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EQUIVALENCE OF MODULE CATEGORIES

To the memory of Professor Tadao Tannaka
Shonn KYUNO

Morita contexts and gamma rings are equivalent concepts ([2]). There-
fore, the duality theory obtained in Morita contexts is interpreted in
the terms of gamma rings and vice versa. Nobusawa [2] proved directly that
when R and L contain the unities the categories of all R-modules and L-
modules are equivalent, where R and L are the right operator ring and
the left operator ring of a gamma ring of homomorphisms respectively.
Furthermore, in [3] he obtained a generalization of one of Morita duality
theorems, that is, if R® = R and L* = L, then the categories of properly
generated R-modules and L-modules are equivalent.

In this note, without the assumption R® = R and L* = L, we shall
prove the following theorem :

Theorem. Let (R,L,M, T, 7.u) be a Morita context, in which r and u
are surjective. It is not assumed that the rings R, L have unities nor that
the modules are unitary. The categories of properly generated R-modules and
L-modules are equivalent.

We refer to Jacobson [1, p. 166] for the definition of a Morita context
(R,L.M,I'",t,u), where R, L are rings, M = ;M; is an L-R-bimodule,
I'= I, is an R-L-bimodule. We shall use his notations, except that
the products I'XM to R and MXT to L will be denoted by yxr and xy
(x€ M and y € I'), since all relevant associative laws hold. It is not as-
sumed that the rings have unities nor that the modules are unitary. But, we
assume that 7 and y are surjective.

Let R be a ring and M be a right R-module. If it satisfies (1) MR
=M, (2) lxe M|xR = 0} = {0}, then according to Nobusawa [3] we say
M is properly generated over R.

Let PGM(R) be a category of properly generated right modules over R
where the morphisms are R-module homomorphisms. Similarly, PGM(L)
denotes a category of properly generated right modules over L where
the morphisms are L-module homomorphisms.

Proof of the theorem. Let G € ob PGM(R). Let A be a free additive
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abelian group generated by the set of ordered pairs (g,7), where g € G,
y€ I, and let B be the subgroup of elements ), m;(g;, %) € A, where m;
are integers such that }_; mg;(y7x) = 0 for all x € M. Denote by [G, ]
the factor group A/ B and, without causing any ambiguity, by [g, 7] the coset
(g,7)+ B. Every element in [G,I"] therefore can be expressed as a finite
sum ) ; [gi, %]. [G.I'] forms a right L-module with definition

2 (80 0] 20 B = 2y L8l nas ), B1]

for 30 [gn7]) € [G, "] and X, x;8 € L. It is well-defined, because
2 [ge ] = 20, (g5, %] means X5, gi(yix) = X0, g5( %ix) for any x € M.

To see [G,I"] € ob PGM(L), let >3; [g: 7] be an element in [G,I]
such that (2°; [g:, 72])L = 0, that is, (35 [gs, 7])MI" = 0. By the defini-
tion, X, [g:(%M), '] = 0, which implies (3 g(M))I'M = 0, that is,
(3:g(nM)R =0. Since G & ob PGM(R), X, g:{%M) = 0. Hence,
Yulgun]=0.

In addition, [G.I']L = [G,I’'IJMI"= [GI'M,I"] = [GR,I'] = [G,T"].
Therefore, [G,I"] € ob PGM(L). Similarly, for U € ob PGM(L) we can
define a right R-module [U,M] and show that [U,M] € ob PGM(R).

An R-module homomorphism f: Ay = B; determines an L-module homo-
morphism g : [A,I"], = [B,I"], by

g(> [as 7’:]) = Ei[f(ai)’ 7.

To see that g is well-defined, let >; [a;,%:] = 0. Then for any > ; x;w; €
L, 3.0fa:), %) 25 xsws = X [fad(nxs), ws] = X [Aayix,)), ws]
= 2 [AX: ad 5xs)), ws] = 0. Hence, 2, [fa), %] = 0.

It is easy to see that g is an L-module homomorphism.

Similarly, an L-module homomorphism & : U, —» V, determines an R-
module homomorphism k : [U,M ]z = [V,M]x by k(25 [us,2;]) = 205 [Ruy),
Ij].

Let f; and f, be R-module homomorphisms such that fi: A - B and
fo: B> C. Let g and g, be L-module homomorphisms determined by f
and f, respectively. Then, f;f,: A - C determines an L-module homomor-
phism p: [A, '] » [C,I"] such that p = g,g. Indeed, for any }; [a;,
7.) € [A, '] we have p(2; [a, %:]) = 2 [£fi(a), v] = 2 [f(Aila), %]
= (2 [Ma:), 7)) = ge8:1( 2 [as, n)).

Clearly, 1,: A » A determines 14 r: [4,] = [A,I"]. Thus, we
have functors F ; PGM(R) — PGM(L) and H: PGM(L) —» PGM(R), where
for A€ ob PGM(R) F(A) =[A,I'] and for Ue€ ob PGM(L) H(U)
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= [U,M].
For any A € ob PGM(R) and U € ob PGM(L),

and FH(U) = F([U,M]) = [[U.M],T].

Define the mapping 74 : A = A(I'M) - [[A,T'].M] by
a= 3 avax)~ 2 [[an, 7], x:].

We show that 7, is an isomorphism.

a= 2 a{nx) =0 (Xialyx))R=0
(By A € ob PGM(R).)
& (Xra yx))TM =0
(By R=TM.)
= [Ez ai('}’z?‘?t),r] =0
(By the definition that a coset is 0.)
<> 2 [an, %)(@I) =0
(By the definition of an L-module
imposed on [A,T7].)
= i [[ann),x] =0
(By the definition that a coset is 0.)

Hence, 7. is a bijection of A onto HF(A). It is easy to see that 7, is
an R-module homomorphism.

For an R-module homomorphism f: Ay —» Bi and for a = 3; a.(%x,) €
A, we have

HF(f)UA(a) = HF(f)’?A(Zi at(?’zxt)) = HF(f)Ei [[at,%],xi]
=2 [F(f)([ai,%]),xz] =2 [[f(az), }’z],xi]
= npf(a).

Therefore, we have the following commutative diagram :

74
A »HF(A)
S [ HF(f)
B — HF(B)
/7]

Thus, HF = 1ecwmr:.
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Similarly, we have FH = lpc,M(L;.
This completes the proof.
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