5(G) @ Lz, w)—— Lialm, wy)

(wx:x— {x1} is the homomorphism defined by wyx(k) = w(h)(x(H(h))))
as follows: For o(f) € L§(x, w) of f: M"— N" consider the covering
map f: M"— N7 where N” is the universal covering of N” and M” is
the covering of M”" induced from N” by f Further, let L™ be a G-x-
manifold. Then & acts on L™ through ¢. and the product manifolds
M»x L™ and N"X L™ have the diagonal m-actions. Thus we have a map
of degree one, fXzl: M?X L™ — N"X oL™(1 = 1m: L™ — L™). between
the orbit spaces of the diagonal m-actions. This map has a natural struc-
ture of a normal map of degre one, and the characteristic map of the
orientation bundle of N X L™ is given by (wx)p«, where py: m(N"X oL™)
— m(N") = 7 is the map induced by the projection p. Thus o(f X 1) €
LS oa(m(N"X zL™). (wx)ps). and we denote by the same letter o(f X 1)
€ L5.n(m, wy) its image under the homomorphism induced by p. We
define a desired homomorphism by sending (Ln. o(f)) to o(f X z1).

On the other hand, we can define the G-y-equivariant Witt group
WX(G,Z) (cf. §3) and a homomorphism

o1 R5G)Y— WE(G.Z) by setting
o{[L2*]) = <H*(L?* Z)/Tor, the intersection form)
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o[ L2%+1]) = (Tor H**'(L?**', Z), the linking form),

where Tor denotes the Z-torsion subgroup. An algebraic action of
WE(G, Z) on the Wall group of x is defined by the tensor product,
WG, Z)® Ls(n, w)— L&.a(x wx) (cf. §8).

Qur main result is Theorem 2 of §9. which claims that the following
diagram is commutative ;

2G)® Li(x, w) Lain(m wy)
o® 1| I
WG, Z)® L(x, w)—— Lialm, wy).

This can be considered to be a generalization of the product formula of
J.Morgan [4] to the equivariant case. The proof is not analogous to
Morgan. We use the algebraic surgery theory due to A.Ranicki [5, 6].
The construction of the equivariant analogue L¥§,:(Z) of Ranicki's sym-
metric Poincaré cobordism group L*(Z) and the isomorphism L§.(Z) =
W G.Z) (Theosem 1, §7) are the main steps to the proof of Theorem 2.

The paper is organized as follows. In §2, we discuss the normal struc-
ture of the map fX 1. In §§ 3 and 4., we define the G-y-equivariant Witt
group W¥(G,Z) and G-x-equivariant symmetric Poincaré cobordism group
L:A(Z). In §§ 5 and 6, we define homomorphisms

O:WHGZ)— Lt(Z) and ¥: L(AZ)— WHG,Z),
which will be shown to be the mutual inverses in §7. In §8, we define the
algebraic pairing W¥G.Z) ® L§(xr,w)— L§(mwy) which is mentioned

above concerning the main theorem. In §§ 9 and 10, the main theorem
is presented and proved.

2, Twisted product of a normal map with a G-x-manifold. Let f:
M"—— N” be a map of degree one between n-dimensional compact PL
(or smooth) manifolds with m(N") =x. Let F: vy — & be a bundle map
covering /. where vy is the stable normal bundle of M" and & is a bundle
over N7, The map f: M" — N of degree one equipped with the bundle
map data F': vy — £ is called a normal map of degree one. In case the
boundaries dM” and dN" are not empty, we assume that the restriction of
f to the boundaries, floM": dM"—3N" is a simple homotopy equivalence.
The surgery obstruction 6(f) € Li(x. w) of f to deforming f to a simple
homotopy equivalence relative boundary is defined in [7], where w: 7 —
{£1} is the characteristic map of the orientation bundle of N,
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Let 2™ be an m-dimensional closed G-y-manifold and fX z1: M"X L™
— N7 L™ the map of degree one defined in §1. We make /Xl a
normal map of degree one as follows. For a manifold W, ¥ denotes its
tangent bundle. Let pa: M"X L™ — M" and px: N"X L™ — N” be tne
projections to the first factors. Then o(M7X L™ is isomorphic to the
Whitney sum pl(tM) @ M X L = pl(eM) @ (F X 1)*(N X zzL). Let 7
be a bundle over N”"X L™ such that the Whitney sum (N X .zL)® 7 is
trivial. Then the bundle (M X 7L @ (f X z1)*7) = (f X . 1)*(N X 7L @ 7)
is trivial. Hence the bundle (M X L) ® (p¥(va) @ (F X z1)*7) = pi(zM)
@ vy X 2tL ® (X z1)*7 is trivial. Therefore we may take the bundle
pE(va) @ (F X z1)*7 as the stable normal bundle of 4" X L™ The bundle
map F: vy — & can be lifted to the bundle map F : pf(vy) — p%(&)
canonically, and we obtain the following bundle map,

Pilon) ® Fx1)*yg FH(FXal)  pt(&) @ 7

frxarn — X ey gm
where the vertical maps are the bundle projections. Since pli{vay) @®
(X z1)* is the stable normal bundle of 47X L™ the above diagram gives
a structure of a normal map of degree one to the map f X 1.

Now the bundle p¥(vy) @ 7 may be regarded as the stable normal
bundle of N"X L™ The difference bundle ((p%(vy)@® 7)—(p%(&) D 7))
is the induced virtual bundle p%(v~x—&). This means that the normal
invariant of FX 1 endowed with the above bundle data is the image of
the normal invariant of f endowed with F under the map induced by pu,

%: [N* G/PL]— [N"X L™ G/PLl(or p%:[N". G/O]— [N"%:L" G/0]
in the smooth case).

3. G-x-equivariant Witt group. We denote the ring of integers by
Z, the field of rational numbers by @ and the quotient map from @ to
Q/Z by w. The dual module V* of a finitely generated (abbreviated f.g.)
free Z-module V is defined by V* = Homz(V, Z), and the dual module
W* of a f.g. torsion Z-module W by W*=Homz(W, Q/Z). For a morphism
B: Vi— V., B*%: V3 — Vi* denotes the dual morphism of 8, where V; and
V2 are both together either f.g. free Z-modules or f.g. torsion Z-modules.

Let G be a finite group with a homomorphism x: G — {*1}. Then
the integral group ring Z[G] has the involution — defined by X #neg =
3 nex(g)g™! for ne € Z and g& G. A f.g. G-module V means a left
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Z[G]-module which is a f.g. Z-module. For a f.g. Z-free G-module V, the
dual module V* has a structure of a f.g. Z-free G-module defined by
(xu)(v) = u(xv) for u e V* v € V and x € Z[G)]. Similarly for a f.g.
Z-torsion G-module U the dual module U* is also a f.g. Z-torsion G-module.
For a f.g. Z-free or Z-torsion G-module V. the dual module of V* is
canonically identified with V' as a G-module. A G-map between f.g. G-
modules means a Z[G]-map between them.

Now we define the G-x-equivariant Witt group.

(1) Even dimensional case. The following defintioh is due to A.
Dress [2] when x = 1. For e = £1, let us define an e-symmetric G-x-
equivariant form (V, @) to be a f.g. Z-free G-module V together with a
G-isomorphism «: V — V*such that ¢ = ee*. In other words, there is a
non-singular bilinear pairing @:VXV —Z such that a(gv, gv’) = x(g)a(v. v).
a(v, v) = ea(v’. v) and ad @ = a. where ad @ is the adjoint of @, ad @(v)
(¢)=a(v. v), for v. v’ € V and g € G. For any two such forms ( Vi, a))
and (V,, ). one has an orthogonal sum (V). @) @ (V,, @) which is an
e-symmetric G-y-equivariant form as well. A G-isomorphism 8: (Vi &)
— (Va, ) satisfying 8*@:8 = @ is an isomorphism in our setting. One
may form the half-group of isomorphism classes of e-symmetric G-x-
equivariant form with respect to orthogonal sum and its associated universal
group yXG. Z). One now defines a G-lagrangean P of (V, a) to be a
Z|[G]-submodule of V which coincides with its orthogonal complement
V+ = ker(i*a: V— P*), where i: P— V is the inclusion. If (V. @) has a
(-iagrangean, it is called a split form.

For each integer k£ = (0, we define the G-y-equivariant Witt group
W4.(G, Z) to be the residue class group of y& (G, Z) with respect to the
subgroup generated by all split (—1)*-symmetric G-y-equivariant form in
vEo(G, Z).

(2) Odd dimensional case. For €= %1, an e-symmetric G-x-
equivariant linking form (S, A) is a f.g. Z-torsion G-module S together
with a G-isomorphism A: S — S* such that A= eA*. This means that
there is a non-singular bilinear pairing A: SXS — Q/Z such that A(gs, gs)
= x(@)A(s, ), A(s, s) = €A(s’, s) and eadi = Afor s. s € S and g€ G.

Definition. A G-resolution of length 1 of an e-symmetric G-x-
equivariant linking form (S, A) is a short exact sequence of G- modules

0 vty s —

together with a bilinear pairing A: VX V—— @ such that
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(1) U and V are both f.g. Z-free G-modules.

(ii) Alge, gv”) = (@) Alw. v"), A(B(w), v) € Z and Alv. B(u)) € Z,
and

(i)  Aly(v), () = w(Ale, ) € Q/Z.
forv, v’ €V, ue U and g € G.

Lemma 3.1. Let (S. A) be an e-symmetric G-x-equivariant linking
form. Then, there is a G-resolution of length 1 of (S, A).

Proof. There are a f.g. Z[G]-free module V and a G-epimorphism
y: V—S8. Let U be the kernel of y and 3: U — V the inclusion. Since
V®zV is a f.g. Z[G]-free module by the diagonal G-action, there is a
bilinear form A: VXV — @ such that w(A(z. v)) = A(¥(v), (")) and
Alge, gv) = 2(@)A(v, ) for v. v’ € V. Since A(U) = ker y. A(B(u), v)
eZand Alv, Su) € Z for uce U and v € V. q.ed.

For any two e-symmetric G-y-equivariant linking forms (S:, A1) and
(S, A2), one has an orthogonal sum (S;. A;)+(Sa. 42) which is an e-symmetric
G-y-equivariant linking form as well. Two e-symmetric G-x-equivariant
linking forms (S;, A1) and (S.. A2) are called isomorphic if there is a G-
isomorphism d: 5, — Sz such that §*A28 = A;. One may form the half
group of isomorphism classes of e-symmetric G-y-equivariant linking forms
with respect to orthogonal sums and its associated universal group w#(G, Z).

Consider the following two conditions on an e-symmetric G-x-equivariant
linking form (S. A):

(a) There is a G-resolution of length 1. 0 — U ﬁ V-Z’ S— 0, such
that the map Av: V — U*, defined by Av(v)(u) = Alv, B(u)) for v € V
and « € U, is an isomorphism.

(b) There is a Z[G])-submodule @ of S which coincides with its
orthogonal complement S* = ker(:*A: S — Q*). where i: Q@ — S is the
inclusion,

For each integer £ = 0, the G-y-equivariant Witt group W..1(G Z) is
defined to be the residue class group of w&-i(G. Z) with respect to the
subgroup generated by those (—1)**!-symmetric G-x-equivariant linking
forms which satisfy either (a) or (b).

4. Equivariant symmetric algebraic Poincaré cobordism group. Let

G be a finite group with a homomorphism x: G— {£1}. An n-dimensional
G-chain complex {C. d.} is a chain complex
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Co—tr B0,
such that each C, is a f.g. Z-free G-module and each d; is a G-homomor-
phism. A G-chain map f: C— D between two G-chain complexes is a
chain map such that each f;: Cr— D, is a G-homomorphism. For a
G-chain complex {C, d.}, the cochain complex {C* d.} is a G-chain
complex, where C™ = (C,)* is a f.g. Z-free G-module as in §3 for each 7.
The homology and cohomology groups of a G-chain complex are f.g. G-
modules. Given two G-chain complexes {C. d¢} and {D, dp}, Homz(C*, Dx)
is the G-chain complex such that (Homz(C*, Dx)), =p‘§=rHomz(C". Dy)

with G-action defined by (g¥)(c) = g(¢(x(g)g~'c)) for g G, ¥ € Homgz
(C*? Dy)and'c € C® and the differential is given by d(¢) = dp¥ +(—1)¢yd¥
for ¥ € Homz(C? Dg). Let Hom$(C*, Dx) be the subcomplex of Homz
(C*, D) consisting of all the G-module maps, that is,

Hom£(C*, Ds) = {¢ € Homz(C*, Dx)| g = ¢ for any g € G}.

For a G-chain complex {C, d.}, the generator T € Z, acts on Hom¢(C*, Cx)
by the transposition involution

T({¢Z CP?— Calpra=r) = {(_1)pq¢*l C?— Cp}m—a:r}-
Let W be the free Z[Z.]-module chain complex given by

. _[Z[Z)) (r 20) _[1+(=1)"T (» >0)
u’_{ﬁ (r <0) d'_{o (r < 0).

For a G-chain complex {C, d.}, we define the equivariant Z.-hypercoho-
mology group by Q&(C) = Hn.(Homziz,(W, Hom%(C*, C«)). An element
¥ € QA(C) is represented by a collection of G-chain maps {¥s € Hom$
(C*7s C,)| 7 s = 0} such that

des+(—1)¥sdE+ (1) (Y1 H(= 1 TYs-1) =0 (s 20, ¥ = 0).

An n-dimensional symmetric Poincaré G-complex (C,¥) is an n-dimensional
G-chain complex {C, d¢} together with an element ¥ € Q&(C) such that
the chain map #%: C**— Cx« is a chain equivalence (forgetting the
G-actions) with (C"*), = C*7, and d¢=\ = (—1)7d&: C* 7 — C 7+,

A G-chain map f: C— D induces the chain map Hom¢(f): Hom%(C* Cx)
— HomZ(D*, D) defined by Hom¢(f)(¢) = fyr* for y € Hom§(C*, Cy).
This is a Z[Z,]-chain map since T € Z, acts as the transposition. Hence,
it induces a homomorphism f*: Q&(C) — Q&(D). Let (C, ¢¢) and (D, ¢¥p)
be two #z-dimensional symmetric Poincaré G-complexes. A G-isomorphism
f from (C, ¢¢) to (D, ¢¥p) is a G-chain isomorphism f such that f*yc = ¥bp.
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A G-chain map from (C, ¥¢) to (D, ¥p) is called a G-quasi equivalence if
f%Yc = ¥p and f induces an isomorphism of the homology groups in each
dimension. Two n-dimensional symmetric Poincaré G-complexes (C, ¥¢)
and (D, ¢p) are called G-quasi equivalent if there is a sequence of »-dimen-
sional svmmetric Poincaré G-complexes (Ci1, #1), . (Cn, ¥n) such that
(Ci, ) = (C, ¥¢c), (Cm. ¥m) = (D. ¢¥p) and there is a G-quasi equivalence
either f;: Ci— Cipror fi: Ciopy— Ciforeach 7 (1 =1, -+, m—1).

Let f: C— D be a G-chain map. Let C(Hom®(f)) be the algebraic
mapping cone of the chain map Hom¢(¥), that is, the chain complex defined
by (C(Hom®(f))), = Hom%(D*. Ds); @ Hom$(C*, Cs),-1, and d(6, ¢) =
(d8+(—1)"""HomC(f)(¢¥), d¢), where § € Hom%(D*, Di)r and ¢ € Hom§
(C*, Cs)r-1. This becomes a Z[Z.]-chain complex in an obvious way.
We define the (n+1)-dimensional relative Qg-group by Q2*'(f) = Hp.
(Homziz,(W. C(Hom¢(f))). An element (8¢. ¢) € Q#*'(f) is represented
by a collection of G-chain map pairs

{(6¥. ¥)s = (8¥s € HomZ(D™*'-7*. D)@ Hom$(C" "5, C,)}, r. s 20,
satisfying the following two conditions with s = 0. é¢-, =0 and ¢-, =0

(*)  doyps+(—1) 8¢sd*+(—1)""5(8¢s_1+ (= 1) TSYs-1) +(—1)"Hom (/) ¥s)
=0, and
(**)  ds+(—1)¥sd* + (= 1) NPy +(=1)°Ts-1) = 0.

An (n+1)-dimensional connected symmetric G-pair (f : C — D.(8¢.¢))
is a G-chain map f from an n-dimensional Poincaré G-complex C to an
(72+1)-dimensional G-chain complex D together with a class (8¢, ¥) €

2+1(f) which satisfies the condition :

(***) Ho(C(D) =0, 4:D"'*— C(f)s,

where C(f) is the algebraic mapping cone of the chain map f and C(J) is
the algebraic mapping cone of the chain map 4: D"*'"* — C(f)s defined
by 4(c)=(8¥u(c). ¥of*(c)) E Dx® Cs-1 = C(f)« for ¢ € D**'~*  Remark
that the condition Ho(C(f)) = 0 implies (***), since we have the exact
sequence — Hy(D"'=*)— Hy(C(f)) — Ho(C(A))— 0.

For an (n+1)-dimensional connected symmetric G-pair (f: C— D,
(8¢, ¢)), define the n-dimensional symmetric Poincaré G-complex (C’, ')

as follows;
dc 0 (=D f*
de =|(—-1)f dp (—1)"8%o
0 0 (—1)ds
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C;‘ = Cr @ Dr+1 @ l)n_r-'-l I— C;. = Cf-l @ Dr @ Dn—r+2

[ de 0 0
Yo=|(=1"f (=D 7T (—1)rtm-n
0 1 0

C'n—r = Cn—r@ Dn—r+1 @ Dr+1 N C;— — Cr @ Dr+] 6_) Dn—-r+l

[ Vs 0 0
Ve = | (=1)""fT¥ss1 (=1 ™5TS¢¥sin O
0 0 0

C'n—r+s — Cn-r+s+l @ Dr—s+l — C; — Cr®Dr,—1 @Dn—rﬂ (S > 1)

We call (C', ¢') the n-dimensional symmetric Poincaré G-complex
obtained from (C, ¥) by symmetric G-surgery on a connected (#+1)-dimen-
sional symmetric G-pair (f: C— D, (8¢. ¢¥)). It may be verified that
performing symmetric G-surgery using- a different cycle representative of
(8¢, ¢) € QF*'(f) leads to an isomorphic symmetric Poincaré G-complex
(C’ ¥).

In the above situation, the following two conditions are equivalent,

(1) C is acyclic,

(2) the relative homology class (8%, ¥o) € Hyny1(C(Hom€(f)) induces
the isomorphisms :H"(D, C) = H(C(f)) — Hns1-,(D)Y0 £ » = #n+1). In
such a case, (f: C— D, (8¢, ¥)) is called an (n+1)-dimensional Poincaré
G-pair with bonudary (C, ¥), and (C, ¥) is called G-null-cobordant.

The direct sum of n-dimensional symmetric Poincaré G-complexes
(C, ¢) and (C', ¢¥) is an #n-dimensional symmetric Poincaré G-complex
(COC, yDY). where (¥ D ¥)s = 4D Ys: CD C" - C, D Cr
(s, r 2 0).

Lemma 4.1. Let (C', ¢) be an n-dimensional symmetric Poincaré
G-complex obtained from an (n+1)-dimmensional connected symmetric
G-pair (f: C— D. (8¢. ¥)). Then the direct sum (C, ¢)®(C, —¢)
1s G-null-cobordant.

Proof. Define an (n+1)-dimensional symmetric G-pair (k: C® C —
D0, (0, ¥y B(—¢)) by D, = C, @ D7+,

_|de (—1)"“1/’0](*} .,
dp = [ 0 (1) d} : Dy D,
and
Mce)=1(c, 0) forceC

h(c) = (ci. c3) for ¢'= (c1, 2, 3) € Cr = C, @ Dy .1 @ D™ 7L

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 24/iss1/9
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Let (C”, ¢") be the symmetric Poincaré G-complex obtained from (C, )
@ (C’, —¢’) by symmetric G-surgery on the above G-pair. Then one can
verify that C” is acyclec. Hence the above G-pair is an (»#+1)-dimensional
Poincaré G-pair and (C, ¢) @ (C’, —¢’) is G-null-cobordant. q.e.d.

We form the half group of the isomorphism classes of »-dimensional
symmetric Poincaré G-complexes with respect to orthogonal sums and its
associated universal group X&i.(Z). Let UZ.(Z) be the subgroup of
X2AZ) generated by the isomorphism classes of n-dimensional symmetric
Poincaré G-complexes which are G-quasi equivalent to xn-dimensional G-
null-cobordant symmetric Poincaré G-complexes. Let us define the =-
dimensional G-y-equivariant symmetric algebraic cobordism group L% (Z)
by L2.AZ) = X2AZ)/UEL(Z). Not that by Lemma 4.1, if (C, ¥') is
obtained from (C, ¢¥) by symmetric G-surgery, they represent the same
element in L2,(Z).

5. The map @. We define a homomorphism @ : WG, Z)— L%(Z).

(1) Even dimensional case. Let (V, @) be a (—1)*-symmetric G--
equivariant form as in §3 (£ 2 0). Define a 2k-dimensional symmetric
Poincaré G-complex (Cv. ¥2) by

_ [V (r=k) _

@ ={" VIR da=0
and

(l/fa)o =a: (cv)k =V (CV)k = V*

Wa)s=0 (s=1).

Lemma 5.1. If (V, @) s split, then (Cv, ¥a) is G-null-cobordant.

Proof. Let P be a G-lagrangean of V, and 7: P— V the inclusion.
Let (f: C— D, (0, ¥2)) be the (2k+1)-dimensional connected symmetric
G-pair defined by

f:{z'*:(Cv)k= V*— D, = P*
0:(Cv)r=0 — D, =0 (r=.k)

The conditions (*) and (**) in §4 are verified, because the composition i*ai
is trivial and hence Hom¢(f) = 0. And we have easily Hy(C(f)) = 0 and
the condition (***) in §4. Let (C’, ¢") be the 2k-dimensional symmetric
Poincaré G-complex obtained from (Cv, ¥a) by symmetric G-surgery on
the above G-pair. Then C’ has the form
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— —1 k%
oo (= P a V* ( )Z P*_)O_*...

and it is acyclic. g.e.d.

By the adove lemma, we obtain a well defined homomorphism @ :
WG, Z)— L¥(Z) by putting @((V, a)) = [(Cv, ¥a)].
(2) 0Odd dimensional case. Let (S, A) be a (—1)**'-symmetric

B

equivariant linking form. Take a resolution 0 — [ -— V—7> S— 0 and
a bilinear pairng A: VXV — @ satisfying (i) , (ii) and (iii) of (2) in §3.
For v, v' € V, put w(v, v') = Alv, v)—(—1)**"'A(v’, v). Then u(v, v)E Z
and v, v) = (=1)* (v, v). Let Ay: U— V* and Ay: V— U* be the
maps defined by (Ay(u))(v) = A(B(u), v) and (Av(v))(w) = Av, B(u)) for
u < U and v € V respectively.
Let (C, #) be the (2&+1)-dimensional symmetric Poincaré G-complex

" defined by

Cr=aU" =4 d’_{o (r + h+1)
0 (r + & £+1) '
Ap: U= V*  (r=k+1)

¢o={Ale—’U* (r==~F)
0 (r =4k k+1)

{ad u: Vo v* (r =k+1)
0 (r = k+1)

h =
Ye=10 (s 2 2).

Lemma 5.2. If (S, A) satisfies the condition (b) in (2), §3, then
(C, ¥) is G-null-cobordant.

Proof. Let @ be a Z[G]-submodule of S as in (2), §3. Put Vl =
y Q) and U, = y~Y(V,). Then there is a short exact sequence 0 — U,

B

— V1—71—> Q— 0, where 8, = B|U, and 7, = 7|V, are the restrictions.
Letz: Q— S, iv: Vi— V and iy: Uy — U be the inclusions. Since 7*A47 :
Q— Q% is trivial, the pairing takes integral values on ViX V. Denote
this pairing by /A;: ViX Vi— Z. Define the adjoint map ad A,: Vi— Vi
by (ad M) = Mi(w, v)v, v' € V1). Let (f: C— D, (8¢, ¥)) be the
(2k+2)-dimensional connected symmetric G-pair defined by

i$:Chir = V*¥*> Dpoy = V¥ (r =k+1)

f=1i:C, =U*—D, =Uf (r=2%F)
0:C, =0 =D, =0 (r=kkE+1)
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dp=8F (r =Fk+1) and 0 (r # k+1),
. ad /11 M Dk+1 = V[ i Dk+1 = l/fk ()’ = k+1)
(69 —{ 0 (r + k+1)
BP)s=0 (s=1).
Let (C’. ¢¥’) be the (2k+1)-dimensional symmetric Poincaré G-complex

obtained from (C, ¥) by G-surgery on the above G-pair. Then C’ has the
form

.--—pO—) Ul (6) '*

<3>
N O >

where the maps are given as follows: (1) = Ayiy, (2) = (—1)¥*23, (3) =
(=1 )15 (4) = (=1D)*"Aviv. (5) = (—1)*'ad A and (6) = (—1)* i}
Since (S, A) is a non-singular linking form, this chain complex is acyclic.
g.e.d.

Lemma 5.3. The class [(C. ¥)] in L¥3WZ) does not depend on
the particular choice of a resolution of (S, A).

Proof. Let 0— U2 v 250 and 0= 0P v Ls—0 be
two resolutions of S with the associated bilinear pairings A: VXV — @
and A" : V'X V'— Q, respectively. Let (C. ¢) and (C". ¥) be the (2k+1)-
dimensional symmetric Poincaré G-complexes corresponding to the two
resolutions respectively constructed as before (Lemma 5.2.). The exact

sequence 0— U @ U"B—éaﬂ—* V @ V'& S@® S— 0 and the

bilinear pairing A@® (—A): VXV @ VX V' — Q gives a resolution of
(5. )@ (S, —A). The (2k+1)-dimensional symmetric Poincaré G-complex
corresponding to this resolution is (C, ¥)@® (C’, —¢’) which is G-null-
cobordant by Lemma 5.2, since, (S, A) @ (S. —A) has a Z[G]-submodule

={(s. 5) € S S|s& S} satisfying (b) in (2), §3. This implies that
[(C MI=[C. ¢¥)]in L#F(Z). qed.

For a (—1)*~!-symmetric G-y-equivariant linking form (S, A). the above
(2k+1)-dimensional symmetric Poincaré G-complex (C. ¢) is denoted by

(Cs. ([G\)

Lemma 5.4. [f (S, A) satisfies the condition (a) in (2), §3, then
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(Cs, ¥) is G-null-cobordant.

Proof. Let 0 — U—'B» 14 2, S — 0 be a resolution of S satisfying the
condition (a). Let (f: Cs— D, (0, ¥2)) be the (2£+2)-dimensional connected
symmetric G-pair defined by

1:(Cs)uw1 = V¥— Dpy = V*  (r = k+1)
OZ(Cs)k = U*_’Dk =0 (7’=}€)
0:(Cs)y =0 —D, =20 (r + k. k+1).

f=

Let (C’, ¢¥') be the (2k+1)-dimensional symmetric Poincaré G-complex
obtained from (Cs. ¥;) by G-surgery on the above G-pair. Then C’ Has
the form

00—V Av U*r—0— -
@ /@
V* (_1)k+l V*

and it is acyclic. Hence (Cs, ) is G-null-cobordant. q.e.d.

From Lemma 5.2., 5.3. and 5.4., we obtain a well-defined homomorphism
@ : Whai(G, Z)— L¥4(Z) by putting 0((S, 2) =[(Cs, ¥)].

6. The map ¥. We define a homomorphism ¥ : L¥,.(Z)— WG, Z).

(1) Even dimensional case. Let (C, ¢¥) be a 2k-dimensional Poincaré
G-complex. Put H*(C) = H*(C)/Tor, where H*(C) is the k-th cohomo-
logy group of C and Tor is its torsion subgroup. Let a: H%(C)— (A*(C))*
be the map defined by a(x)(v) = ¢'(#u(c)), where x, y € H*(C) and x = [c],
y =[c’]for ¢, ¢’ € C*. Then, the pair (H*(C), ) defines a (—1)*symmetric
G-x-equivariant form.

Lemma 6.1. The correspondence (C, ¥)— (H*(C), @) induces a
well-defined homomorphism ¥ : L¥#A(Z) — W(G, Z).

Proof. Let us assume that (C, ¢) is G-null-cobordant. There is a
(2k+1)-dimensional symmetric Poincaré G-pair with boundary (C, ¥),(f:C
— D, (8¢, ¥)). By (*) in §4,

ddp+(—1) 8¢od* = (—1)Hom®(f W) : D* "= D, (0= 7 = n+l),

the following diagram is commutative up to sign:
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f*

- — H*D) H*C)

! l Fr 1
"'—’H/zn(D.C)——’Hk(C) Hk([))—_""'

where the two horizontal sequences are the exact sequences of the
homology and cohomology groups of the pair (: C— D), and the vertical
maps are the isomorphisms induced by 8¢ and ¥». The standard argument
of the Poincaré duality shows that f*(H*(D))/Tor is a G-lagrangean of
(H*(C). a).

Finally it is clear that, if (C, ¢¥) and (C’. ¢°) are G-quasi equivalent,
then (H*(C), @) and (H*(C’). a) are mutually isomorphic. g.e.d.

H*Y(D,C)— -

(2) 0Odd dimensional case. Let (C. ¢¥) be a (24+1)-dimensjonal
symmetric Poincaré G-complex. Put Z7 = ker (d*: C"— C™!), V = ker
(g:Z%'— H*Y(C)/Tor) (q is the projection) and U = C*/Z* Then d*
induces a G-homomorphism 8: U — V, and V/B(U) is isomorphic to Tor
H**'Y(C). Define a bilinear pairing A: VXV —@Q by A, ¢v') =
(1/m)c(o(v)). where v, v’ € V, mv=d*c(m : integer # 0, ¢ € C* = (Cp)*)
and ¢y: C**'— C,. If vor v is in the image d*(C*), then Ay, v') € Z.
Hence A(A(w), v)E Z and Ay, f(u)) E Z for u e U and v € V, and A
induces a well-defined pairing A: Tor H**'(C)XTor H*'(C)— Q/Z by
Alx, ¥) = oA, v')) for x = y(v) and y = y(v'), where y: V — V/3(U) =
Tor H**'(C) is the projection and w: @ — Q/Z is the quotient map.
From the equation

o+ (—D*¥¢ = —(dh+(—D*hd*): C*' - C..

it follows that A, v")+(—1)*A(v", v) E Z for v. v' € V. Hence Alx. y)=
(—=1)*'A(y. x) for x, y € Tor H**Y(C). Since ¥ is a G-map, Algv, gv’)
= x(g)A(v, v') and Agx. gy) = x(g)A(x, ) for g€ G, v, v’ E Vandx,y €
Tor H*Y(C). Let A:Tor H*'(C)—(Tor H**'(C))* be the adjoint map of
A. Then A is an isomorphism, since ¥ induces an isomorphism H*+(C)—
Hi(C) and Tor H.(C)— (Tor H%**'(C))* by the universal coefficient
theorem, Consequently the pair (Tor H**!(C), A) is a (—1)**'-symmetric
G-x-equivariant linking form in the sense of §3.

Lemma 6.2. The correspondence (C, ¢)— (Tor H*'(C), A) induces
a well-defined homomorphism ¥ : L3N Z) — Wa(G, Z).

Proof. Let us assume that (C, ¢) is G-null-coberdant. There is a
(2k+2)-dimensional symmetric Poincaré G-pair with boundary (C. ¥),
(f: C— D, (8¢, ¢¥)). Consider the following commutative diagram,
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0 0 0
F* 1

Tor H"‘“(D) — Tor H‘”‘(C) — Tor H’”z(l) C)

l %
e —3 Hk+I(D’C)_,Hk+1(D) f Hk+l(c ) H’HZ(D,C)—’

{ s l

H"”(D)/TorL H’*“(C)/Tor H*2(D,C)
{ l l
0 0 0

where the horizontal middle sequence is the cohomology exact sequence of
the pair (f : C— D), and the upper vertical maps are the iuclusions and the
lower ones are the quotient maps. Let @ be the image f*(Tor H**Y{D))
and j: @ — Tor H**'(C) the inclusion. The orthogonal complement of Q
with respect to A, Q* =ker (*A: Tor H*'(C)— Q*), coincides with
X H®YD)) N Tor H*'(C). Let S be the quotient module @*/Q. Let
As: S — S§* = Homz(S, Q/Z) be the map defined by (As(s))(s") = A(s)(s")
for s, s € S. This is well-defined and a G-isomorphism by the duality.
Put V = ker(f*: H**Y(D)/Tor — H**'(C)/Tor). There is an epimorphism
y: V-8 PutU=H*YD)/Tor)N V. Let 8: U— V betheinclusion.

B

There is a short exact sequence of G-modules 0 — U -

The duality maps (¥o)x: H**'(D)— Hpi(D.C) and (o)« : H*'(D,C)—
HkH(D) induce G-isomorphisms Ay: U— V* and Ay : V — U* such that
Ay =(—1)*'A%. Since SR Q: UR®Q— V&® Q is an isomorphism,
these define a bilinear pairing A: VXV — @ such that A = (—1)**14*
and A(gv, gv’) = x(g)A(v, v') for v, € V and g € G. By the construc-
tion, w(Alv, v))=A(y(v), y(v')) € Q/Z, for v, v’ € V. Hence these give a
G-resolution of length 1 of (S, As) satisfying the condition (a) in (2), §3.
Now the direct sum (S, —As) @ (Tor H#*'(C), A) has a Z[G]-submodule
={# x) €SP Tor H*Y(C)} (x € @ and % = the class of x in Q+/Q)
and it satisfies the condition (b) in (2), §3. Therefore (Tor H**'(C), A)
represents 0 in W& (G, Z).
Finally it is clear that if (C, ¥) and (C’, ") are G-quasi equivalent,
then (Tor H**'(C), A) and (Tor H**(C’), X) are isomorphic. g.e.d.

7. @ and ¥ are mutual inverses. In the preceding two sections, we
have constructed the two homomorphisms @ : Wi (G, Z)— Lt /(Z) and ¥ :
tx(Z)—> WEG, Z). By the definitions, ¥@® = the identity. In this

section, we shall prove @¥ = the identity.
(1) Evendimensional case. Let (C, ¢) be a 24-dimensional symmetric
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Poincaré G-complex. Put Z, =ker(d:Cr— Cu-1) B = Cr/Zr. These
are f.g. Z-free G-modules. I_,et p: Cr— B be the projection. There is an
injective G-homomorphism ¢ : B— Ck-; such that d = dp: Cr — Cp-1.

Lemma 7.1. Let p«:Homg%(C* C.)— Hom$(B*, B) be the wmap
induced by p. Then pxpo = 0, where Yo: C*— Cy is the k-th component
of Y.

Proof. Since coker (d*:(Cx-1)*— B*) is a torsion group. for each
¢ € B* there is an integer m * 0 and ¢’ € C*~! such that mc = d*¢’ and
so mp*e = d*c’. Then mp(p*c) = dold*c’) = (—D*d () is in Zs.
Hence mpi(p*c) = 0, and so pwo(p*c) = 0. q.e.d.

Consider the (24+1)-dimensional connected symmetric G-pair (f: C —
D, (0, ¢)) defined by

0:Cr— D=0 (r 2 k+1)
f=1p:Co— D=8 (r==8)
1:Cr— Dy =C, (r £ k1)
where the differential of D. dp. is given by (dp)r =0 (r = k+1). (dp)r =d
and (dp)r = (de)(r £ k—1). By the above lemma, this G-pair is well
defined. Let (C'. ¢') be the 2/&-dimensional symmetric Poincaré G-complex
obtained from (C, ¢) by G-surgery on the above G-pair.

Lemma 7.2. Ci. = Cp and Y= vo: C'* = C*— Cih = Cs. The homology
groups of C are given by H.(C) = H.(C)/ Tor and H,(C)=0 (r * k).

Proof. The first assertion is clear from the definition, Now. C’ has
the form

o= Crez— Cpaa

//k\(k 1)%-2

"“"Ckl—’B —‘—"Ckr_—’cko—""'

and it follows that H.(C’) =0 for » £ #—1, hence by duality H{C’) =0
for » 2 k+1, and Hx(C’) is Z-free. The k-th cycle group Z, = ker (d¢:
Ci.— Ck-1) coincides with Z,. Therefore H,(C’) is isomorphic to some
quotient module of H.(C). But it may be seen that #%,(B*) C ker (the
quotient map: Z, — Hx(C)/Tor). hence H,(C’) must be isomorphic to
H{C)/Tor. qed.
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Put Z'% = ker (d&: C'r,— C**"). Let i: Z'*— C’* be the inclusion,
and /*: C, = (C'*)* — (Z'*)* its dual map. There is a G-homomorphism
d" : (Z"")* - Ci-\ such that deo = d'i*: Ch— Cuoi. Let ¢ Z'%— H*(C')
= H"(C)/’I‘o_r be the projection. Then the sequence 0— (H*(C)/Tor)*

* od
AN (Z"‘)*—[—' Ci-1 is exact. Define the G-chain map #: C — C” by
0:Cr—Cr=0 (rzk+1)
h=1*.Ch,=Cx—Ci=Z")* (r=%ék)
1:Co— C7 = Cr (r £k-1)

where the differential of C” is given by (d¢»)r = 0(r 2 k+1), (der)e = d’
and (dc+)r = (de)(¥ £ k—1). Then h induces the isomorphisms of the
homology groups. Put ¢” = h*y’ € Q¥*(C”). Then ¥ = *¢hi: C'* =
72— Crn=(Z")* and ¢s =0 (s=1). (C” ¢¥") is a 2k-dimensional
Poincaré G-complex and /:(C. ¢)— (C” ¢” )is a G-quasi equivalence.
Now. set Q¥(C. ¢)=(C ¢). By definition. Cr = (H*(C)/Tor)* =
(H*(O)* and ¢o = (o)« : H*(C) — Hu(C)/Tor = (H*(C))* and #s =0

for s 2 1. Define the G-chain map ¢: C— C” by

0:C,r=0-Cr=0 (r = k+1)
e=1{q*: Co=(HNON* = Cs=(Z"* (r==4)
0:Cr=0—Cy} (r £ k—1).

Then e induces the isomorphisms of the homology groups.

Lemma 7.3. e*¢ = y".
Proof. It suffices to show that the right hand square of the following
diagram is commutative :

) q

Cc* A — H*(C)
J Yo Yo = | i*toi = ‘ Yo-
sk *
Cr ———— (274 — L — (HH(O)).,

Clearly the left hand square is commutative. For each b € ker ¢ C Z7%,
therer exist an integer s # 0 and ¢ € C’*! such that d*c = mb. Then,
for each a € Z'*, ma(y5' (b)) = a(¢o'(d*c)) = (— 1) aldys'(c)) = (—1)**!
(d*a)(¢¥s(c)) = 0. Hence a{¥y(b)) =0, and so go(ker ¢) = 0. Similarly,
mb (¢ (@) = (d*c) (¥ (@) = c(d¥ (@) = (—1)*c (¥ (d*a)) = 0. This
implies (¥ (a)) =0, and so ¥'(Z'*%) Cim g*, since the sequence (H*(C))*

q* ) . -
4, (Z°#)* — (ker ¢)*— 0 is exact. Consequently, ¥ = g*¢g for some
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v H*(C)— (H*(C))*. Since ¥ induces the same map as ¢» on H*(C),
we get ¥ = . q.ed.

By the above lemma, e gives a G-quasi equivalence from Q@¥(C, ¢¥) to
(C” . ¢¥"), and this proves that @¥ = the dientity.

(2) Odd dimensional case. Let (C, ¢¥) be a (2k+1)-dimensional
symmetric Poincaré G-complex. Put Z, = ker(d : Cr— Cp-1), R = ker
(the quotient map: Zx — Hx(C)/Tor), and K = Cx/R. K is a f.g. Z-free
G-module. Let p: C,— K be the quotient map. There is a G-homomor-
phism d: K — Cr-1 such that d = dp: Cpo— Cu-,. Let (f: C— D, (0, ¥))
be the (244 2)-dimensional connected symmetric G-pair defined by

0: Cr— D, =0 (r 2 k+1)
f=1p:Ce—Dr=K (r =4k)
].:Cr,_’Dr:Cr (7’§k_1)
where the differential of D, dp. is given by (dp)r = 0(r 2 k+1), (dp)r = d.
and (dp)r = (do)y (r < k—1). Let (C'. ¢') be the (2&+1)-dimensional

symmetric Poincaré G-complex obtaind from (C, ¥) by G-surgery on the
above G-pair.

Lemma 7.4, Cr= Cr, Cie1= Cps1, and ¥5= th: C**' = Cr and
¥ = ¥ C*— Crr1.  The homology groups of C' are given by Hi(C') =
Tor Hx(C) and HAC) =0 (r # k).

Proof. The first assertion is clear from the definition. Now, C’ has

the form
= Chres Creo Cril Cr > Chi Crz—
® 7] @
Yo Yo (—=D*p (=D&
o CF1— K* K——— Chpoy— -

and it follows that H,(C) =0 for » < £#—1. By duality, H{C’) = 0 for
r =2 k+2. Now, ker (d¢: Ci— Ci-1) = ker (the quotient map: Z,—
H,(C)/Tor), so that H,(C") is isomorphic to Tor H.(C), and Hr. (C") = 0.
qg.ed.

Put Z"=ker (d&:C"— C™'), and V =Z'*'. Let i: V— C*"!
be the inclusion, and i*: Cks1 = (C'§*1)* — V* its dual map. There is an
injective G-homomorphism d’': V*— C} such that deo = d'i*: Chs1 — Ch.
Let #: C'— C” be the G-chain map defined by
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0:Cr—Cr=0 (r 2 k+2)
h=17:Char— Conn=V* (r=rk+1)
1.C—Cr =G (r £ k)

where the differential of C”, dc~, is given by (dev)r = 0 (¥ 2 k+2), (der)rs
=d’, and (dev)r = (dc’) (v £ k). Then h induces the isomorphism of the
homology groups. Put ¢” = A*¢’ € Q¥ 1(C”). Then ¢ = i*¢h: C'* =
Ct—=Chim=V* and ¢ = thi : C"**'= V- Csi = Cs and #5 =0 for
s2 1. (€7 ¢”) is a (2k+1)-dimensional symmetric Poincaré G-complex
and n:(C, ¢)— (C", ¥") is a G-quasi equivalence.

Note here that C; = C, = C». Put U = C*Z* U is a f.g. Z-free
G-module. Let ¢: C*— U be the quotient map, and ¢*: U* — (C*)* =
Ci its dual map. There is an injective G-homomorphism 3: V*— U*
such that d' = g*B: V*— C,, = C, and U*/B(V*) = Tor H,(C).

Lemma 7.5. There s a G-homomorphism : U — V* such that
Ui = thoq: C* = Cr— Ciyy = VA

Proof.  Since H*'(C”) = H**'((C’) is a torsion group, for each v € V
there is an integer m # 0 and ¢ € C"* = C* such that mv = d*c. For each
2€ Z% =ker g, mo(#i(2)) = (d*)P(2) = (i (2)) = (— 1)* (Y5 (d*2))
= 0. Hence v(#§(2z)) = 0. This proves the lemma. q.e.d.

Since ¥s =0 for s 21, Ty; = 5. where T is the transposition
involution. This implies that ¥¢' = ¢o/: C"**' =V — C; =C, is equal to
(i*¥o)*. Hence ¥ = i = ¢, where ¥: V — U* is the dual map of
¥o. Define the G-chain map e: C— C” by

0:Cr=0—Cr=0 (r =2 kb+2)
o= 1:6k+1 = V*— Cha = V* (7’ = /?+1)

g* . Co=U*—> C;, = Cs (r = k)

0:Cr=0—Cy=0C (r < k—1)

where the differential of C is given by (d&)se1 = 8 and (de), =0 (r = k+1).
Then e induces the isomorphisms of the homology groups. Define ¢ €

#UC) by (Po={to: U— V* ¥F: V—U* and (#)s =10 for s = 1.
Then (C, ¢) is a (2k+1)-dimensional symmetric Poincaré G-complex. By
Lemma 7.5 and the above remark, it may be seen that e%*# = ¢¥”. Hence
e induces a G-qnasi equivalence from (C. ¢) to (C”, ¢¥”). Now (C. ¥#)
represents the class O¥(C, ¢) in L3#4t(Z). This proves that @¥ = the
identity.

Consequently, we obtain the following
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Theorem 1. The maps ©: WG, Z)— L A(Z) and ¥ : LtZ)—
WE(G, Z) are isomorphisms.

8. The action of Wi(G, Z) on Wall groups. First we describe the
Wall group L§(x, w) by Ranicki’'s quadratic Poincaré complexes [5]. Let
7 be a multiplicative group with a homomorphism w: 7— {*1}. Then
the integral group ring Z[x] has an involution ~ defined by Xnxh—
SN npw(h)h~, where n, € Z and h € 7. An n-dimensional based f.g. free
Z[r] chain complex is a chain complex

d d d
Cs: Cy Cna G Co
such that each C; is a based f.g. free Z[x]-module and each d is a Z[r]-
homomorphism. The cochain group C* of Cx is a based f.g. free Z[x]
chain complex

C* . CO Cl oo Cn—l d CII
such that C" = Homziu(Cr, Z[x]) (1 £ r £ 1) and d* is the dual homo-
morphism of d, where C, is a Z[x]-module by the action (sf)(c) = f(sc)
(s€ Z[r), ce C,. f= C") and it is based by the dual base of C,. The
generator T € Z,acts on Homzn(C*, C«) by

7T: Homzm(C", Cq)'—’ Homzm(C". Cp)
f (—1)Pf*
For a based f.g. free Z[x]-module chain complex C, define the Z.-hyper-
homology group @.(C) = H,(W®gzizuaHomzm(C*, Cs)), where W is the

free Z[Z,]-resolution of Z. An element of @,(C) is an equivalence class
of collection

{6s € Homzm(C" 75, Cr) | ¥ 20, s 20}
such that
dﬁs+(_l)rgsd*+(_1)’1—8_1(88*-1"'(_1)3?] Tﬁsn) =0 (S = 0).

An #»-dimensional quadratic Poincaré complex over Z[x] (C. 8) is an »-
dimensional based f.g. free Z[z]-module chain complex together with an
element 8 € Q,(C) such that the cycle (1+ 7)8, € {Homzu(C* ", Cr), »
2 0} gives a simple chain equivalence C*~*— Csx. The quadratic L-groups
L.(7) (n 2 0) are defined to be the algebraic Poincaré cobordism groups
of n-dimensional quadratic Poincaré complexes over Z[x]. The quadratic
L-groups are 4-periodic, Ln(7) = L,+4(x), being equal to the Wall sergery
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obstruction groups L§{m, w).

Let (G, x) be a pair of a finite group G and a homomorphism yx: G —
{£1). Let ¢: x— G be an epimorphism. We denote the composite map
x$ by x. If M is an f.g. Z-free G-module, then M is also a f.g. Z-free
Z[7)-module by hu= ¢(h)u (hE n, u e M).

Lemma 8.1. Let M be a fg Z-free G-module, and P a fg. free
Zln]-module. Then H Rz P with the diagoual m-module structure, h(Z u
RbE)=2 hu@hb (hEnm, uce M bE P) is a fg free Z[x]-module.

Proof. Let {u1. -+, us} be a base over Z of M, and {4, --*, bs} a base
over Z[n] of P. Then {u#;® b;, 1= 7<s, 1=j< ¢} form a base over
Z[x] of M @:P. q.ed.

Let (C, #) be an m-dimensional symmetric Poincaré G-complex. Let
(D, 8) be an n-dimensional quadratic Poincaré complex over Z[x].
Consider the chain complex C ®zD,

(C®zD), =§ Cr®zDr 1, d(x®y)= xQdy+(—1)*dxR y(x®y E Cx®;Dr_4).

We consider C ®zD as a Z[7]-module chain complex by diagonal z-action.
Then C ®;D is a f.g. free Z[x] chain complex by Lemma 8.1. Now D,_,
has a preferred base over Z[x], {&1, ", b}. Let {21, -, us) be a base over
Z of Co. Then {e; ®b;, 1<i=<s 1=<;< ¢} form a base over Z[x] of
Cr ®zDr_;. We take this base as a preferred base of Cr, ®2zDr-r. The
simple equivalence class of C ®zD endowed with these bases does not
depend on the particular choice of the base over Z of C,, for Wh(Z) = 0.
Now, let

{¢¥s € Hom§(C™ ™S, C,)| » 20, s 20} and
{Hs S5 Homzm(D”"‘s. Dr) | r=z0 s O}

be collections of chains resenting ¥ and 6. respectively. Put

¥ ® 6)s = éo (=)™ %%, @ T70s4r (s 20)
where ¥r ® T760s+r € Hom$(C*, Cs)msr @ Homyz (D*, Dy)n-s-r. There
is a natural inclusion

K Homg(c*, C*)m+r ® Homzln]((D*, D*)n—s—r
- Homzml(C* ®ZD*y C* ®ZD*)m—n—s

defined by (#(u ® v))c ® d) = ul(c) ® v(d) (x € HomG(C™*7-%,  Ch),
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v € Homgz g (D?5-7-9 D), c&€ C" 7% d& D*577) and 7 acts on
C*®zD* by (Wu®@u)(c®d)=(uRv)x(Wh'c@®uwh)h'd)=
(u Q v)x(Ww(Bh  (c®d) =(u @ v wx(BWh (c®d)) (hex). The
collection of chains {«((¢¥ ® 8)s). s = 0} represents an element of Qma+n
(C ®zD), where the involution of Z[7] is given by X} nxh— 2 wx(B)nnh™!
(nn€ Z he m). Hence we obtain an (m+ n)-dimensional quadratic
Poincaré complex over Z[r], (C®:D, «(¢ ® 8)). We denote this quadratic
Poincaré complex by (C. ¥) ® (D, ).

Lemma 8.2. Let f:(C. ¢¥)—(C. ¢¥) be a G-quasi equivalence
between wm-dimensional symmetric Poincaré G-complexes. Let (D, 8) be
an n-dimensional quadratic Poincaré complex over Z[n). Then f induces
a simple chain equivalence over Z[n), f®1, from (C, ¥)&Q(D, 8) to
(C, ¥) x (D, 0).

Proof. Since f: C— D induces the isomorphisms of the homology
groups, f®1: CRzD— C @zD also induces the isomorphisms of the
homology groups by Kiinneth formula. Since the chain complexes C &z D
and C’®zD are both f.g. free Z[x]-module chain complexes, f ® 1 is a
chain equivalence over Z[x] which is clearly simple, as Wi(Z) = 0. g.e.d.

Now it can be seen that if an m-dimensional symmetric Poincaré
G-complex (C, ) is a boundary of an (m+1)-dimensional symmetric
Poincaré G-pair, then for any n-dimensional quadratic Poincaré complex
over Z[x], (D, 8). (C. #) ® (D. 6) is a Poincaré boundary of an (+ »n+1)-
dimensional quadratic Poincaré pair over Z[x].

Consequently, the above construction gives a pairing LZx(Z)® Lix, w)
— L$.a(m wy). By the isomorphism @ : WE(G, Z)— L¥%(Z). we obtain
a pairing

WG, Z) Q@ Ls(x, w)— La(r, wy).

9. Main theorem. We return to the surgery problem in §1. Let L™
be an m-dimensional closed PL (or smooth) G-y-manifold. By equivariant
triangulation theorem [3], we can assume that there is a triangulation
t(L™) = {r| r: open simplex} of L™ such that (1) for each z € $(L™) and
g€ G gre L™ and (2) if gr = r, then g fixes each point of 7. We
choose and fix such a triangulation #(L™). Let {Cx(L), d«} be the G-chain
complex defined by this triangulation. The manifold L™ X L™ has the G-
CW structure {rXv|t. v € t(L™)}. Let the generator T € Z, acts on
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LnXL” by T(x, )= (v, x){x, y)& L®XL™). Then L"XL"™ is a ZsX
G-manifold and the above CW structure is a Z; X G-CW structure. Let
S= be the infinite dimensional sphere on which Z, acts by the antipodal
involution. Let {es, Tes| s =1, 2, :+} be the standard Z,-CW structure
of S*, where dim es = s and Tes is es transformed by 7. The manifold
S=x L™ has the Z>X G-action defined by (7. g){a, x) = (Ta, gx)(T € Z,,
gEG (a, x)E S*X L™, and {es¥Xt. TesXr|s=1, 2+ € t(L™)} gives
a Z>X G-CW structure of S*X L™, Let F': S®X L"— [™X L™ be the map
defined by F'(a, x) = (x, x){({(a. x) € S*XL™). F’is a Z:X G-equivariant
map. Let F:S*XL"— [®X L™ be a Z»X G-equivariant cellular approx-
imation of F’ with respect to the above Z>X G-CW structures of S®X L™
and L™ X L™ Then F induces the Z, X G-equivariant chain map F-: W« @
C:(L™) = C+(L™) ® C«(L™), where Wy is the chain complex Cx(S®) defined
by the above standard CW structure. W is a free Z[Z.]-resolution of Z.
Now, the chain complex Ci«(L™) ® Ci«(L™) is identified with the chain
complex Homz(C*(L™), C«(L™)) by the map ¢ & d— (u«— ulc)d)
(¢, d € C«(L™), u € C*(L™)). Hence F: induces the map denoted by the
same letter,

Fo: Wi ® Ce(L™) — Homz(C*(L™), C«(L™)).

Let [L™] € Cn(L™) be the fundamental cycle of L”. Then g[L™]=x(g)[L™]
for g € G. Hence, for each s 20, F.(es®@ [L™]) = ¢¥s is an element of
Homg(C*(L™), C«(L™))m+s, where G acts on C¥(L™) by (gu)c) =
ulx(g)g™'c) (g € G, u € C*L™), c € C«(L™). The pair (Cx(L™), ¢ =
{#s}) is an m-dimensional symmetric poincaré G-complex.

Let Q#(G) be the equivariant PL (resp. smooth) bordism group of
closed PL (resp. smooth) G-y-manifolds. Then the above construction
induces a well-defined homomorphism o : 2%(G)— LZ.(Z). By the iso-
morphism ¥ : L% (Z)— WE(G, Z), we obtain the homomorphism p = ¥p’

X(G)—>WE(G, Z) which is given by

[L2*] — <H*(L?*)/Tor, the intersection form>

and
[L2%+1] — (Tor H*}(L?**'), the linking form>.

Theorem 2. Let & be a finitely presented group with a homomorphism
w:rx—{x1). Let (G, x) be a pair of a finite group G and a homomorphism
x:G—o{x1}. Letp:n— G be an epimorphz'sm-, and denote the composite
xd by x. Then the following diagram is commulalive :

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 24/iss1/9

22



Y oshida: Surgery obstruction of twisted products

SURGERY OBSTRUCTION OF TWISTED PRODUCTS 95

RG)Q L. w)
lp®1
WEG, Z)Q Ls(r. w)— Loz wy) (m, n20)

where the upper map is the map defined by the construction in §1 and the
lower map is the map defined in §8.

Lso{m wy)

10. Proof of Theorem 2. The proof of Therorem 2 is essentially
same as that of the product formula of Ranicki [6, §8]. For each element
x € L§(m, w) (n 2 5), there is an n-dimensional normal map of degree
one, f: M*— N”" such that m(N")= rn and o(f) = x. We consider the
map fXzl 1 M*X L™ — M"X L™ defined in §1. where L™ is an m-dimen-
sional G-y-manifold.

First we assume that M” and N” are closed manifolds. Let F:vy— &
be the bundle map associated to f, where vy is the stable normal bundle of
M" and £ is some bundle over N". F induces the bundle map F:oy— &
where Dy (resp. £) is the bundle over M (resp. N™) induced by the pro-
jection from vy (resp. &). Let T(F): T(5y)— T(&) be the map induced
by F between the Thom spaces of vy and £ Following [6], there is a

stable #map H : 3*N? — 3=M which is an equivariant S-dual of T(F),

where NI (resp. M?) denotes the disjoint union of N (resp. M™) and one
m-fixed point. The map H is called a geometric Umker map for the normal
map f. H defines the composite 7-map

djoint(H ~
By - Nn 2UOIKH), o i
where the generator T € Z, acts on S® by the antipodal map and on
M? A MP by the transposition (a, &) — (b, a). Let C(M) be the f.g. free
Z[ r]-chain complex of M. Then 8y induces the homomorphism

Oy : Ho(NP, ®Z)— Ho(W ® 4121 C(M) Q21 C(M))

where ¥Z denotes the twisted coefficient associated to w: 7 — {£1}, W is
the Z[Z,)-chain complex C(S*) defined in §9, and T € Z, acts on C(#)
®z1mC(M) by the signed transposition @ ® b —(—1)*7b ® a (a € Co(M)
and b € Co(M)). 0Oy depends only on the stable m-equivariant homotopy
class of H.

Define the Umker Z[x]-module chain map f': C(N)— C(M) to be
the composite Z[x]-chain map

((N] N —)!

stable homotopy projection

SNz, M AME,

f': C(N) C(N)»* AN C(M)n* Mn—= C(M)
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where C(N) is the f.g. free Z[x)-chain complex of N”. [M] € H(M", .Z)
and [N] € Hn(N", ¥Z) are the fundamental classes of M" and N" respec-
tively, and N — denotes the cap products. Let C(f') be the algebraic
mapping cone of f'.

Let e: C(M)— C(f') be the projection. Then e induces the map

ex : Hy(W @212, C(M) @z C(M)) = Hu(W ® 212, (C(f') Rzim CUM)).
Put 8 = ex04([N]). Now the chain complex C(f') &z C(f') is isomor-

phic to the chain complex Homgz - (C(/*), C(f')%), and @ is considered as

an element of @,(C(f')). The pair (C(f'), 8) is an n-dimensional quadratic

Poincaré complex over Z[x] and represents the surgery obstruction of f.
Next we consider the surgery obstruction of the normal map fXl:

M?2X L™ — N"X L™ Note that 7 acts on the covering spaces M" X L™

and N” X L™ by the diagonal actions. If H:2*N, — 2= M, is a geometric

Umker map for £, then

HAL1:Z=(N"X Lm), = 3=N"AL?T— 2=(M"X L"), = 2°M? A L7
is a geometric Umker map for X ,1. The composite 7-map

. . A _
adjoint (H A 1) Q"SI x LM,
» ST Ay (MPX L™, A (M™XL™)
=STAL MEAMENLEALT

is given by 84 A d, where d is the diagonal map L™ — L™ X L™

Let C(L) be the G-chain complex defined by an equivariant triangula-
tion #+(L™) as in §9. Then 8ur, induces the homomorphism

Ount : Hn+m((N” X an) wrZz)
= Hnem(W®2z12,( CUM)QC(L))Q 21 CUMNQC(L))).

The Umker Z|x]-chain map for fX,.l is given by
f®1: C(N)® C)L)— C(M)® C(L)

and the algebraic mapping cone C((fX:1)!) is Z[x]-chain equivariant t‘o
C(f")® C(L) on which 7 acts diagonally. The chain map e ® 1: C(#)
® C(L)— C(f") ® C(L) induces the homomorphism

(e @ 1)y : Husm(W ®zi12,(C(M) ® C(L)) @ztm(C(M) @ C(L)))
= Huon(W Q2121 (C(F') @ C(L)) @zim(C(f') @ C(L)).

Put ' =(e® Dxani(INXL]), where [NX L] is the fundamental class
of N*X L™ Then the pair (C(f") ® C(L), &) is an (»n+ m)-dimensional

BOrinr 2 (NP L™),
stable projection
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quadratic Poincaré complex over Z[rz], and it represents the surgery
obstruction o(fX1). By the same argument as in [6. §8] we see that
(CUM® C(L), @) is equivalent to (C(f'), 8) ® (C(L), ¥).

When M™ and N™ have non-empty boundaries, a similar construction
can be made by the use of the homotopy Umker map pair

H: (32=Nn 3=N?)— (2=M7. I=oM?7).
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