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ON RESTRICTED ANTI-HOPFIAN MODULES

Yasuyukt HIRANO and Isao MOGAMI

1. Introduction. In the previous paper [3], we investigated the struc-
ture of anti-Hopfian modules (non-simple modules all of whose non-zero factor
modules are isomorphic). In connection with the previous investigation, in
the present paper, we shall study the structure of non-simple modules all of
whose non-zero proper factor modules are isomorphic. We call such a mod-
ule restricted anti-Hopfian. A restricted anti-Hopfian module has the striking
property that every non-zero proper factor module is subdirectly irreducible.
Non-simple modules with such property will be called restricted subdirectly
irreducible, and will be studied in Section 2. Section 3 is devoted to the
study of the structure of restricted anti-Hopfian modules, and in the final
theorem (Theorem 14) we shall explicitly describe the structure of restrict-
ed anti-Hopfian modules over a commutative ring.

Throughout this paper, R will represent an associative ring with identi-
ty and all modules will be unitary right R-modules. For any module M,
we denote the Jacobson radical and the socle of M by Rad(M ) and Soc(M ),
respectively. Given a non-empty subset N of an R-module M, we put Annx(N)
={r€R|xr =0 forall x€ N|.

2. Restricted subdirectly irreducible modules.

Definitions. (a) A module M is said to be uniserial if the set of
submodules of M is linearly ordered by inclusion.

(b) A non-zero module M is said to be subdirectly irreducible if the
intersection H of all its non-zero submodules is not 0. In this case, the
submodule H is called the heart of M.

(¢) A module M is called completely subdirectly irreducible if every
non-zero factor module of M is subdirectly irreducible.

(d) A non-simple module M is called restricted subdirectly irreducible
(resp. restricted Artinian) if each proper non-zero factor module of M is
subdirectly irreducible (resp. Artinian).

In this section, we shall study the structure of the restricted subdirect-
ly irreducible modules.

First, we need the following

Lemma 1 (cf. [3, Proposition 1]). An R-module M is completely sub-
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directly irreducible if and only if M is Artinian and uniserial.

Proof. 1t suffices to prove the only if part. Clearly, the set of submod-
ules of M is linearly ordered. Suppose that there exists a countably infinite
strictly descending chain

M1 QMz QMa =2

of submodules of M. If we set N = ﬂz_ean, then each M, = M,/N is
a non-zero submodule of M/N, but ()iexM; = 0. This is contrary to our
assumption.

The quasi-cyclic (p-Priifer) group will be denoted by Z(p~), and a cyclic
group of order n by Z(n).

Example 2. Z(p~) is completely subdirectly irreducible. In fact,
every non-zero factor group of Z(p~) is isomorphic to Z(p™). But Z(p~) is
not Noetherian.

We shall now prove the following theorem which plays an important role
in this paper.

Theorem 3. Let M be an R-module. Then, M is restricted subdirectly
irreducible if and only if one of the following holds :

(1) M is adirect sum of two simple modules ;

(2) M is restricted Artinian and uniserial ;

(3) M is Artinian, M/Soc{M ) is non-zero uniserial, Soc(M) is a di-
rect sum of two simple modules and Soc(M ) is a waist of M (that is, every
submodule is comparable with Soc(M)).

Moreover, if M + Rad(M) and M satisfies (2) or (3), then M is local.

Proof. It suffices to prove the only if part. Let N be a non-zero proper
submodule of M. Since M is restricted subdirectly irreducible, every non-
zero factor submodule of M/N is subdirectly irreducible. Therefore, by
Lemma 1, M/N is Artinian and uniserial. This proves that M is restricted
Artinian and M/N is uniserial for every non-zero proper submodule N of M.
If M is uniserial, then (2) in this theorem holds. Suppose M is not unise-
rial. Then there exist two submodules M, and M, which are not comparable.
If Mi N M, + 0, then M/(M, N M,) is not subdirectly irreducible. This
contradiction implies that M, N M, = 0. Then M is embeded in the Artinian
module M/M, ® M/M,, and so M is also Artinian. We shall prove that M,
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and M, are simple. If M, is not simple, then M, contains a simple submodule
M'#+ M,. Then Soc(M/M’) isomorphically contains Soc(M,/M') & Soc(M.,).
This contradicts the hypothesis that M/M' is subdirectly irreducible.
Therefore M, is simple. Similarly, we can prove that M, is also simple.
Hence every submodule of M is comparable with Soc(M). By the same
reason as above, Soc{M) is a direct sum of two simple modules. Hence, in
this case, (1) or (3) in our assertion holds.

Next, we assume that M #+ Rad(M) and M satisfies (2) or (3), then M
does not satisfy (1). If there exist two distinct maximal submodules M, and
M., then M, N M, = 0. In this case, M satisfies (1). This is a contradic-
tion. Therefore, if M = Rad(M) and M satisfies (2) or (3). then M is
local. This completes the proof.

In case R is commutative, we can prove the following

Theorem 4. Lei R be a commutative ring, and M an R-module such
that M #+ Rad(M ). Then, M is restricted subdirectly irreducible if and only
if one of the following holds :

(1) M is adirect sum of two simple modules ;

(2) M is local, Noetherian and uniserial ;

(3) Soc(M) is a unique maximal submodule of M, and is a direct sum
of two simple modules.

Proof. If M satisfies (1) or (3), then clearly M is restricted subdirect-
ly irreducible. Suppose that M satisfies (2). For any m € M\Rad(M ),
we have that M = mR = R/Anng(m). Let J be the Jacobson radical of
R/Anng(m). Then we can easily see that if MJ" = 0 for some positive
integer n, then MJ"' is a unique maximal submodule of MJ". By the Krull
intersection theorem, [5-:MJ" = 0. Therefore, 0, M, MJ, MJ?, ... are the
only submodules of M. Hence M is restricted subdirectly irreducible.

Conversely, suppose that M is restricted subdirectly irreducible.
First, we consider the case when M satisfies (2) in Theorem 3. Then M is
local and M = mR for any m € M\Rad(M). Let N be a non-zero submodule
of M. Then M/N is Artinian, and so is R = R/Amgm+N) (= M/N as
R-modules). Clearly, R is Noetherian and hence the cyclic module M/N
over R is also Noetherian. This shows that M is Noetherian. Next, we
consider the case when M satisfies (3) of Theorem 3. Suppose, to the
contrary, that Soc(M ) is not maximal. Then M/Soc(M ) is not simple. Let
N'/Soc(M) be the heart of M/Soc(M), and N/N’ the heart of M/N'. Then
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we have a chain of submodules
Soc(M) & N' & N,

where both N/N' and N'/Soc(M) are simple, and both N and N' are local
Artinian. If we take x € N\N', then N = xR and N' = xaR for some a € R.
Since R = R/Amng(x) = xR = N, R is local and Artinian. Clearly, Rad(R)
= @R, where @ = a+ Annx(x). Therefore, we conclude that

R2aR=2aR=2 -
is a unique composition series of R. Hence N has also a unique composition

series. This is a contradiction. Therefore Soc(M) is a unique maximal
submodule of M. This completes the proof.

Example 5. Let K be a field, and R = {(8 2)|aeK, beK®oK;.

Then the right R-module Ry satisfies (3) in Theorem 4.

Let R be a Dedekind domain, K the field of fractions of R, and P
a prime ideal of R. We denote by R(P~) the P-primary part of K/R and,
following Kaplansky [4, p.335], we call this the module of type P™. It is
easily seen that R(P*) is isomorphic to K/Rp, where R, is the localization
of R at P.

When R is a Dedekind domain, we can completely classify the restricted
subdirectly irreducible R-modules as follows :

Theorem 6. Let R be a Dedekind domain, and M an R-module. Then,
M is restricted subdirectly irreducible if and only if one of the following
holds :

(1) M= R/P® R/Q for some prime ideals P and Q ;

(2) M = R/P?” for some prime ideal P and some positive integer n ;

(3) M is isomorphic to R(P*) for some prime ideal P ;

(4) R is a discrete valuation ring and M is isomorphic to the field of
Jfractions K of R.

Proof. “If” : This follows from Theorem 3.

“Only if” : First, suppose that M = Rad(M ). If M satisfies (3) in
Theorem 4, then M is isomorphic to R/I for some non-zero ideal I. Since
R is a Dedekind domain, we have a decomposition

I = PpPy- PR
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with some prime ideals P; and positive integers n;,. Hence
R/I=R/PP"®R/P*®---® R/P}~.

Since Soc(M) is a direct sum of two simple modules, we conclude & = 2.
But, in this case, R/I is not local. Hence, this case cannot occur. If M
satisfies (2) in Theorem 4, M is also a cyclic R-module. Since M is local,
M is isomorphic to R/P" for some prime ideal P and some positive integer
n. Clearly, if M satisfies (1) in Theorem 4, then (1) in this theorem holds.
Next, suppose that M = Rad(M ). In this case, we claim that M is divisible.
Suppose. to the contrary, that M is not divisible. Then there exists a non-
zero element p in R such that Mp = M. Since R is a Dedekind domain, we
have a decomposition

(p) = PpPP...P}H

with some prime ideals P; and positive integers n,. Then MP, + M for
some i, and thus M/MP; is a non-zero vector space over the field R/P..
Therefore, there exists a maximal submodule N of M containing MP;. This
is contrary to the assumption that M = Rad(M ), and so we conclude that M
is a divisible R-module. Then by Kaplansky [4, Theorem 7], M is the direct
sum of a vector space over K and modules of type P* for various prime
ideals P. Since M is restricted subdirectly irreducible, we conclude that
either M is isomorphic to R(P®) for some prime ideal P or M is isomorphic
to K. In the latter case, since K is a uniserial R-module (by Theorem 3),
it is easy to see that R has exactly one non-zero prime ideal, that is, R is
a discrete valuation ring. This completes the proof.

As a particular case of Theorem 6, we have

Corollary 7. An abelian group M is restricted subdirectly irreducible if
and only if one of the following holds :

(1) M= Z(p) & Z(q) for some primes p and q ;

(2) M = Z(p™) for some prime p and some positive integer n ;

(3) M = Z(p~) for some prime p.

3. Restricted anti-Hopfian modules.

Definitions. (e) A module M is said to be Hopfian if every surjective
endomorphism of M is an isomorphism.

(f) A submodule N of M is said to be a non-Hopf kernel (for M) if
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there exists an isomorphism of M/N to M.

(g) A non-simple module M is said to be anti-Hopfian if every proper
submodule of M is a non-Hopf kernel.

(h) A non-simple module M is said to be restricted anti-Hopfian if any
two non-zero proper factor modules of M are isomorphic. Clearly, every
anti-Hopfian module is restricted anti-Hopfian.

As is well known, every module has a subdirectly irreducible factor
module (see, e.g.. Anderson and Fuller [1. p. 95]). Hence every restricted
anti-Hopfian module is restricted subdirectly irreducible. The purpose of
this section is to study about the structure of restricted anti-Hopfian modules
and their endomorphism rings.

First, we shall consider the case when M has at least one maximal
submodule.

Theorem 8. Let M be an R-module such that M + Rad(M ). Then, M
is resiricted anti-Hopfian if and only if one of the following holds :

(1) M has exactly one non-zero proper submodule ;

(2) M is adirect sum of two isomorphic simple modules.

Proof. The if part is clear. We shall prove the only if part. Since
M is restricted subdirectly irreducible, we can apply Theorem 3. At first,
we consider the case when M satisfies(2) in Theorem 3. Then we claim that

M has exactly one non-zero proper submodule. Suppose, to the contrary,
that

0shelJ&M

is a chain of submodules of M. Then M/J and M/J, are not isomorphic,
because M/J is simple and M/J; is not simple. This contradicts our
hypothesis on M. Therefore, M has exactly one non-zero proper submodule,
that is, (1) in this theorem holds. If M satisfies (1) in Theorem 3, then (2)
in this theorem holds, clearly. Finally, we consider the case that M sat-
isfies (3) in Theorem 3. Let J be the unique maximal submodule of M and
Soc(M) = S,® S,, where S, and S, are simple. Then M/J and M/S, are

not isomorphic. Hence, this case cannot occur, completing the proof.
Corollary 9. Let R be a Dedekind domain, and M an R-module such

that M + Rad(M). Then, M is restricted anti-Hopfian if and only if one of
the following holds :
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(1) M= R/P?;
(2) M= R/P®R/P, where P is a non-zero prime ideal of R.

Proof. This is immediate from Theorems 6 and 8.

A ring R is said to be a (right) CH-ring if every cyclic right R-module
is Hopfian. Clearly, every right Noetherian ring is a CH-ring. As is well
known, every finitely generated module over a commutative ring R is Hopfian
(see, e.g. Armendariz, Fisher and Snider [2]). Hence, every commutative
ring is a CH-ring.

Next, we shall consider a restricted anti-Hopfian module M with M =
Rad(M ). When this is the case, for any non-zero proper submodule N of M,
M/N is a non-simple R-module all of whose factor modules are isomorphic.
Hence, M is a restricted anti-Hopfian module with M = Rad(M) if and only
if M/N is anti-Hopfian for every non-zero proper submodule N of M.

Now, by making use of Theorem 3 and [3, Theorem 2], we shall charac-
terize restricted anti-Hopfian modules M over a CH-ring with M = Rad(M ).

Theorem 10. Let R be a CH-ring, and M an R-module such that M =
Rad(M). Then, M is restricted anti-Hopfian if and only if one of the fol-
lowing holds :

(1) la) The set of proper submodules of M forms a chain

OEMEsM =M & ---
such that
UM,::M. and

i€EN

1b) M,/M, is a non-Hopf kernel for M/M,.
(2) 2a) The set of proper submodules of M forms a chain

wEML,eM..EMEMEM < -
such that
NM;=0, UM =M, and
i€Z i€eZ
2b) for each i, M;./M; is a non-Hopf kernel for M/M,.
(3) 3a) Soc(M) is a waist of M, and is a direct sum of two iso-

morphic simple modules and the set of proper submodules of M containing
Soc(M) forms a chain
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MIZSOC(M);Mngag"'
such that
U Mg = M, and

{EN

3b) for every simple submodule S of M, M,/S is a non-Hopf
kernel for M/ S.

Proof. “Only if” : First, suppose that M satisfies (2) in Theorem 3,
namely M is restricted Artinian and uniserial. If Soc(M) = M, #+ 0, M/M,
is anti-Hopfian and hence, by [3, Theorem 2], (1) in our assertion holds.
Next, we shall show that if Soc(M) = 0 then (2) in this theorem holds. Let
M, be a non-zero proper submodule of M. By [3, Theorem 2], since M/M,
is anti-Hopfian, the set of proper submodules of M containing M, forms
a chain

MeMcsMgs- -

such that

Since M, has a non-zero proper submodule M, and M/M; is anti-Hopfian,
again by [3, Theorem 2] M, has the unique maximal submodule M,. Contin-
uing this procedure, we have a chain of the submodules of M

M, M. EMEMEM,EM & .

It is easy to see that those are the only non-zero proper submodules of M,

MNiezM; = 0 and U;ezM; = M. The assertion 2b) is obvious.

Finally, suppose that M satisfies (3) in Theorem 3. Then, by hypoth-
esis, Soc(M) is a waist of M and the set of proper submodules of M
containing Soc(M ) forms a chain

M, = SOC(M> sM.cM & -
such that

Mi: M.

iEN

It is easy to see that Soc(M) is a direct sum of two isomorphic simple

modules. Again by [3, Theorem 2], M,/S is a non-Hopf kernel for M/S for
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every simple submodule S of M.
“If” : Assume (1). Since the factor module M/M, is anti-Hopfian by
[3, Theorem 2], we see that

M/M, = (M/M\)/(M./M) = M/M,

for all i € N.

Assume (2). Let M, be an arbitrary non-zero proper submodule of M.
Since the factor module M/M; is anti-Hopfian by [3, Theorem 2], M is
restricted anti-Hopfian.

Finally, assume (3). Let S be an arbitrary simple submodule of M.
Again by [3, Theorem 2], the factor module M/S is anti-Hopfian, and so we
obtain M/S = M/N for every proper submodule N of M containing S. This
shows that M is restricted anti-Hopfian, completing the proof.

Corollary 11. Let R be a commutative ring, and M an R-module such
that M = Rad(M). Then, M is restricied anti-Hopfian if and only if one of
the following holds :

(1) The set of proper submodules of M forms a chain

oMM M, < -
such that
UIM;':M;

tEN

that is, M is anti-Hopfian.
(2) The set of proper submodules of M forms a chain

M. e M. e M ME&SM < -
such that

Proof. In view of Theorem 10 and [3, Theorem 8], it suffices to show
that M does not satisfy (3) in Theorem 10. Suppose, to the contrary, that
M satisfies (3) in Theorem 10, and choose a simple submodule S of M.
Then, Soc(M) is a waist of M and the set of proper submodules of M
containing Soc(M) forms a chain

M, =SocM) =SS &sM.ESM; & -
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such that

U M i = M

i€EN

with some simple submodule S' of M. And so, there exist m, and m, in M
such that S = m;R, M, = m,R. Since S & M,, there exists r, in R such
that m, = m,r. Now we define f € Endg(M ) by f(x) = xr, (x € M). Since
AS) C fIM,) and 0 + f(M,) = S, we see that S’ C Ker(f). Hence Ker(f)
is a non-zero proper submodule of M. Since every non-zero proper sub-
module is finitely generated, f must be an epimorphism, because M is not
finitely generated. Hence M/Ker(f) = M. This shows that M is anti-
Hopfian, which contradicts [3, Theorem 8].

We shall describe here some properties of restricted anti-Hopfian mod-
ules M, and the structure of their endomorphism rings End«(M ).

Proposition 12. Let R be a CH-ring, and M an R-module such thai
M = Rad(M). If M is not anti-Hopfian but restricted anti-Hopfian, then

(1) every proper submodule of M is finitely generated ;

(2) S = Endx(M) is a division ring.

Proof. (1). In case M satisfies (1) or (2) in Theorem 10, every
proper submodule of M has a unique maximal submodule, so that it is cyclic.
On the other hand, in case M satisfies (3) in Theorem 10, Soc(M ) is gener-
ated by two elements and other proper submodules are cyclic.

(2). Let g be an arbitrary non-zero element of S. Then g(M) =
M/Kef(g). If g(M) is a proper submodule of M, then M is finitely generated
by (1). This contradicts the assumption M = Rad(M ). Thus we have g(M)
= M and hence M = M/Ker(g). Since M is not anti-Hopfian, Ker(g) = 0.
Therefore S is a division ring.

Lemma 13. Let R be a commutative ring, and M an R-module such
that M = Rad(M ). If M is not anti-Hopfian but restricted anti-Hopfian, then

(1) every proper submodule of M is cyclic ;

(2) any two non-zero proper submodules are isomorphic ;

(3) R = R/AmnxM) is a discrete valuation ring :

(4) M is an injective R-module (so that M is a quasi-injective R-
module ).

Proof. By Corollary 11, the set of non-zero proper submodules of M

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 28/iss1/17
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forms a chain

EM ., EM . EMEMEM S -

such that

ﬂM,-=0, _UM[=M.
ieZ i€Z

(1). Since each M; has the unique maximal submodule M;_,, we obtain
M, = m;R for any m; € M,\\M,_,.

(2) and (3). Let m; be a generator of M, for each i, namely M; = m,R.
Then there exists 7 € R such that m; = m;,,7s. We now define f € Endz(M )
by flx) = xro (x € M). Since f(m;.,) = mys170 = my, f is an isomorphism
by Proposition 12. Then M.., = fM,.) = M,;: furthermore fIM;) =
M,_, for any j. Hence M, = M, for any #, so that Anng{M) = Annx(M,).
Therefore M; = m;R = R/AnnxM) = R. Taking the structure of the mod-
ule M, into consideration, we conclude that R is a discrete valuation ring.

(4). Let a be an arbitrary non-zero element of R. We define an R-
epimorphism A : M - Ma by h(x) = xa(x € M). By Proposition 12, M =
Ma. Since M is not finitely generated, we conclude that M = Ma. There-
fore M is a divisible R-module. As is well known, over a Dedekind domain,
divisibility is the same with injectivity (see, e.g.. Rotman [5, Theorem
4.27]). Therefore M is an injective R-module. This completes the proof.

We denote the lattice of the R-submodules of M by %(M). Q(U)
denotes the field of fractions of an integral domain U. When R is a commu-
tative ring, we can explicitly describe the class of restricted anti-Hopfian
R-modules.

Theorem 14. Let R be a commutative ring, and M an R-module. Then,
M is restricted anti-Hopfian if and only if one of the following holds :

(1) M has exactly one non-zero proper submodule ;

(2) M is adirect sum of two isomorphic simple modules :

(3) S = Endw(M) is a discrete valuation ring, M = Q(S)/S and
?S(M) = gn(M> 5

(4) R = R/Anng(M) is a discrete valuation ring and M is isomorphic
to Q(R).

Proof. To prove this theorem, it suffices to show that the following
three statements hold :
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(I) M is a restricted anti-Hopfian module with M = Rad(M) if and
only if (1) or (2) holds.

() M is an anti-Hopfian module if and only if (3) holds.

(I) M is not an anti-Hopfian module, but a restricted anti-Hopfian
module with M = Rad(M ) if and only if (4) holds.

Proof of (I ). This follows from Theorem 8.

Proof of (II). “Only if” : This follows from [3, Theorem 10] and its
proof.

“If” : Let P be the unique maximal ideal of S. Since M = Q(S)/S
(= S(P*)), M is anti-Hopfian by [3, Theorem 9]. This together with #s(M)
= (M) implies that M is an anti-Hopfian R-module.

Proof of (). “Only if” : By Lemma 13(3), R is a discrete valuation
ring. Since M = Rad(M) and M is not anti-Hopfian, none of (1), (2) and
(3) in Theorem 6 can occur. Therefore M is isomorphic to Q(R).

“If”: Let P be the unique maximal ideal of R. Then the set of proper
submodules of Q(R) forms a chain

EPPEPESR=PSP'SP’g .,
where P~" denotes the inverse of P" in the ideal group of R. It is easy to
see that

N P~ =0 and l_gJZ Pt=Q(R).

ieZ

Now, our assertion follows from the conditions (2) in Corollary 11.

Combining Theorem 6 with Corollary 9 and Theorem 14 we readily
obtain the following

Corollary 15. Let R be a Dedekind domain, and M an R-module. Then,
M is restricted anti-Hopfian if and only if one of the following holds :

(1) M= R/P?;

(2) M=R/P®R/P, where P is a non-zero prime ideal of R ;

(3) M is isomorphic to R(P~) for some prime ideal P ;

(4) R is a discrete valuation ring and M is isomorphic to the field of
fractions K of R.

In particular, if M = Rad(M ), the following statemenis are equivalent :

1) M is a restricted anti-Hopfian module.

2) M is a restricted subdirectly irreducible module.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 28/iss1/17
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